Two-dimensional electronic spectroscopy (2DES) is used to theoretically and experimentally study a minimal three level “V” system (3LVS) with one ground state and two excited states coupled to common displaced harmonic oscillator modes. The third order non-linear optical response functions with frequency fluctuation correlation functions and frequency fluctuation cross correlation functions were derived using the displaced harmonic oscillator model to characterize the diagonal and cross-peaks. The two lowest vibronic transitions of a 6,13-bis(triisopropylsilylethynyl)-pentacene (TIPS-Pn) molecule serve as a model system for the 3LVS considered above. TIPS-Pn’s 2DES spectra were measured and analyzed using the center line slope (CLS) method. The CLSs of both the diagonal and cross-peaks consist of an exponential decay and an underdamped mode oscillating at a frequency of 264 cm−1, corresponding to the long axis breathing mode of the pentacene moiety of TIPS-Pn. The CLS oscillations’ amplitude and phase of both the diagonal and cross-peaks were measured to have a specific relationship with each other, which is well predicted and simulated by our theory for the 3LVS of TIPS-Pn. We estimate an effective Huang–Rhys factor of ∼0.27, which quantifies the coupling of the two vibronic transitions to the long axis breathing mode of the pentacene moiety of TIPS-Pn. We show that such simultaneous CLS analysis recovering the amplitudes and phase relationships between diagonal peaks and cross-peaks measures the correlated vibrational coherences of different states. This can be used to quantify how different excited states or multi-chromophoric states are coupled to common modes in more complex multistate systems.

1.
J. D.
Hybl
,
A. W.
Albrecht
,
S. M.
Gallagher Faeder
, and
D. M.
Jonas
, “
Two-dimensional electronic spectroscopy
,”
Chem. Phys. Lett.
297
(
3–4
),
307
313
(
1998
).
2.
D. M.
Jonas
, “
Two-dimensional femtosecond spectroscopy
,”
Annu. Rev. Phys. Chem.
54
(
1
),
425
463
(
2003
).
3.
S.
Mukamel
, “
Multidimensional femtosecond correlation spectroscopies of electronic and vibrational excitations
,”
Annu. Rev. Phys. Chem.
51
(
1
),
691
729
(
2000
).
4.
F. D.
Fuller
and
J. P.
Ogilvie
, “
Experimental implementations of two-dimensional Fourier transform electronic spectroscopy
,”
Annu. Rev. Phys. Chem.
66
(
1
),
667
690
(
2015
).
5.
S.
Biswas
,
J.
Kim
,
X.
Zhang
, and
G. D.
Scholes
, “
Coherent two-dimensional and broadband electronic spectroscopies
,”
Chem. Rev.
122
(
3
),
4257
4321
(
2022
).
6.
E.
Fresch
,
F. V. A.
Camargo
,
Q.
Shen
,
C. C.
Bellora
,
T.
Pullerits
,
G. S.
Engel
,
G.
Cerullo
, and
E.
Collini
, “
Two-dimensional electronic spectroscopy
,”
Nat. Rev. Methods Primers
3
(
1
),
84
(
2023
).
7.
M.
Cho
,
H. M.
Vaswani
,
T.
Brixner
,
J.
Stenger
, and
G. R.
Fleming
, “
Exciton analysis in 2D electronic spectroscopy
,”
J. Phys. Chem. B
109
,
10542
10556
(
2005
).
8.
E. L.
Read
,
G. S.
Engel
,
T. R.
Calhoun
,
T.
Mančal
,
T. K.
Ahn
,
R. E.
Blankenship
, and
G. R.
Fleming
, “
Cross-peak-specific two-dimensional electronic spectroscopy
,”
Proc. Natl. Acad. Sci. U. S. A.
104
(
36
),
14203
14208
(
2007
).
9.
P.
Hamm
and
M.
Zanni
,
Concepts and Methods of 2D Infrared Spectroscopy
(
Cambridge University Press
,
2011
).
10.
K. L. M.
Lewis
and
J. P.
Ogilvie
, “
Probing photosynthetic energy and charge transfer with two-dimensional electronic spectroscopy
,”
J. Phys. Chem. Lett.
3
(
4
),
503
510
(
2012
).
11.
J.
Dostál
,
J.
Pšenčík
, and
D.
Zigmantas
, “
In situ mapping of the energy flow through the entire photosynthetic apparatus
,”
Nat. Chem.
8
(
7
),
705
710
(
2016
).
12.
O.
Rancova
,
R.
Jankowiak
, and
D.
Abramavicius
, “
Probing environment fluctuations by two-dimensional electronic spectroscopy of molecular systems at temperatures below 5 K
,”
J. Chem. Phys.
142
(
21
),
212428
(
2015
).
13.
V.
Butkus
,
L.
Valkunas
, and
D.
Abramavicius
, “
Molecular vibrations-induced quantum beats in two-dimensional electronic spectroscopy
,”
J. Chem. Phys.
137
(
4
),
044513
(
2012
).
14.
V.
Butkus
,
D.
Zigmantas
,
L.
Valkunas
, and
D.
Abramavicius
, “
Vibrational vs. electronic coherences in 2D spectrum of molecular systems
,”
Chem. Phys. Lett.
545
,
40
43
(
2012
).
15.
J.
Seibt
and
T.
Pullerits
, “
Beating signals in 2D spectroscopy: Electronic or nuclear coherences? Application to a quantum dot model system
,”
J. Phys. Chem. C
117
(
36
),
18728
18737
(
2013
).
16.
S. T.
Roberts
,
J. J.
Loparo
, and
A.
Tokmakoff
, “
Characterization of spectral diffusion from two-dimensional line shapes
,”
J. Chem. Phys.
125
(
8
),
084502
(
2006
).
17.
S.
Bagchi
,
S. G.
Boxer
, and
M. D.
Fayer
, “
Ribonuclease S dynamics measured using a nitrile label with 2D IR vibrational echo spectroscopy
,”
J. Phys. Chem. B
116
(
13
),
4034
4042
(
2012
).
18.
E.
Romero
,
R.
Augulis
,
V. I.
Novoderezhkin
,
M.
Ferretti
,
J.
Thieme
,
D.
Zigmantas
, and
R.
Van Grondelle
, “
Quantum coherence in photosynthesis for efficient solar-energy conversion
,”
Nat. Phys.
10
(
9
),
676
682
(
2014
).
19.
J. R.
Caram
,
H.
Zheng
,
P. D.
Dahlberg
,
B. S.
Rolczynski
,
G. B.
Griffin
,
D. S.
Dolzhnikov
,
D. V.
Talapin
, and
G. S.
Engel
, “
Exploring size and state dynamics in CdSe quantum dots using two-dimensional electronic spectroscopy
,”
J. Chem. Phys.
140
(
8
),
084701
(
2014
).
20.
K.
Kwac
and
M.
Cho
, “
Two-color pump–probe spectroscopies of two- and three-level systems: 2-dimensional line shapes and solvation dynamics
,”
J. Phys. Chem. A
107
(
31
),
5903
5912
(
2003
).
21.
A.
Nemeth
,
F.
Milota
,
T.
Mančal
,
V.
Lukeš
,
J.
Hauer
,
H. F.
Kauffmann
, and
J.
Sperling
, “
Vibrational wave packet induced oscillations in two-dimensional electronic spectra. I. Experiments
,”
J. Chem. Phys.
132
(
18
),
184514
(
2010
).
22.
F.
Šanda
,
V.
Perlík
,
C. N.
Lincoln
, and
J.
Hauer
, “
Center line slope analysis in two-dimensional electronic spectroscopy
,”
J. Phys. Chem. A
119
(
44
),
10893
10909
(
2015
).
23.
R.
Kubo
, “
A stochastic theory of line shape
,”
Adv. Chem. Phys.
15
,
101
127
(
1969
).
24.
S.
Mukamel
,
Principles of Nonlinear Optical Spectroscopy
(
Oxford University Press
,
1995
).
25.
A.
Nitzan
,
Chemical Dynamics in Condensed Phases: Relaxation, Transfer, and Reactions in Condensed Molecular Systems
(
Oxford University Press
,
2024
).
26.
A.
Tokmakoff
, “
Nonlinear and two-dimensional spectroscopy
” (unpublished 2011), available online at https://bpb-us-w2.wpmucdn.com/voices.uchicago.edu/dist/0/1830/files/2019/11/FULL-2D-SPEC-NOTES-2011.pdf (accessed on 10 January
2025
).
27.
S. J.
Rosenthal
,
R.
Jimenez
,
G. R.
Fleming
,
P. v.
Kumar
, and
M.
Maroncelli
, “
Solvation dynamics in methanol: Experimental and molecular dynamics simulation studies
,”
J. Mol. Liq.
60
(
1–3
),
25
56
(
1994
).
28.
S.-H.
Lee
,
J.-H.
Lee
, and
T.
Joo
, “
Deuterium isotope effect on the solvation dynamics of a dye molecule in methanol and acetonitrile
,”
J. Chem. Phys.
110
(
22
),
10969
10977
(
1999
).
29.
S.
Park
and
T.
Joo
, “
Diffractive optics based three-pulse photon echo peak shift studies of spectral diffusion in polar liquids: Evidence for long lived frequency correlations
,”
J. Chem. Phys.
131
(
16
),
164508
(
2009
).
30.
K.
Kwak
,
S.
Park
,
I. J.
Finkelstein
, and
M. D.
Fayer
, “
Frequency-frequency correlation functions and apodization in two-dimensional infrared vibrational echo spectroscopy: A new approach
,”
J. Chem. Phys.
127
(
12
),
124503
(
2007
).
31.
K. L.
Wells
,
Z.
Zhang
,
J. R.
Rouxel
, and
H.-S.
Tan
, “
Measuring the spectral diffusion of chlorophyll a using two-dimensional electronic spectroscopy
,”
J. Phys. Chem. B
117
(
8
),
2294
2299
(
2013
).
32.
R.
Moca
,
S. R.
Meech
, and
I. A.
Heisler
, “
Two-dimensional electronic spectroscopy of chlorophyll a: Solvent dependent spectral evolution
,”
J. Phys. Chem. B
119
(
27
),
8623
8630
(
2015
).
33.
T. N.
Do
,
M. F.
Khyasudeen
,
P. J.
Nowakowski
,
Z.
Zhang
, and
H. S.
Tan
, “
Measuring ultrafast spectral diffusion and correlation dynamics by two-dimensional electronic spectroscopy
,”
Chem. - Asian J.
14
(
22
),
3992
4000
(
2019
).
34.
T.
Yoshida
and
K.
Watanabe
, “
Spectral diffusion of excitons in 3,4,9,10-perylenetetracarboxylic-diimide (PTCDI) thin films
,”
J. Phys. Chem. B
125
(
32
),
9350
9356
(
2021
).
35.
D. V.
Le
,
J. M.
de la Perrelle
,
T. N.
Do
,
X.
Leng
,
P. C.
Tapping
,
G. D.
Scholes
,
T. W.
Kee
, and
H.-S.
Tan
, “
Characterization of the ultrafast spectral diffusion and vibronic coherence of TIPS-pentacene using 2D electronic spectroscopy
,”
J. Chem. Phys.
155
(
1
),
014302
(
2021
).
36.
M. F.
Khyasudeen
,
P. J.
Nowakowski
, and
H.-S.
Tan
, “
Measuring the ultrafast correlation dynamics between the Qx and Qy bands in chlorophyll molecules
,”
J. Phys. Chem. B
123
(
6
),
1359
1364
(
2019
).
37.
J.
Sung
and
R. J.
Silbey
, “
Optical four wave mixing spectroscopy for multilevel systems coupled to multimode Brownian oscillators
,”
J. Chem. Phys.
118
(
5
),
2443
2445
(
2003
).
38.
S.
Jana
,
T. N.
Do
,
P. J.
Nowakowski
,
M. F.
Khyasudeen
,
D. V.
Le
,
I. J. Y.
Lim
,
S.
Prasad
,
J.
Zhang
, and
H.-S.
Tan
, “
Measuring the ultrafast correlation dynamics of a multilevel system using the center line slope analysis in two-dimensional electronic spectroscopy
,”
J. Phys. Chem. B
127
(
33
),
7309
7322
(
2023
).
39.
M.
Khalil
,
N.
Demirdöven
, and
A.
Tokmakoff
, “
Coherent 2D IR spectroscopy: Molecular structure and dynamics in solution
,”
J. Phys. Chem. A
107
(
27
),
5258
5279
(
2003
).
40.
J.
Sung
and
R. J.
Silbey
, “
Four wave mixing spectroscopy for a multilevel system
,”
J. Chem. Phys.
115
(
20
),
9266
9287
(
2001
).
41.
M.
Cho
, “
Coherent two-dimensional optical spectroscopy
,”
Chem. Rev.
108
(
4
),
1331
1418
(
2008
).
42.
D. T.
James
,
B. K. C.
Kjellander
,
W. T. T.
Smaal
,
G. H.
Gelinck
,
C.
Combe
,
I.
McCulloch
,
R.
Wilson
,
J. H.
Burroughes
,
D. D. C.
Bradley
, and
J.-S.
Kim
, “
Thin-film morphology of inkjet-printed single-droplet organic transistors using polarized Raman spectroscopy: Effect of blending TIPS-pentacene with insulating polymer
,”
ACS Nano
5
(
12
),
9824
9835
(
2011
).
43.
M.
Cho
,
Two-Dimensional Optical Spectroscopy
(
CRC Press
,
2009
).
44.
Z.
Zhang
,
K. L.
Wells
,
E. W. J.
Hyland
, and
H.-S.
Tan
, “
Phase-cycling schemes for pump–probe beam geometry two-dimensional electronic spectroscopy
,”
Chem. Phys. Lett.
550
,
156
161
(
2012
).
45.
A. A.
Bakulin
,
S. E.
Morgan
,
T. B.
Kehoe
,
M. W. B.
Wilson
,
A. W.
Chin
,
D.
Zigmantas
,
D.
Egorova
, and
A.
Rao
, “
Real-time observation of multiexcitonic states in ultrafast singlet fission using coherent 2D electronic spectroscopy
,”
Nat. Chem.
8
(
1
),
16
23
(
2016
).
46.
J. D.
Schultz
,
T.
Kim
,
J. P.
O’Connor
,
R. M.
Young
, and
M. R.
Wasielewski
, “
Coupling between harmonic vibrations influences quantum beating signatures in two-dimensional electronic spectra
,”
J. Phys. Chem. C
126
(
1
),
120
131
(
2022
).
47.
J.-Y.-R.
Jin
,
H.-Y.
Zhang
,
Y.-X.
Yao
,
R.-H.
Chen
, and
Q.
Ai
, “
Observing quantum coherent oscillations in a three-level atom via electromagnetically induced transparency by two-dimensional spectroscopy
,”
J. Chem. Phys.
162
(
1
),
014112
(
2025
).
You do not currently have access to this content.