Single-file diffusion (SFD) is a key mechanism underlying transport phenomena in confined physical and biological systems. In a typical SFD process, microscopic particles are restricted to moving in a narrow channel where they cannot pass one another, resulting in constrained motion and anomalous long-time diffusion. In this study, we use Brownian dynamics simulations and analytical theory to investigate the SFD of athermal active Brownian particles (ABPs)—a minimal model of active colloids. Building on prior work [Schiltz-Rouse et al., Phys. Rev. E 108, 064601 (2023)], where the kinetic temperature, pressure, and compressibility of the single-file ABP system were derived, we develop an accurate analytical expression for the mean square displacement (MSD) of a tagged particle. We find that the MSD exhibits ballistic behavior at short times, governed by the reduced kinetic temperature of the system. At long times, the characteristic subdiffusive scaling of SFD, [⟨(Δx)2⟩∼ t1/2], is preserved. However, self-propulsion introduces significant changes to the 1D-mobility, which we directly relate to the system’s compressibility. Furthermore, we demonstrate that the generalized 1D-mobility, originally proposed by Kollmann for equilibrium systems [M. Kollmann, Phys. Rev. Lett. 90, 180602 (2003)], can be extended to active systems with minimal modification. These findings provide a framework for understanding particle transport in active systems and for tuning transport properties at the microscale, particularly in geometries where motion is highly restricted.

1.
A. L.
Hodgkin
and
R. D.
Keynes
, “
The potassium permeability of a giant nerve fibre
,”
J. Physiol.
128
,
61
(
1955
).
2.
D. W.
Jepsen
, “
Dynamics of a simple many-body system of hard rods
,”
J. Math. Phys.
6
,
405
(
1965
).
3.
J. L.
Lebowitz
and
J. K.
Percus
, “
Kinetic equations and density expansions: Exactly solvable one-dimensional system
,”
Phys. Rev.
155
,
122
(
1967
).
4.
D. G.
Levitt
, “
Dynamics of a single-file pore: Non-Fickian behavior
,”
Phys. Rev. A
8
,
3050
(
1973
).
5.
W.
Stephan
,
B.
Kleutsch
, and
E.
Frehland
, “
Rate theory models for ion transport through rigid
,”
J. Theor. Biol.
105
,
287
(
1983
).
6.
K.
Eskesen
and
H. H.
Ussing
, “
Single-file diffusion through K+ channels in frog skin epithelium
,”
J. Membr. Biol.
91
,
245
(
1986
).
7.
J. M. D.
MacElroy
and
S.-H.
Suh
, “
Self-diffusion in single-file pores of finite length
,”
J. Chem. Phys.
106
,
8595
(
1997
).
8.
C.
Rödenbeck
,
J.
Kärger
, and
K.
Hahn
, “
Calculating exact propagators in single-file systems via the reflection principle
,”
Phys. Rev. E
57
,
4382
(
1998
).
9.
K. K.
Mon
and
J. K.
Percus
, “
Self-diffusion of fluids in narrow cylindrical pores
,”
J. Chem. Phys.
117
,
2289
(
2002
).
10.
M.
Kollmann
, “
Single-file diffusion of atomic and colloidal systems: Asymptotic laws
,”
Phys. Rev. Lett.
90
,
180602
(
2003
).
11.
K.
Nelissen
,
V. R.
Misko
, and
F. M.
Peeters
, “
Single-file diffusion of interacting particles in a one-dimensional channel
,”
Europhys. Lett.
80
,
56004
(
2007
).
12.
L.
Lizana
and
T.
Ambjörnsson
, “
Single-file diffusion in a box
,”
Phys. Rev. Lett.
100
,
200601
(
2008
).
13.
V. N.
Kharkyanen
and
S. O.
Yesylevskyy
, “
Theory of single-file multiparticle diffusion in narrow pores
,”
Phys. Rev. E
80
,
031118
(
2009
).
14.
S.
Herrera-Velarde
,
A.
Zamudio-Ojeda
, and
R.
Castañeda-Priego
, “
Ordering and single-file diffusion in colloidal systems
,”
J. Chem. Phys.
133
,
114902
(
2010
).
15.
A. S.
Stern
and
H. C.
Berg
, “
Single-file diffusion of flagellin in flagellar filaments
,”
Biophys. J.
105
,
182
(
2013
).
16.
N.
Leibovich
and
E.
Barkai
, “
Everlasting effect of initial conditions on single-file diffusion
,”
Phys. Rev. E
88
,
032107
(
2013
).
17.
S. D.
Goldt
and
E. M.
Terentjev
, “
Role of the potential landscape on the single-file diffusion through channels
,”
J. Chem. Phys.
141
,
224901
(
2014
).
18.
E.
Locatelli
,
M.
Pierno
,
F.
Baldovin
,
E.
Orlandini
,
Y.
Tan
, and
S.
Pagliara
, “
Single-file escape of colloidal particles from microfluidic channels
,”
Phys. Rev. Lett.
117
,
038001
(
2016
).
19.
S.
Farrell
and
A. D.
Rutenberg
, “
Non-Fickian single-file pore transport
,”
Phys. Rev. E
104
,
L032102
(
2021
).
20.
T. E.
Harris
, “
Diffusion with ‘collisions’ between particles
,”
J Appl. Probab.
2
,
323
(
1965
).
21.
J.
Kärger
, “
Single-file diffusion in zeolites
,” in
Adsorption and Diffusion
, edited by
H. G.
Karge
and
J.
Weitkamp
(
Springer
,
Berlin, Heidelberg
,
2008
), pp.
329
366
.
22.
B. U.
Felderhof
, “
Fluctuation theory of single-file diffusion
,”
J. Chem. Phys.
131
,
064504
(
2009
).
23.
P. M.
Centres
and
S.
Bustingorry
, “
Effective Edwards–Wilkinson equation for single-file diffusion
,”
Phys. Rev. E
81
,
061101
(
2010
).
24.
F.
Höfling
and
T.
Franosch
, “
Anomalous transport in the crowded world of biological cells
,”
Rep. Prog. Phys.
76
,
046602
(
2013
).
25.
H.
Jobic
, “
Observation of single-file diffusion in a MOF
,”
Phys. Chem. Chem. Phys.
18
,
17190
(
2016
).
26.
Q.-H.
Wei
,
C.
Bechinger
, and
P.
Leiderer
, “
Single-file diffusion of colloids in one-dimensional channels
,”
Science
287
,
625
(
2000
).
27.
C.
Lutz
,
M.
Kollmann
, and
C.
Bechinger
, “
Single-file diffusion of colloids in one-dimensional channels
,”
Phys. Rev. Lett.
93
,
026001
(
2004
).
28.
C.
Lutz
,
M.
Kollmann
,
P.
Leiderer
, and
C.
Bechinger
, “
Diffusion of colloids in one-dimensional light channels
,”
J. Phys. Condens. Matter
16
,
S4075
(
2004
).
29.
B.
Lin
,
M.
Meron
,
B.
Cui
,
S. A.
Rice
, and
H.
Diamant
, “
From random walk to single-file diffusion
,”
Phys. Rev. Lett.
94
,
216001
(
2005
).
30.
C.
Coste
,
J.-B.
Delfau
,
C.
Even
, and
M.
Saint Jean
, “
Single-file diffusion of macroscopic charged particles
,”
Phys. Rev. E
81
,
051201
(
2010
).
31.
A.
Villada-Balbuena
,
A.
Ortiz-Ambriz
,
P.
Castro-Villarreal
,
P.
Tierno
,
R.
Castañeda-Priego
, and
J. M.
Méndez-Alcaraz
, “
Single-file dynamics of colloids in circular channels: Time scales, scaling laws and their universality
,”
Phys. Rev. Res.
3
,
033246
(
2021
).
32.
V.
Kukla
,
J.
Kornatowski
,
D.
Demuth
,
I.
Girnus
,
H.
Pfeifer
,
L. V. C.
Rees
,
S.
Schunk
,
K. K.
Unger
, and
J.
Kärger
, “
NMR studies of single-file diffusion in unidimensional channel zeolites
,”
Science
272
,
702
(
1996
).
33.
J.
Kärger
and
D. M.
Ruthven
, “
Self-diffusion and diffusive transport in zeolite crystals
, in
Studies in Surface Science and Catalysis
, edited by
H.
Chon
,
S.-K.
Ihm
, and
Y. S.
Uh
(
Elsevier
,
1997
), Vol.
105
, pp.
1843
1850
.
34.
J.
Kärger
, “
Single-file diffusion in zeolites
,” in
Adsorption and Diffusion
, edited by
H. G.
Karge
and
J.
Weitkamp
(
Springer
,
Berlin, Heidelberg
,
2008
), pp.
329
366
.
35.
Z.
Li
,
R. P.
Misra
,
Y.
Li
,
Y.-C.
Yao
,
S.
Zhao
,
Y.
Zhang
,
Y.
Chen
,
D.
Blankschtein
, and
A.
Noy
, “
Breakdown of the Nernst–Einstein relation in carbon nanotube porins
,”
Nat. Nanotechnol.
18
,
177
(
2023
).
36.
C.
Boldrighini
,
R. L.
Dobrushin
, and
Y. M.
Sukhov
, “
One-dimensional hard rod caricature of hydrodynamics
,”
J. Stat. Phys.
31
,
577
(
1983
).
37.
J.
Bleibel
,
A.
Domínguez
,
F.
Günther
,
J.
Harting
, and
M.
Oettel
, “
Hydrodynamic interactions induce anomalous diffusion under partial confinement
,”
Soft Matter
10
,
2945
(
2014
).
38.
P.
Rizkallah
,
A.
Grabsch
,
P.
Illien
, and
O.
Bénichou
, “
Duality relations in single-file diffusion
,”
J. Stat. Mech.
2023
,
013202
.
39.
A.
Taloni
and
M. A.
Lomholt
, “
Langevin formulation for single-file diffusion
,”
Phys. Rev. E
78
,
051116
(
2008
).
40.
C. H.
Eab
and
S. C.
Lim
, “
Fractional generalized Langevin equation approach to single-file diffusion
,”
Physica A
389
,
2510
(
2010
).
41.
A.
Taloni
and
F.
Marchesoni
, “
Interacting single-file system: Fractional Langevin formulation versus diffusion-noise approach
,”
Biophys. Rev. Lett.
09
,
381
(
2014
).
42.
D.
Dürr
,
S.
Goldstein
, and
J. L.
Lebowitz
, “
Asymptotics of particle trajectories in infinite one-dimensional systems with collisions
,”
Commun. Pure Appl. Math.
38
,
573
(
1985
).
43.
K.
Hahn
and
J.
Karger
, “
Propagator and mean-square displacement in single-file systems
,”
J. Phys. A Math. Gen.
28
,
3061
(
1995
).
44.
O.
Flomenbom
and
A.
Taloni
, “
On single-file and less dense processes
,”
Euro. Phys. Lett.
83
,
20004
(
2008
).
45.
M. A.
Lomholt
and
T.
Ambjörnsson
, “
Universality and nonuniversality of mobility in heterogeneous single-file systems and rouse chains
,”
Phys. Rev. E
89
,
032101
(
2014
).
46.
A.
Taloni
,
O.
Flomenbom
,
R.
Castañeda-Priego
, and
F.
Marchesoni
, “
Single file dynamics in soft materials
,”
Soft Matter
13
,
1096
(
2017
).
47.
O.
Bénichou
,
P.
Illien
,
G.
Oshanin
,
A.
Sarracino
, and
R.
Voituriez
, “
Tracer diffusion in crowded narrow channels
,”
J. Phys. Condens. Matter
30
,
443001
(
2018
).
48.
A.
Santos
,
A Concise Course on the Theory of Classical Liquids: Basics and Selected Topics
,
Lecture Notes in Physics
, 1st ed. (
Springer International Publishing
,
Cham, Switzerland
,
2016
).
49.
L.
Lizana
,
T.
Ambjörnsson
,
A.
Taloni
,
E.
Barkai
, and
M. A.
Lomholt
, “
Foundation of fractional Langevin equation: Harmonization of a many-body problem
,”
Phys. Rev. E
81
,
051118
(
2010
).
50.
G. S.
Redner
,
M. F.
Hagan
, and
A.
Baskaran
, “
Structure and dynamics of a phase-separating active colloidal fluid
,”
Phys. Rev. Lett.
110
,
055701
(
2013
).
51.
Y.
Fily
and
M. C.
Marchetti
, “
Athermal phase separation of self-propelled particles with no alignment
,”
Phys. Rev. Lett.
108
,
235702
(
2012
).
52.
P.
Illien
,
O.
Bénichou
,
C.
Mejía-Monasterio
,
G.
Oshanin
, and
R.
Voituriez
, “
Active transport in dense diffusive single-file systems
,”
Phys. Rev. Lett.
111
,
038102
(
2013
).
53.
R.
Soto
and
R.
Golestanian
, “
Run-and-tumble dynamics in a crowded environment: Persistent exclusion process for swimmers
,”
Phys. Rev. E
89
,
012706
(
2014
).
54.
S. A.
Mallory
,
C.
Valeriani
, and
A.
Cacciuto
, “
Curvature-induced activation of a passive tracer in an active bath
,”
Phys. Rev. E
90
,
032309
(
2014
).
55.
S. A.
Mallory
,
C.
Valeriani
, and
A.
Cacciuto
, “
Anomalous dynamics of an elastic membrane in an active fluid
,”
Phys. Rev. E
92
,
012314
(
2015
).
56.
S. A.
Mallory
and
A.
Cacciuto
, “
Activity-assisted self-assembly of colloidal particles
,”
Phys. Rev. E
94
,
022607
(
2016
).
57.
S. A.
Mallory
,
F.
Alarcon
,
A.
Cacciuto
, and
C.
Valeriani
, “
Self-assembly of active amphiphilic Janus particles
,”
New J. Phys.
19
,
125014
(
2017
).
58.
S. A.
Mallory
,
C.
Valeriani
, and
A.
Cacciuto
, “
An active approach to colloidal self-assembly
,”
Annu. Rev. Phys. Chem.
69
,
59
(
2018
).
59.
L.
Barberis
and
F.
Peruani
, “
Phase separation and emergence of collective motion in a one-dimensional system of active particles
,”
J. Chem. Phys.
150
,
144905
(
2019
).
60.
S. A.
Mallory
and
A.
Cacciuto
, “
Activity-enhanced self-assembly of a colloidal kagome lattice
,”
J. Am. Chem. Soc.
141
,
2500
(
2019
).
61.
S. A.
Mallory
,
M. L.
Bowers
, and
A.
Cacciuto
, “
Universal reshaping of arrested colloidal gels via active doping
,”
J. Chem. Phys.
153
,
084901
(
2020
).
62.
S. A.
Mallory
,
A. K.
Omar
, and
J. F.
Brady
, “
Dynamic overlap concentration scale of active colloids
,”
Phys. Rev. E.
104
,
044612
(
2021
).
63.
A. K.
Omar
,
H.
Row
,
S. A.
Mallory
, and
J. F.
Brady
, “
Mechanical theory of nonequilibrium coexistence and motility-induced phase separation
,”
Proc. Natl. Acad. Sci. U. S. A.
120
,
e2219900120
(
2023
).
64.
S.
Paul
,
A.
Dhar
, and
D.
Chaudhuri
, “
Dynamical crossovers and correlations in a harmonic chain of active particles
,”
Soft Matter
20
,
8638
(
2024
).
65.
P.
Bayati
and
S. A.
Mallory
, “
Orbits, spirals, and trapped states: Dynamics of a phoretic Janus particle in a radial concentration gradient
,”
ACS Nano
18
,
23047
(
2024
).
66.
P.
Romanczuk
and
U.
Erdmann
, “
Collective motion of active Brownian particles in one dimension
,”
Eur. Phys. J. Spec. Top.
187
,
127
(
2010
).
67.
E.
Locatelli
, “
Dynamical and collective properties of active and passive particles in Single File
,” Ph.D. thesis,
University of Padua
,
2014
.
68.
Y.
Fily
,
A.
Baskaran
, and
M. F.
Hagan
, “
Dynamics of self-propelled particles under strong confinement
,”
Soft Matter
10
,
5609
(
2014
).
69.
E. C.
Euán-Díaz
,
S.
Herrera-Velarde
,
V. R.
Misko
,
F. M.
Peeters
, and
R.
Castañeda-Priego
, “
Single-file diffusion of driven interacting colloids
,”
Biophys. Rev. Lett.
09
,
413
(
2014
).
70.
L.
Alonso-Llanes
,
A.
Garcimartín
, and
I.
Zuriguel
, “
Single file motion of robot swarms
,”
Phys. Rev. Res.
6
,
L022037
(
2024
).
71.
K.
Misiunas
and
U. F.
Keyser
, “
Density-dependent speed-up of particle transport in channels
,”
Phys. Rev. Lett.
122
,
214501
(
2019
).
72.
P.
Dolai
,
A.
Das
,
A.
Kundu
,
C.
Dasgupta
,
A.
Dhar
, and
K. V.
Kumar
, “
Universal scaling in active single-file dynamics
,”
Soft Matter
16
,
7077
(
2020
).
73.
T.
Banerjee
,
R. L.
Jack
, and
M. E.
Cates
, “
Tracer dynamics in one dimensional gases of active or passive particles
,”
J. Stat. Mech.: Theory Exp.
2022
(1),
013209
.
74.
S.
Jose
, “
First passage statistics of active random walks on one and two dimensional lattices
,”
J. Stat. Mech.: Theory Exp.
2022
(11),
113208
.
75.
L.
Caprini
and
U. M. B.
Marconi
, “
Time-dependent properties of interacting active matter: Dynamical behavior of one-dimensional systems of self-propelled particles
,”
Phys. Rev. Res.
2
,
033518
(
2020
).
76.
U. M. B.
Marconi
,
H.
Löwen
, and
L.
Caprini
, “
Active fluctuations in the harmonic chain: Phonons, entropons and velocity correlations
,”
Mol. Phys.
122
, e2407009 (2024).
77.
E.
Schiltz-Rouse
,
H.
Row
, and
S. A.
Mallory
, “
Kinetic temperature and pressure of an active tonks gas
,”
Phys. Rev. E
108
,
064601
(
2023
).
78.
J. D.
Weeks
,
D.
Chandler
, and
H. C.
Andersen
, “
Role of repulsive forces in determining the equilibrium structure of simple liquids
,”
J. Chem. Phys.
54
,
5237
(
1971
).
79.
J. A.
Anderson
,
J.
Glaser
, and
S. C.
Glotzer
, “
HOOMD-blue: A Python package for high-performance molecular dynamics and hard particle Monte Carlo simulations
,”
Comput. Mater. Sci.
173
,
109363
(
2020
).
80.
A. R.
Dulaney
,
S. A.
Mallory
, and
J. F.
Brady
, “
The ‘isothermal’ compressibility of active matter
,”
J. Chem. Phys.
154
,
014902
(
2021
).
81.
L.
Tonks
, “
The complete equation of state of one, two and three-dimensional gases of hard elastic spheres
,”
Phys. Rev.
50
,
955
(
1936
).
82.
C. M. B.
Gutiérrez
,
C.
Vanhille-Campos
,
F.
Alarcón
,
I.
Pagonabarraga
,
R.
Brito
, and
C.
Valeriani
, “
Collective motion of run-and-tumble repulsive and attractive particles in one-dimensional systems
,”
Soft Matter
17
,
10479
(
2021
).
83.
T.
Debnath
,
S.
Nayak
,
P.
Bag
,
D.
Debnath
, and
P. K.
Ghosh
, “
Structure and diffusion of active-passive binary mixtures in a single-file
,”
J. Chem. Sci.
135
,
38
(
2023
).
84.
N.
Sepúlveda
and
R.
Soto
, “
Coarsening and clustering in run-and-tumble dynamics with short-range exclusion
,”
Phys. Rev. E.
94
,
022603
(
2016
).
85.
P.
de Castro
,
S.
Diles
,
R.
Soto
, and
P.
Sollich
, “
Active mixtures in a narrow channel: Motility diversity changes cluster sizes
,”
Soft Matter
17
,
2050
(
2021
).
86.
E.
Locatelli
,
F.
Baldovin
,
E.
Orlandini
, and
M.
Pierno
, “
Active Brownian particles escaping a channel in single file
,”
Phys. Rev. E
91
,
022109
(
2015
).
87.
I.
Mukherjee
,
A.
Raghu
, and
P. K.
Mohanty
, “
Nonexistence of motility induced phase separation transition in one dimension
,”
SciPost Phys.
14
,
165
(
2023
).
88.
L.
Hecht
,
L.
Caprini
,
H.
Löwen
, and
B.
Liebchen
, “
How to define temperature in active systems?
,”
J. Chem. Phys.
161
,
224904
(
2024
).
89.
M. D.
Graham
,
Cambridge Texts in Applied Mathematics: Microhydrodynamics
,
Brownian Motion, and Complex Fluids Series Number 58
(
Cambridge University Press
,
Cambridge, England
,
2018
).
90.
B.
ten Hagen
,
S.
van Teeffelen
, and
H.
Lowen
, “
Non-Gaussian behaviour of a self-propelled particle on a substrate
,”
Condens. Matter Phys.
12
,
725
(
2009
).
91.
T.
Ooshida
,
S.
Goto
,
T.
Matsumoto
, and
M.
Otsuki
, “
Insights from single-file diffusion into cooperativity in higher dimensions
,”
Biophys. Rev. Lett.
11
,
9
(
2016
).
92.
R.
Wittmann
,
H.
Löwen
, and
J. M.
Brader
, “
Order-preserving dynamics in one dimension – single-file diffusion and caging from the perspective of dynamical density functional theory
,”
Mol. Phys.
119
,
e1867250
(
2021
).
93.
J. M.
Rallison
, “
Brownian diffusion in concentrated suspensions of interacting particles
,”
J. Fluid Mech.
186
,
471
500
(
1988
).
94.
J.
Sané
,
J. T.
Padding
, and
A. A.
Louis
, “
The crossover from single file to Fickian diffusion
,”
Faraday Discuss
144
,
285
(
2010
).
95.
S.
Schweers
,
A. P.
Antonov
,
A.
Ryabov
, and
P.
Maass
, “
Scaling laws for single-file diffusion of adhesive particles
,”
Phys. Rev. E
107
,
L042102
(
2023
).
96.
A. K.
Tripathi
and
D.
Kumar
, “
Velocity correlations and mobility in single-file diffusion
,”
Phys. Rev. E
81
,
021125
(
2010
).
97.
H.
Dekker
, “
Long-time tail in velocity correlations in a one-dimensional Rayleigh gas
,”
Phys. Lett. A
88
,
21
(
1982
).
98.
M. H. J.
Hagen
,
I.
Pagonabarraga
,
C. P.
Lowe
, and
D.
Frenkel
, “
Algebraic decay of velocity fluctuations in a confined fluid
,”
Phys. Rev. Lett.
78
,
3785
(
1997
).
99.
J.
Stepišnik
and
P. T.
Callaghan
, “
The long time tail of molecular velocity correlation in a confined fluid: Observation by modulated gradient spin-echo NMR
,”
Physica B
292
,
296
(
2000
).
100.
T.
Bertrand
,
P.
Illien
,
O.
Bénichou
, and
R.
Voituriez
, “
Dynamics of run-and-tumble particles in dense single-file systems
,”
New J. Phys.
20
,
113045
(
2018
).
101.
D.
McQuarrie
,
Statistical Mechanics
,
G - Reference,Information and Interdisciplinary Subjects Series
(
University Science Books
,
2000
).
102.
B.
Berne
and
R.
Pecora
,
Dynamic Light Scattering: With Applications to Chemistry, Biology, and Physics
,
Dover Books on Physics
(
Dover Publications
,
2013
).
103.
J.
Boon
and
S.
Yip
,
Molecular Hydrodynamics
,
Dover Books on Physics
(
Dover Publications
,
1991
).
104.
K.
Schakenraad
,
L.
Ravazzano
,
N.
Sarkar
,
J. A. J.
Wondergem
,
R. M. H.
Merks
, and
L.
Giomi
, “
Topotaxis of active Brownian particles
,”
Phys. Rev. E
101
,
032602
(
2020
).
105.
P. N.
Pusey
and
R. J. A.
Tough
, “
Particle interactions
,” in
Dynamic Light Scattering
, edited by
R.
Pecora
(
Springer
,
Boston, MA
,
1985
), pp.
85
179
.
106.
A. V.
Straube
and
F.
Höfling
, “
Depinning transition of self-propelled particles
,”
Phys. Rev. E.
110
,
L062601
(
2024
).
107.
K. K.
Mon
and
J. K.
Percus
, “
Molecular dynamics simulation of anomalous self-diffusion for single-file fluids
,”
J. Chem. Phys.
119
,
3343
(
2003
).
You do not currently have access to this content.