We study the distribution of colloidal particles confined in drying spherical freestanding droplets using both dynamic density functional theory (DDFT) and particle-based simulations. In particular, we focus on the advection-dominated regime typical of aqueous droplets drying at room temperature and systematically investigate the role of hydrodynamic interactions (HIs) during this nonequilibrium process. In general, drying produces transient particle concentration gradients within the droplet in this regime, with a considerable accumulation of particles at the droplet’s liquid–vapor interface. We find that these gradients become significantly larger with pairwise HIs between colloidal particles instead of a free-draining hydrodynamic approximation; however, the solvent’s boundary conditions at the droplet’s interface (unbounded, slip, or no-slip) do not have a significant effect on the particle distribution. DDFT calculations leveraging the radial symmetry of the drying droplet are in excellent agreement with particle-based simulations for free-draining hydrodynamics, but DDFT unexpectedly fails for pairwise HIs after the particle concentration increases during drying, manifesting as an ejection of particles from the droplet. We hypothesize that this unphysical behavior originates from an inaccurate approximation of the two-body density correlations based on the bulk pair correlation function, which we support by measuring the confined equilibrium two-body density correlations using particle-based simulations. We identify some potential strategies for addressing this issue in DDFT.

1.
D. E.
Walton
and
C. J.
Mumford
, “
Spray dried products—Characterization of particle morphology
,”
Chem. Eng. Res. Des.
77
,
21
38
(
1999
).
2.
O. D.
Velev
,
K.
Furusawa
, and
K.
Nagayama
, “
Assembly of latex particles by using emulsion droplets as templates. 1. Microstructured hollow spheres
,”
Langmuir
12
,
2374
2384
(
1996
).
3.
I. D.
Rosca
,
F.
Watari
, and
M.
Uo
, “
Microparticle formation and its mechanism in single and double emulsion solvent evaporation
,”
J. Controlled Release
99
,
271
280
(
2004
).
4.
S.
Wintzheimer
,
T.
Granath
,
M.
Oppmann
,
T.
Kister
,
T.
Thai
,
T.
Kraus
,
N.
Vogel
, and
K.
Mandel
, “
Supraparticles: Functionality from uniform structural motifs
,”
ACS Nano
12
,
5093
5120
(
2018
).
5.
C. L.
Bassani
,
G.
van Anders
,
U.
Banin
,
D.
Baranov
,
Q.
Chen
,
M.
Dijkstra
,
M. S.
Dimitriyev
,
E.
Efrati
,
J.
Faraudo
,
O.
Gang
,
N.
Gaston
,
R.
Golestanian
,
G. I.
Guerrero-Garcia
,
M.
Gruenwald
,
A.
Haji-Akbari
,
M.
Ibáñez
,
M.
Karg
,
T.
Kraus
,
B.
Lee
,
R. C.
Van Lehn
,
R. J.
Macfarlane
,
B. M.
Mognetti
,
A.
Nikoubashman
,
S.
Osat
,
O. V.
Prezhdo
,
G. M.
Rotskoff
,
L.
Saiz
,
A.-C.
Shi
,
S.
Skrabalak
,
I. I.
Smalyukh
,
M.
Tagliazucchi
,
D. V.
Talapin
,
A. V.
Tkachenko
,
S.
Tretiak
,
D.
Vaknin
,
A.
Widmer-Cooper
,
G. C. L.
Wong
,
X.
Ye
,
S.
Zhou
,
E.
Rabani
,
M.
Engel
, and
A.
Travesset
, “
Nanocrystal assemblies: Current advances and open problems
,”
ACS Nano
18
,
14791
14840
(
2024
).
6.
F.
Iskandar
,
H.
Chang
, and
K.
Okuyama
, “
Preparation of microencapsulated powders by an aerosol spray method and their optical properties
,”
Adv. Powder Technol.
14
,
349
367
(
2003
).
7.
J.
Wang
,
U.
Sultan
,
E. S. A.
Goerlitzer
,
C. F.
Mbah
,
M.
Engel
, and
N.
Vogel
, “
Structural color of colloidal clusters as a tool to investigate structure and dynamics
,”
Adv. Funct. Mater.
30
,
1907730
(
2020
).
8.
Y.
Luo
,
J.
Zhang
,
A.
Sun
,
C.
Chu
,
S.
Zhou
,
J.
Guo
,
T.
Chen
, and
G.
Xu
, “
Electric field induced structural color changes of SiO2@TiO2 core–shell colloidal suspensions
,”
J. Mater. Chem. C
2
,
1990
1994
(
2014
).
9.
A.
Patil
,
C. M.
Heil
,
B.
Vanthournout
,
M.
Bleuel
,
S.
Singla
,
Z.
Hu
,
N. C.
Gianneschi
,
M. D.
Shawkey
,
S. K.
Sinha
,
A.
Jayaraman
, and
A.
Dhinojwala
, “
Structural color production in melanin-based disordered colloidal nanoparticle assemblies in spherical confinement
,”
Adv. Opt. Mater.
10
,
2102162
(
2022
).
10.
C. M.
Heil
,
A.
Patil
,
B.
Vanthournout
,
S.
Singla
,
M.
Bleuel
,
J.-J.
Song
,
Z.
Hu
,
N. C.
Gianneschi
,
M. D.
Shawkey
,
S. K.
Sinha
,
A.
Jayaraman
, and
A.
Dhinojwala
, “
Mechanism of structural colors in binary mixtures of nanoparticle-based supraballs
,”
Sci. Adv.
9
,
eadf2859
(
2023
).
11.
L.
Gradon
,
R.
Balgis
,
T.
Hirano
,
A. M.
Rahmatika
,
T.
Ogi
, and
K.
Okuyama
, “
Advanced aerosol technologies towards structure and morphologically controlled next-generation catalytic materials
,”
J. Aerosol Sci.
149
,
105608
(
2020
).
12.
K.
Hou
,
J.
Han
, and
Z.
Tang
, “
Formation of supraparticles and their application in catalysis
,”
ACS Mater. Lett.
2
,
95
106
(
2020
).
13.
R.
Bodmeier
and
J. W.
McGinity
, “
The preparation and evaluation of drug-containing poly (dl-lactide) microspheres formed by the solvent evaporation method
,”
Pharm. Res.
4
,
465
471
(
1987
).
14.
G. G.
de Lima
,
M.
Matos
,
F. P.
de Sá
,
L. N.
Mashiba
,
W. L.
Magalhães
,
M. F. G.
Rachwal
, and
J. A.
Zanatta
, “
Supraparticles as slow-release fertiliser in seedling potential growth of Eucalyptus urograndis and greenhouse gas flux impacts
,”
Environ. Sci. Pollut. Res.
30
,
23047
23059
(
2023
).
15.
W.
Liu
,
J.
Midya
,
M.
Kappl
,
H.-J.
Butt
, and
A.
Nikoubashman
, “
Segregation in drying binary colloidal droplets
,”
ACS Nano
13
,
4972
4979
(
2019
).
16.
W.
Liu
,
M.
Kappl
, and
H.-J.
Butt
, “
Tuning the porosity of supraparticles
,”
ACS Nano
13
,
13949
13956
(
2019
).
17.
W.
Liu
,
M.
Kappl
,
W.
Steffen
, and
H.-J.
Butt
, “
Controlling supraparticle shape and structure by tuning colloidal interactions
,”
J. Colloid Interface Sci.
607
,
1661
1670
(
2022
).
18.
A. F.
Routh
and
W. B.
Zimmerman
, “
Distribution of particles during solvent evaporation from films
,”
Chem. Eng. Sci.
59
,
2961
2968
(
2004
).
19.
M. P.
Howard
,
A.
Nikoubashman
, and
A. Z.
Panagiotopoulos
, “
Stratification dynamics in drying colloidal mixtures
,”
Langmuir
33
,
3685
3693
(
2017
).
20.
Y.
Tang
,
G. S.
Grest
, and
S.
Cheng
, “
Stratification of drying particle suspensions: Comparison of implicit and explicit solvent simulations
,”
J. Chem. Phys.
150
,
224901
(
2019
).
21.
T.
Yamaguchi
,
Y.
Kimura
, and
N.
Hirota
, “
Molecular dynamics simulation of solute diffusion in Lennard-Jones fluids
,”
Mol. Phys.
94
,
527
537
(
1998
).
22.
W.
Chen
,
J.
Koplik
, and
I.
Kretzschmar
, “
Molecular dynamics simulations of the evaporation of particle-laden droplets
,”
Phys. Rev. E
87
,
052404
(
2013
).
23.
S.
Chen
and
G. D.
Doolen
, “
Lattice Boltzmann method for fluid flows
,”
Annu. Rev. Fluid. Mech.
30
,
329
364
(
1998
).
24.
A.
Malevanets
and
R.
Kapral
, “
Mesoscopic model for solvent dynamics
,”
J. Chem. Phys.
110
,
8605
8613
(
1999
).
25.
J. F.
Brady
,
R. J.
Phillips
,
J. C.
Lester
, and
G.
Bossis
, “
Dynamic simulation of hydrodynamically interacting suspensions
,”
J. Fluid Mech.
195
,
257
280
(
1988
).
26.
A. F.
Routh
, “
Drying of thin colloidal films
,”
Rep. Prog. Phys.
76
,
046603
(
2013
).
27.
R. P.
Sear
and
P. B.
Warren
, “
Diffusiophoresis in nonadsorbing polymer solutions: The Asakura-Oosawa model and stratification in drying films
,”
Phys. Rev. E
96
,
062602
(
2017
).
28.
J.
Zhou
,
Y.
Jiang
, and
M.
Doi
, “
Cross interaction drives stratification in drying film of binary colloidal mixtures
,”
Phys. Rev. Lett.
118
,
108002
(
2017
).
29.
B.
Chun
,
T.
Yoo
, and
H. W.
Jung
, “
Temporal evolution of concentration and microstructure of colloidal films during vertical drying: A lattice Boltzmann simulation study
,”
Soft Matter
16
,
523
533
(
2020
).
30.
B.
He
,
I.
Martin-Fabiani
,
R.
Roth
,
G. I.
Tóth
, and
A. J.
Archer
, “
Dynamical density functional theory for the drying and stratification of binary colloidal dispersions
,”
Langmuir
37
,
1399
1409
(
2021
).
31.
C. R.
Rees-Zimmerman
and
A. F.
Routh
, “
Stratification in drying films: A diffusion–diffusiophoresis model
,”
J. Fluid Mech.
928
,
A15
(
2021
).
32.
T.
Yoo
,
B.
Chun
, and
H. W.
Jung
, “
Practical drying model for horizontal colloidal films in rapid evaporation processes
,”
Drying Technol.
40
,
516
526
(
2022
).
33.
M.
Kundu
and
M. P.
Howard
, “
Dynamic density functional theory for drying colloidal suspensions: Comparison of hard-sphere free-energy functionals
,”
J. Chem. Phys.
157
,
184904
(
2022
).
34.
J. F.
Brady
, “
Particle motion driven by solute gradients with application to autonomous motion: Continuum and colloidal perspectives
,”
J. Fluid Mech.
667
,
216
259
(
2011
).
35.
A.
Statt
,
M. P.
Howard
, and
A. Z.
Panagiotopoulos
, “
Influence of hydrodynamic interactions on stratification in drying mixtures
,”
J. Chem. Phys.
149
,
024902
(
2018
).
36.
M. P.
Howard
,
W. F.
Reinhart
,
T.
Sanyal
,
M. S.
Shell
,
A.
Nikoubashman
, and
A. Z.
Panagiotopoulos
, “
Evaporation-induced assembly of colloidal crystals
,”
J. Chem. Phys.
149
,
094901
(
2018
).
37.
M. P.
Howard
and
A.
Nikoubashman
, “
Stratification of polymer mixtures in drying droplets: Hydrodynamics and diffusion
,”
J. Chem. Phys.
153
,
054901
(
2020
).
38.
M.
Yetkin
,
Y. M.
Wani
,
K.
Kritika
,
M. P.
Howard
,
M.
Kappl
,
H.-J.
Butt
, and
A.
Nikoubashman
, “
Structure formation in supraparticles composed of spherical and elongated particles
,”
Langmuir
40
,
1096
1108
(
2024
).
39.
U. M. B.
Marconi
and
P.
Tarazona
, “
Dynamic density functional theory of fluids
,”
J. Chem. Phys.
110
,
8032
8044
(
1999
).
40.
M.
Rex
and
H.
Löwen
, “
Dynamical density functional theory with hydrodynamic interactions and colloids in unstable traps
,”
Phys. Rev. Lett.
101
,
148302
(
2008
).
41.
M.
Rex
and
H.
Löwen
, “
Dynamical density functional theory for colloidal dispersions including hydrodynamic interactions
,”
Eur. Phys. J. E
28
,
139
146
(
2009
).
42.
M. P.
Howard
,
A.
Nikoubashman
, and
A. Z.
Panagiotopoulos
, “
Stratification in drying polymer–polymer and colloid–polymer mixtures
,”
Langmuir
33
,
11390
11398
(
2017
).
43.
M.
Yetkin
,
Y. M.
Wani
,
A.
Nikoubashman
,
H.-J.
Butt
, and
M.
Kappl
, “
Tuning the morphology and structure of supraparticles composed of ellipsoids
,”
Langmuir
41
,
7845
7855
(
2025
).
44.
I.
Langmuir
, “
The evaporation of small spheres
,”
Phys. Rev.
12
,
368
370
(
1918
).
45.
R.
Roth
, “
Fundamental measure theory for hard-sphere mixtures: A review
,”
J. Phys.: Condens. Matter
22
,
063102
(
2010
).
46.
J.
Reinhardt
and
J. M.
Brader
, “
Dynamics of localized particles from density functional theory
,”
Phys. Rev. E
85
,
011404
(
2012
).
47.
M.
Schulz
and
J. L.
Keddie
, “
A critical and quantitative review of the stratification of particles during the drying of colloidal films
,”
Soft Matter
14
,
6181
6197
(
2018
).
48.
J.
Bahadur
,
D.
Sen
,
S.
Mazumder
,
S.
Bhattacharya
,
H.
Frielinghaus
, and
G.
Goerigk
, “
Origin of buckling phenomenon during drying of micrometer-sized colloidal droplets
,”
Langmuir
27
,
8404
8414
(
2011
).
49.
J. D.
Weeks
,
D.
Chandler
, and
H. C.
Andersen
, “
Role of repulsive forces in determining the equilibrium structure of simple liquids
,”
J. Chem. Phys.
54
,
5237
5247
(
1971
).
50.
G. K.
Batchelor
and
J. T.
Green
, “
The hydrodynamic interaction of two small freely-moving spheres in a linear flow field
,”
J. Fluid Mech.
56
,
375
400
(
1972
).
51.
G. K.
Batchelor
, “
Diffusion in a dilute polydisperse system of interacting spheres
,”
J. Fluid Mech.
131
,
155
175
(
1983
).
52.
J. F.
Brady
and
G.
Bossis
, “
Stokesian dynamics
,”
Annu. Rev. Fluid. Mech.
20
,
111
157
(
1988
).
53.
W. B.
Russel
,
D. A.
Saville
, and
W. R.
Schowalter
,
Colloidal Dispersions
(
Cambridge University Press
,
New York
,
1989
).
54.
J.
Happel
and
H.
Brenner
,
Low Reynolds Number Hydrodynamics: With Special Applications to Particulate Media
(
Springer Science & Business Media
,
2012
), Vol.
1
.
55.
J.
Rotne
and
S.
Prager
, “
Variational treatment of hydrodynamic interaction in polymers
,”
J. Chem. Phys.
50
,
4831
4837
(
1969
).
56.
H.
Yamakawa
, “
Transport properties of polymer chains in dilute solution: Hydrodynamic interaction
,”
J. Chem. Phys.
53
,
436
443
(
1970
).
57.
J. A.
Anderson
,
J.
Glaser
, and
S. C.
Glotzer
, “
HOOMD-blue: A python package for high-performance molecular dynamics and hard particle Monte Carlo simulations
,”
Comput. Mater. Sci.
173
,
109363
(
2020
).
58.
See https://github.com/mphowardlab/azplugins for the azplugins software.
59.
D. L.
Ermak
and
J. A.
McCammon
, “
Brownian dynamics with hydrodynamic interactions
,”
J. Chem. Phys.
69
,
1352
1360
(
1978
).
60.
C. W. J.
Beenakker
, “
Ewald sum of the Rotne–Prager tensor
,”
J. Chem. Phys.
85
,
1581
1582
(
1986
).
61.
A. M.
Fiore
,
F.
Balboa Usabiaga
,
A.
Donev
, and
J. W.
Swan
, “
Rapid sampling of stochastic displacements in Brownian dynamics simulations
,”
J. Chem. Phys.
146
,
124116
(
2017
).
62.
C.
Aponte-Rivera
and
R. N.
Zia
, “
Simulation of hydrodynamically interacting particles confined by a spherical cavity
,”
Phys. Rev. Fluids
1
,
023301
(
2016
).
63.
M. P.
Howard
,
A.
Nikoubashman
, and
J. C.
Palmer
, “
Modeling hydrodynamic interactions in soft materials with multiparticle collision dynamics
,”
Curr. Opin. Chem. Eng.
23
,
34
43
(
2019
).
64.
T.
Ihle
and
D. M.
Kroll
, “
Stochastic rotation dynamics: A Galilean-invariant mesoscopic model for fluid flow
,”
Phys. Rev. E
63
,
020201
(
2001
).
65.
G.
Gompper
,
T.
Ihle
,
D. M.
Kroll
, and
R. G.
Winkler
, “
Multi-particle collision dynamics: A particle-based mesoscale simulation approach to the hydrodynamics of complex fluids
,”
Adv. Polym. Sci.
221
,
1
87
(
2009
).
66.
Y. M.
Wani
,
P. G.
Kovakas
,
A.
Nikoubashman
, and
M. P.
Howard
, “
Diffusion and sedimentation in colloidal suspensions using multiparticle collision dynamics with a discrete particle model
,”
J. Chem. Phys.
156
,
024901
(
2022
).
67.
Y. M.
Wani
,
P. G.
Kovakas
,
A.
Nikoubashman
, and
M. P.
Howard
, “
Mesoscale simulations of diffusion and sedimentation in shape-anisotropic nanoparticle suspensions
,”
Soft Matter
20
,
3942
3953
(
2024
).
68.
C. C.
Huang
,
A.
Chatterji
,
G.
Sutmann
,
G.
Gompper
, and
R. G.
Winkler
, “
Cell-level canonical sampling by velocity scaling for multiparticle collision dynamics simulations
,”
J. Comput. Phys.
229
,
168
177
(
2010
).
69.
S.
Poblete
,
A.
Wysocki
,
G.
Gompper
, and
R. G.
Winkler
, “
Hydrodynamics of discrete-particle models of spherical colloids: A multiparticle collision dynamics simulation study
,”
Phys. Rev. E
90
,
033314
(
2014
).
70.
Y.-S.
Peng
and
T.
Sinno
, “
Multiparticle collision dynamics simulations of hydrodynamic interactions in colloidal suspensions: How well does the discrete particle approach do at short range?
,”
J. Chem. Phys.
160
,
174121
(
2024
).
71.
M. P.
Howard
,
A. Z.
Panagiotopoulos
, and
A.
Nikoubashman
, “
Efficient mesoscale hydrodynamics: Multiparticle collision dynamics with massively parallel GPU acceleration
,”
Comput. Phys. Commun.
230
,
10
20
(
2018
).
72.
A. J.
Archer
and
R.
Evans
, “
Dynamical density functional theory and its application to spinodal decomposition
,”
J. Chem. Phys.
121
,
4246
4254
(
2004
).
73.
A. J.
Archer
, “
Dynamical density functional theory: Binary phase-separating colloidal fluid in a cavity
,”
J. Phys.: Condens. Matter
17
,
1405
1427
(
2005
).
74.
A. J.
Archer
, “
Dynamical density functional theory for molecular and colloidal fluids: A microscopic approach to fluid mechanics
,”
J. Chem. Phys.
130
,
014509
(
2009
).
75.
Y.
Rosenfeld
, “
Free-energy model for the inhomogeneous hard-sphere fluid mixture and density-functional theory of freezing
,”
Phys. Rev. Lett.
63
,
980
983
(
1989
).
76.
M. P.
Sears
and
L. J. D.
Frink
, “
A new efficient method for density functional theory calculations of inhomogeneous fluids
,”
J. Comput. Phys.
190
,
184
200
(
2003
).
77.
M.
te Vrugt
,
H.
Löwen
, and
R.
Wittkowski
, “
Classical dynamical density functional theory: From fundamentals to applications
,”
Adv. Phys.
69
,
121
247
(
2020
).
78.
J. P.
Hansen
and
I. R.
McDonald
,
Theory of Simple Liquids
, 3rd ed. (
Academic Press
,
Amsterdam
,
2006
).
79.
B. D.
Goddard
,
A.
Nold
,
N.
Savva
,
P.
Yatsyshin
, and
S.
Kalliadasis
, “
Unification of dynamic density functional theory for colloidal fluids to include inertia and hydrodynamic interactions: Derivation and numerical experiments
,”
J. Phys.: Condens. Matter
25
,
035101
(
2013
).
80.
A.
Donev
and
E.
Vanden-Eijnden
, “
Dynamic density functional theory with hydrodynamic interactions and fluctuations
,”
J. Chem. Phys.
140
,
234115
(
2014
).
81.
B. D.
Goddard
,
A.
Nold
, and
S.
Kalliadasis
, “
Dynamical density functional theory with hydrodynamic interactions in confined geometries
,”
J. Chem. Phys.
145
,
214106
(
2016
).
82.
B. D.
Goddard
,
R. D.
Mills-Williams
, and
J.
Sun
, “
The singular hydrodynamic interactions between two spheres in Stokes flow
,”
Phys. Fluids
32
,
062001
(
2020
).
83.
E.
Kierlik
and
M. L.
Rosinberg
, “
Density-functional theory for inhomogeneous fluids: Adsorption of binary mixtures
,”
Phys. Rev. A
44
,
5025
5037
(
1991
).
84.
I. K.
Snook
and
D.
Henderson
, “
Monte Carlo study of a hard-sphere fluid near a hard wall
,”
J. Chem. Phys.
68
,
2134
2139
(
1978
).
85.
W.
Humphrey
,
A.
Dalke
, and
K.
Schulten
, “
VMD: Visual molecular dynamics
,”
J. Mol. Graphics
14
,
33
38
(
1996
).
86.
G. K.
Batchelor
, “
Sedimentation in a dilute dispersion of spheres
,”
J. Fluid Mech.
52
,
245
268
(
1972
).
87.
A. J. C.
Ladd
, “
Hydrodynamic transport coefficients of random dispersions of hard spheres
,”
J. Chem. Phys.
93
,
3484
3494
(
1990
).
88.
J. F.
Brady
and
L. J.
Durlofsky
, “
The sedimentation rate of disordered suspensions
,”
Phys. Fluids
31
,
717
727
(
1988
).
89.
A. J.
Banchio
and
G.
Nägele
, “
Short-time transport properties in dense suspensions: From neutral to charge-stabilized colloidal spheres
,”
J. Chem. Phys.
128
,
104903
(
2008
).
90.
J. K.
Whitmer
and
E.
Luijten
, “
Fluid–solid boundary conditions for multiparticle collision dynamics
,”
J. Phys.: Condens. Matter
22
,
104106
(
2010
).
91.
A. W.
Zantop
and
H.
Stark
, “
Multi-particle collision dynamics with a non-ideal equation of state. I
,”
J. Chem. Phys.
154
,
024105
(
2021
).
92.
A.
Lamura
,
G.
Gompper
,
T.
Ihle
, and
D. M.
Kroll
, “
Multi-particle collision dynamics: Flow around a circular and a square cylinder
,”
Europhys. Lett.
56
,
319
325
(
2001
).
93.
D. S.
Bolintineanu
,
J. B.
Lechman
,
S. J.
Plimpton
, and
G. S.
Grest
, “
No-slip boundary conditions and forced flow in multiparticle collision dynamics
,”
Phys. Rev. E
86
,
066703
(
2012
).
94.
A.
Trokhymchuk
,
I.
Nezbeda
,
J.
Jirsák
, and
D.
Henderson
, “
Hard-sphere radial distribution function again
,”
J. Chem. Phys.
123
,
024501
(
2005
).
95.
J. A.
Anderson
,
M.
Eric Irrgang
, and
S. C.
Glotzer
, “
Scalable metropolis Monte Carlo for simulation of hard shapes
,”
Comput. Phys. Commun.
204
,
21
30
(
2016
).
96.
M.
te Vrugt
and
R.
Wittkowski
, “
Perspective: New directions in dynamical density functional theory
,”
J. Phys.: Condens.Matter
35
,
041501
(
2022
).
97.
D.
de las Heras
,
T.
Zimmermann
,
F.
Sammüller
,
S.
Hermann
, and
M.
Schmidt
, “
Perspective: How to overcome dynamical density functional theory
,”
J. Phys.: Condens. Matter
35
,
271501
(
2023
).
98.
M.
Schmidt
and
J. M.
Brader
, “
Power functional theory for Brownian dynamics
,”
J. Chem. Phys.
138
,
214101
(
2013
).
99.
M.
Schmidt
, “
Power functional theory for many-body dynamics
,”
Rev. Mod. Phys.
94
,
015007
(
2022
).
You do not currently have access to this content.