Ice nucleation plays a pivotal role in many natural and industrial processes, and molecular simulations have proven vital in uncovering its kinetics and mechanisms. A fundamental component of such simulations is the choice of an order parameter (OP) that quantifies the progress of nucleation, with the efficacy of an OP typically measured by its ability to predict the committor probabilities. Here, we leverage a machine learning framework introduced in our earlier work [Domingues et al., J. Phys. Chem. Lett. 15, 1279, (2024)] to systematically investigate how key implementation details influence the efficacy of standard Steinhardt OPs in capturing the progress of both homogeneous and heterogeneous ice nucleation. Our analysis identifies distance and q6 cutoffs as the primary determinants of OP performance, regardless of the mode of nucleation. We also examine the impact of two popular refinement strategies, namely chain exclusion and hydration shell inclusion, on OP efficacy. We find neither strategy to exhibit a universally consistent impact. Instead, their efficacy depends strongly on the chosen distance and q6 cutoffs. Chain exclusion enhances OP efficacy when the underlying OP lacks sufficient selectivity, whereas hydration shell inclusion is beneficial for overly selective OPs. Consequently, we demonstrate that selecting optimal combinations of such cutoffs can eliminate the need for these refinement strategies altogether. These findings provide a systematic understanding of how to design and optimize OPs for accurately describing complex nucleation phenomena, offering valuable guidance for improving the predictive power of molecular simulations.

2.
J. D.
Atkinson
,
B. J.
Murray
,
M. T.
Woodhouse
,
T. F.
Whale
,
K. J.
Baustian
,
K. S.
Carslaw
,
S.
Dobbie
,
D.
O’Sullivan
, and
T. L.
Malkin
,
Nature
498
,
355
(
2013
).
3.
D. J.
Cziczo
,
K. D.
Froyd
,
C.
Hoose
,
E. J.
Jensen
,
M.
Diao
,
M. A.
Zondlo
,
J. B.
Smith
,
C. H.
Twohy
, and
D. M.
Murphy
,
Science
340
,
1320
(
2013
).
4.
T.
Storelvmo
,
Annu. Rev. Earth Planet. Sci.
45
,
199
(
2017
).
5.
C. L.
Bassani
,
G.
Van Anders
,
U.
Banin
,
D.
Baranov
,
Q.
Chen
,
M.
Dijkstra
,
M. S.
Dimitriyev
,
E.
Efrati
,
J.
Faraudo
,
O.
Gang
et al,
ACS Nano
18
,
14791
(
2024
).
6.
J.
Chen
,
B.
Sarma
,
J. M. B.
Evans
, and
A. S.
Myerson
,
Cryst. Growth Des.
11
,
887
(
2011
).
7.
J.
Lee
,
J.
Yang
,
S. G.
Kwon
, and
T.
Hyeon
,
Nat. Rev. Mater.
1
,
16034
(
2016
).
8.
T.
Udayabhaskararao
,
M.
Kazes
,
L.
Houben
,
H.
Lin
, and
D.
Oron
,
Chem. Mater.
29
,
1302
(
2017
).
9.
M.
Sharma
,
J.
Panigrahi
, and
V. K.
Komarala
,
Nanoscale Adv.
3
,
3373
(
2021
).
11.
J. J.
De Yoreo
,
Rev. Mineral. Geochem.
54
,
57
(
2003
).
12.
P. G.
Vekilov
,
Cryst. Growth Des.
10
,
5007
(
2010
).
13.
G. C.
Sosso
,
J.
Chen
,
S. J.
Cox
,
M.
Fitzner
,
P.
Pedevilla
,
A.
Zen
, and
A.
Michaelides
,
Chem. Rev.
116
,
7078
(
2016
).
14.
S.
Hussain
and
A.
Haji-Akbari
,
J. Chem. Phys.
152
,
060901
(
2020
).
15.
B. J.
Alder
and
T. E.
Wainwright
,
J. Chem. Phys.
31
,
459
(
1959
).
16.
N.
Metropolis
,
A. W.
Rosenbluth
,
M. N.
Rosenbluth
,
A. H.
Teller
, and
E.
Teller
,
J. Chem. Phys.
21
,
1087
(
1953
).
17.
G. M.
Torrie
and
J. P.
Valleau
,
J. Comput. Phys.
23
,
187
(
1977
).
18.
A.
Laio
and
M.
Parrinello
,
Proc. Natl. Acad. Sci. U. S. A.
99
,
12562
(
2002
).
19.
T. S.
Van Erp
,
D.
Moroni
, and
P. G.
Bolhuis
,
J. Chem. Phys.
118
,
7762
(
2003
).
20.
R. J.
Allen
,
D.
Frenkel
, and
P. R.
ten Wolde
,
J. Chem. Phys.
124
,
024102
(
2006
).
21.
J. S.
van Duijneveldt
and
D.
Frenkel
,
J. Chem. Phys.
96
,
4655
(
1992
).
22.
P.
Rein ten Wolde
,
M. J.
Ruiz-Montero
, and
D.
Frenkel
,
J. Chem. Phys.
104
,
9932
(
1996
).
23.
M.
Salvalaglio
,
C.
Perego
,
F.
Giberti
,
M.
Mazzotti
, and
M.
Parrinello
,
Proc. Natl. Acad. Sci. U. S. A.
112
,
E6
(
2015
).
24.
A.
Haji-Akbari
and
P. G.
Debenedetti
,
Proc. Natl. Acad. Sci. U. S. A.
112
,
10582
(
2015
).
25.
L.
Bonati
and
M.
Parrinello
,
Phys. Rev. Lett.
121
,
265701
(
2018
).
26.
A.
Arjun
and
P. G.
Bolhuis
,
J. Phys. Chem. B
124
,
8099
(
2020
).
27.
S. W.
Hall
,
P.
Minh
, and
S.
Sarupria
,
J. Chem. Theory Comput.
(published online
2025
).
28.
T.
Li
,
D.
Donadio
,
G.
Russo
, and
G.
Galli
,
Phys. Chem. Chem. Phys.
13
,
19807
(
2011
).
29.
A.
Haji-Akbari
,
R. S.
DeFever
,
S.
Saru pria
, and
P. G.
Debenedetti
,
Phys. Chem. Chem. Phys.
16
,
25916
(
2014
).
30.
R.
Cabriolu
and
T.
Li
,
Phys. Rev. E
91
,
052402
(
2015
).
31.
G. C.
Sosso
,
T.
Li
,
D.
Donadio
,
G. A.
Tribello
, and
A.
Michaelides
,
J. Phys. Chem. Lett.
7
,
2350
(
2016
).
32.
Y.
Bi
,
R.
Cabriolu
, and
T.
Li
,
J. Phys. Chem. C
120
,
1507
(
2016
).
33.
A.
Haji-Akbari
and
P. G.
Debenedetti
,
Proc. Natl. Acad. Sci. U. S. A.
114
,
3316
(
2017
).
34.
Y.
Bi
,
B.
Cao
, and
T.
Li
,
Nat. Commun.
8
,
15372
(
2017
).
35.
S.
Hussain
and
A.
Haji-Akbari
,
J. Am. Chem. Soc.
143
,
2272
(
2021
).
36.
S.
Hussain
and
A.
Haji-Akbari
,
J. Chem. Phys.
154
,
014108
(
2021
).
37.
T.
Li
,
D.
Donadio
, and
G.
Galli
,
J. Chem. Phys.
131
,
224519
(
2009
).
38.
T.
Li
,
D.
Donadio
,
L. M.
Ghiringhelli
, and
G.
Galli
,
Nat. Mater.
8
,
726
(
2009
).
39.
C.
Valeriani
,
E.
Sanz
, and
D.
Frenkel
,
J. Chem. Phys.
122
,
194501
(
2005
).
40.
H.
Jiang
,
A.
Haji-Akbari
,
P. G.
Debenedetti
, and
A. Z.
Panagiotopoulos
,
J. Chem. Phys.
148
,
044505
(
2018
).
41.
H.
Jiang
,
P. G.
Debenedetti
, and
A. Z.
Panagiotopoulos
,
J. Chem. Phys.
149
,
141102
(
2018
).
42.
J. P.
Mithen
and
R. P.
Sear
,
J. Chem. Phys.
140
,
084504
(
2014
).
43.
S.
Hussain
and
A.
Haji-Akbari
,
J. Chem. Phys.
156
,
054503
(
2022
).
44.
L.
Filion
,
M.
Hermes
,
R.
Ni
, and
M.
Dijkstra
,
J. Chem. Phys.
133
,
244115
(
2010
).
45.
D.
Richard
and
T.
Speck
,
J. Chem. Phys.
148
,
124110
(
2018
).
46.
Y.
Bi
and
T.
Li
,
J. Phys. Chem. B
118
,
13324
(
2014
).
48.
U.
Gasser
,
E. R.
Weeks
,
A.
Schofield
,
P. N.
Pusey
, and
D. A.
Weitz
,
Science
292
,
258
(
2001
).
49.
J. R.
Savage
and
A. D.
Dinsmore
,
Phys. Rev. Lett.
102
,
198302
(
2009
).
50.
L.
Lupi
,
R.
Hanscam
,
Y.
Qiu
, and
V.
Molinero
,
J. Phys. Chem. Lett.
8
,
4201
(
2017
).
51.
P. J.
Steinhardt
,
D. R.
Nelson
, and
M.
Ronchetti
,
Phys. Rev. B
28
,
784
(
1983
).
52.
T. S.
Domingues
,
S.
Hussain
, and
A.
Haji-Akbari
,
J. Phys. Chem. Lett.
15
,
1279
(
2024
).
53.
B.
Peters
,
G. T.
Beckham
, and
B. L.
Trout
,
J. Chem. Phys.
127
,
034109
(
2007
).
54.
B. J.
Murray
,
D.
O’Sullivan
,
J. D.
Atkinson
, and
M. E.
Webb
,
Chem. Soc. Rev.
41
,
6519
(
2012
).
55.
A.
Haji-Akbari
,
Proc. Natl. Acad. Sci. U. S. A.
113
,
3714
(
2016
).
56.
Y.
You
,
T.
Kang
, and
S.
Jun
,
Food Eng. Rev.
13
,
15
(
2020
).
57.
M.
Lin
,
H.
Cao
, and
J.
Li
,
Acta Biomater.
155
,
35
(
2023
).
58.
A.
Reinhardt
,
J. P. K.
Doye
,
E. G.
Noya
, and
C.
Vega
,
J. Chem. Phys.
137
,
194504
(
2012
).
59.
V.
Molinero
and
E. B.
Moore
,
J. Phys. Chem. B
113
,
4008
(
2008
).
60.
S.
Plimpton
,
J. Comput. Phys.
117
,
1
(
1995
).
61.
A. P.
Thompson
,
H. M.
Aktulga
,
R.
Berger
,
D. S.
Bolintineanu
,
W. M.
Brown
,
P. S.
Crozier
,
P. J.
in’t Veld
,
A.
Kohlmeyer
,
S. G.
Moore
,
T. D.
Nguyen
et al,
Comput. Phys. Commun.
271
,
108171
(
2022
).
62.
S.
Nosé
and
M. L.
Klein
,
Mol. Phys.
50
,
1055
(
1983
).
63.
M.
Parrinello
and
A.
Rahman
,
J. Appl. Phys.
52
,
7182
(
1981
).
64.
W.
Lechner
and
C.
Dellago
,
J. Chem. Phys.
129
,
114707
(
2008
).
65.
A.
Reinhardt
and
J. P. K.
Doye
,
J. Chem. Phys.
136
,
054501
(
2012
).
66.
P.
Yi
,
C. R.
Locker
, and
G. C.
Rutledge
,
Macromolecules
46
,
4723
(
2013
).
67.
A.
Haji-Akbari
,
J. Chem. Phys.
149
,
072303
(
2018
).
68.
A.
Ma
and
A. R.
Dinner
,
J. Phys. Chem. B
109
,
6769
(
2005
).
69.
J.
Wedekind
,
R.
Strey
, and
D.
Reguera
,
J. Chem. Phys.
126
,
134103
(
2007
).
71.
S.
Lundberg
and
S.-I.
Lee
, in
NIPS'17: Proceedings of the 31st International Conference on Neural Information Processing Systems
(Association for Computing Machinery,
2017
), pp.
4768
4777
.
72.
T.
Chen
and
C.
Guestrin
, in
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
(
ACM
,
2016
), pp.
785
794
.
73.
F.
Pedregosa
,
G.
Varoquaux
,
A.
Gramfort
,
V.
Michel
,
B.
Thirion
,
O.
Grisel
,
M.
Blondel
,
P.
Prettenhofer
,
R.
Weiss
,
V.
Dubourg
et al,
J. Mach. Learn. Res.
12
,
2825
(
2011
).
75.
L.
Lupi
,
B.
Peters
, and
V.
Molinero
,
J. Chem. Phys.
145
,
211910
(
2016
).
76.
E. B.
Moore
,
E.
De La Llave
,
K.
Welke
,
D. A.
Scherlis
, and
V.
Molinero
,
Phys. Chem. Chem. Phys.
12
,
4124
(
2010
).
77.
A. H.
Nguyen
and
V.
Molinero
,
J. Phys. Chem. B
119
,
9369
(
2015
).
78.
P.
Geiger
and
C.
Dellago
,
J. Chem. Phys.
139
,
164105
(
2013
).
79.
R. S.
DeFever
,
C.
Targonski
,
S. W.
Hall
,
M. C.
Smith
, and
S.
Sarupria
,
Chem. Sci.
10
,
7503
(
2019
).
80.
K. Z.
Takahashi
,
Phys. Chem. Chem. Phys.
25
,
658
(
2023
).
81.
B.
Peters
and
B. L.
Trout
,
J. Chem. Phys.
125
,
054108
(
2006
).
82.
G. T.
Beckham
and
B.
Peters
,
J. Phys. Chem. Lett.
2
,
1133
(
2011
).
83.
L.
Lupi
,
A.
Hudait
,
B.
Peters
,
M.
Grünwald
,
R.
Gotchy Mullen
,
A. H.
Nguyen
, and
V.
Molinero
,
Nature
551
,
218
(
2017
).
84.
W.
Zhao
and
T.
Li
,
J. Chem. Phys.
158
,
124501
(
2023
).
You do not currently have access to this content.