A sensitivity increase of two orders of magnitude in proton (1H) and carbon (13C) spins via dynamic nuclear polarization (DNP) has been accomplished recently using a compact benchtop DNP polarizer operating at 1 T and 77 K. However, the DNP mechanisms at play at such a low magnetic field and high operating temperature are still not fully elucidated. A deeper understanding of the dominant polarization transfer mechanisms between electrons and 1H and 13C spins under these benchtop conditions is, therefore, required if one wants to devise strategies to boost sensitivity further. In this study, we found that DNP is generally dominated by solid effect (two-spin and three-spin) for narrow electron paramagnetic resonance (EPR) line radicals (15 mM trityl OX063) and cross effect for broad EPR line radicals (50 mM TEMPOL). For both radicals, the dominant DNP mechanisms were investigated varying the microwave frequency and measuring the 1H and 13C DNP enhancement factors to obtain 1H and 13C DNP spectra. The impact of varying the microwave power on the 1H DNP buildup times and the 1H nuclear spin relaxation times were important as well to distinguish between solid effect and cross effect DNP. Finally, time-resolved electron saturation simulations under continuous microwave irradiation could replicate the experimental 1H and 13C DNP spectra at 1 T and 77 K for both radicals considering their electron relaxation properties. Only for trityl OX063, the 13C DNP spectra showed additional DNP maxima compared to the simulations. This has been attributed to methyl rotor induced 1H–13C heteronuclear cross relaxation in [1–13C] acetate present at 1 T and 77 K.

1.
J.
Eills
,
D.
Budker
,
S.
Cavagnero
,
E. Y.
Chekmenev
,
S. J.
Elliott
,
S.
Jannin
,
A.
Lesage
,
J.
Matysik
,
T.
Meersmann
,
T.
Prisner
,
J. A.
Reimer
,
H.
Yang
, and
I. V.
Koptyug
, “
Spin hyperpolarization in modern magnetic resonance
,”
Chem. Rev.
123
(
4
),
1417
1551
(
2023
).
2.
A.
Abragam
and
M.
Goldman
, “
Principles of dynamic nuclear polarisation
,”
Rep. Prog. Phys.
41
(
3
),
395
467
(
1978
).
3.
S. J.
Elliott
,
Q.
Stern
,
M.
Ceillier
,
T.
El Daraï
,
S. F.
Cousin
,
O.
Cala
, and
S.
Jannin
, “
Practical dissolution dynamic nuclear polarization
,”
Prog. Nucl. Magn. Reson. Spectrosc.
126–127
,
59
100
(
2021
).
4.
R. W.
Adams
,
J. A.
Aguilar
,
K. D.
Atkinson
,
M. J.
Cowley
,
P. I. P.
Elliott
,
S. B.
Duckett
,
G. G. R.
Green
,
I. G.
Khazal
,
J.
López-Serrano
, and
D. C.
Williamson
, “
Reversible interactions with para-hydrogen enhance NMR sensitivity by polarization transfer
,”
Science
323
(
5922
),
1708
1711
(
2009
).
5.
T. G.
Walker
and
W.
Happer
, “
Spin-exchange optical pumping of noble-gas nuclei
,”
Rev. Mod. Phys.
69
(
2
),
629
642
(
1997
).
6.
R. A.
Green
,
R. W.
Adams
,
S. B.
Duckett
,
R. E.
Mewis
,
D. C.
Williamson
, and
G. G. R.
Green
, “
The theory and practice of hyperpolarization in magnetic resonance using parahydrogen
,”
Prog. Nucl. Magn. Reson. Spectrosc.
67
,
1
48
(
2012
).
7.
J. H.
Ardenkjær-Larsen
,
B.
Fridlund
,
A.
Gram
,
G.
Hansson
,
L.
Hansson
,
M. H.
Lerche
,
R.
Servin
,
M.
Thaning
, and
K.
Golman
, “
Increase in signal-to-noise ratio of > 10,000 times in liquid-state NMR
,”
Proc. Natl. Acad. Sci. U. S. A.
100
(
18
),
10158
10163
(
2003
).
8.
A.
Bornet
,
M.
Maucourt
,
C.
Deborde
,
D.
Jacob
,
J.
Milani
,
B.
Vuichoud
,
X.
Ji
,
J.-N.
Dumez
,
A.
Moing
,
G.
Bodenhausen
,
S.
Jannin
, and
P.
Giraudeau
, “
Highly repeatable dissolution dynamic nuclear polarization for heteronuclear NMR metabolomics
,”
Anal. Chem.
88
(
12
),
6179
6183
(
2016
).
9.
P. J. M.
van Bentum
,
M.
Sharma
,
S. G. J.
van Meerten
, and
A. P. M.
Kentgens
, “
Solid effect DNP in a rapid-melt setup
,”
J. Magn. Reson.
263
,
126
135
(
2016
).
10.
C.-G.
Joo
,
K.-N.
Hu
,
J. A.
Bryant
, and
R. G.
Griffin
, “
In situ temperature jump high-frequency dynamic nuclear polarization experiments: Enhanced sensitivity in liquid-state NMR spectroscopy
,”
J. Am. Chem. Soc.
128
(
29
),
9428
9432
(
2006
).
11.
C.
Bocquelet
,
N.
Rougier
,
H.-N.
Le
,
L.
Veyre
,
C.
Thieuleux
,
R.
Melzi
,
A.
Purea
,
D.
Banks
,
J. G.
Kempf
,
Q.
Stern
,
E.
Vaneeckhaute
, and
S.
Jannin
, “
Boosting 1H and 13C NMR signals by orders of magnitude on a bench
,”
Sci. Adv.
10
(
49
),
eadq3780
(
2024
).
12.
S. G. J.
van Meerten
,
G. E.
Janssen
, and
A. P. M.
Kentgens
, “
Rapid-melt DNP for multidimensional and heteronuclear high-field NMR experiments
,”
J. Magn. Reson.
310
,
106656
(
2020
).
13.
E.
Vaneeckhaute
,
C.
Bocquelet
,
L.
Bellier
,
H.-N.
Le
,
N.
Rougier
,
S. A.
Jegadeesan
,
S.
Vinod-Kumar
,
G.
Mathies
,
L.
Veyre
,
C.
Thieuleux
,
R.
Melzi
,
D.
Banks
,
J.
Kempf
,
Q.
Stern
, and
S.
Jannin
, “
Full optimization of dynamic nuclear polarization on a 1 tesla benchtop polarizer with hyperpolarizing solids
,”
Phys. Chem. Chem. Phys.
26
(
33
),
22049
22061
(
2024
).
14.
D.
Gajan
,
A.
Bornet
,
B.
Vuichoud
,
J.
Milani
,
R.
Melzi
,
H. A.
van Kalkeren
,
L.
Veyre
,
C.
Thieuleux
,
M. P.
Conley
,
W. R.
Grüning
,
M.
Schwarzwälder
,
A.
Lesage
,
C.
Copéret
,
G.
Bodenhausen
,
L.
Emsley
, and
S.
Jannin
, “
Hybrid polarizing solids for pure hyperpolarized liquids through dissolution dynamic nuclear polarization
,”
Proc. Natl. Acad. Sci. U. S. A.
111
(
41
),
14693
14697
(
2014
).
15.
M.
Cavaillès
,
A.
Bornet
,
X.
Jaurand
,
B.
Vuichoud
,
D.
Baudouin
,
M.
Baudin
,
L.
Veyre
,
G.
Bodenhausen
,
J.-N.
Dumez
,
S.
Jannin
,
C.
Copéret
, and
C.
Thieuleux
, “
Tailored microstructured hyperpolarizing matrices for optimal magnetic resonance imaging
,”
Angew Chem., Int. Ed. Engl.
57
(
25
),
7453
7457
(
2018
).
16.
O. S.
Leifson
and
C. D.
Jeffries
, “
Dynamic polarization of nuclei by electron-nuclear dipolar coupling in crystals
,”
Phys. Rev.
122
(
6
),
1781
1795
(
1961
).
17.
A. V.
Kessenikh
,
V. I.
Lushchikov
,
A. A.
Manenkov
, and
Y. V.
Taran
, “
Proton polarization in irradiated polyethylenes
,”
Sov. Phys.-Solid State
5
(4),
641
649
(
1963
) (in English).
18.
C. F.
Hwang
and
D. A.
Hill
, “
New effect in dynamic polarization
,”
Phys. Rev. Lett.
18
(
4
),
110
112
(
1967
).
19.
R. A.
Wind
,
J.
Trommel
, and
J.
Smidt
, “
Proton dynamic nuclear polarization in coal
,”
Fuel
58
(
12
),
900
901
(
1979
).
20.
R. A.
Wind
,
F. E.
Anthonio
,
M. J.
Duijvestijn
,
J.
Smidt
,
J.
Trommel
, and
G. M. C.
de Vette
, “
Experimental setup for enhanced 13C NMR spectroscopy in solids using dynamic nuclear polarization
,”
J. Magn. Reson.
52
(
3
),
424
434
(
1983
).
21.
S.
Jannin
,
A.
Comment
,
F.
Kurdzesau
,
J. A.
Konter
,
P.
Hautle
,
B.
van den Brandt
, and
J. J.
van der Klink
, “
A 140 GHz prepolarizer for dissolution dynamic nuclear polarization
,”
J. Chem. Phys.
128
(
24
),
241102
(
2008
).
22.
T.
Maly
,
G. T.
Debelouchina
,
V. S.
Bajaj
,
K.-N.
Hu
,
C.-G.
Joo
,
M. L.
Mak
Jurkauskas
–,
J. R.
Sirigiri
,
P. C. A.
van der Wel
,
J.
Herzfeld
,
R. J.
Temkin
, and
R. G.
Griffin
, “
Dynamic nuclear polarization at high magnetic fields
,”
J. Chem. Phys.
128
(
5
),
052211
(
2008
).
23.
S. A.
Walker
,
D. T.
Edwards
,
T. A.
Siaw
,
B. D.
Armstrong
, and
S.
Han
, “
Temperature dependence of high field 13C dynamic nuclear polarization processes with trityl radicals below 35 Kelvin
,”
Phys. Chem. Chem. Phys.
15
(
36
),
15106
15120
(
2013
).
24.
J. H.
Ardenkjær-Larsen
,
S.
Bowen
,
J. R.
Petersen
,
O.
Rybalko
,
M. S.
Vinding
,
M.
Ullisch
, and
N. C.
Nielsen
, “
Cryogen-free dissolution dynamic nuclear polarization polarizer operating at 3.35 T, 6.70 T, and 10.1 T
,”
Magn. Reson. Med.
81
(
3
),
2184
2194
(
2019
).
25.
R. G.
Griffin
,
T. M.
Swager
, and
R. J.
Temkin
, “
High frequency dynamic nuclear polarization: New directions for the 21st century
,”
J. Magn. Reson.
306
,
128
133
(
2019
).
26.
P.
Berruyer
,
S.
Björgvinsdóttir
,
A.
Bertarello
,
G.
Stevanato
,
Y.
Rao
,
G.
Karthikeyan
,
G.
Casano
,
O.
Ouari
,
M.
Lelli
,
C.
Reiter
,
F.
Engelke
, and
L.
Emsley
, “
Dynamic nuclear polarization enhancement of 200 at 21.15 T enabled by 65 kHz magic angle spinning
,”
J. Phys. Chem. Lett.
11
(
19
),
8386
8391
(
2020
).
27.
M.
Borghini
, “
Spin-temperature model of nuclear dynamic polarization using free radicals
,”
Phys. Rev. Lett.
20
(
9
),
419
421
(
1968
).
28.
W. T.
Wenckebach
,
T. J. B.
Swanenburg
, and
N. J.
Poulis
, “
Thermodynamics of spin systems in paramagnetic crystals
,”
Phys. Rep.
14
(
5
),
181
255
(
1974
).
29.
A. G.
Redfield
, “
Nuclear magnetic resonance saturation and rotary saturation in solids
,”
Phys. Rev.
98
(
6
),
1787
1809
(
1955
).
30.
N.
Bloembergen
,
S.
Shapiro
,
P. S.
Pershan
, and
J. O.
Artman
, “
Cross-relaxation in spin systems
,”
Phys. Rev.
114
(
2
),
445
459
(
1959
).
31.
B. N.
Provotorov
, “
A quantum-statistical theory of cross-relaxation
,”
Sov. Phys. JETP
15
(
3
),
611
614
(
1962
).
32.
W. T.
Wenckeback
,
G. M.
van den Heuvel
,
H.
Hoogstraate
,
T. J. B.
Swanenburg
, and
N. J.
Poulis
, “
Experimental proof of the strong coupling between the electron spin-spin reservoir and a nuclear spin system in dilute paramagnetic crystals
,”
Phys. Rev. Lett.
22
(
12
),
581
583
(
1969
).
33.
V. A.
Atsarkin
and
M. I.
Rodak
, “
Temperature of spin-spin interactions in electron spin resonance
,”
Sov. Phys. - Usp.
15
(
3
),
251
(
1972
).
34.
W. T.
Wenckebach
, “
Dynamic nuclear polarization via thermal mixing: Beyond the high temperature approximation
,”
J. Magn. Reson.
277
,
68
78
(
2017
).
35.
M.
Goldman
,
Spin Temperature and Nuclear Magnetic Resonance in Solids
,
The International Series of Monographs on Physics
(
Clarendon Press
,
1970
).
36.
R. A.
Wind
,
M. J.
Duijvestijn
,
C.
van der Lugt
,
A.
Manenschijn
, and
J.
Vriend
, “
Applications of dynamic nuclear polarization in 13C NMR in solids
,”
Prog. Nucl. Magn. Reson. Spectrosc.
17
,
33
67
(
1985
).
37.
D.
Shimon
,
Y.
Hovav
,
A.
Feintuch
,
D.
Goldfarb
, and
S.
Vega
, “
Dynamic nuclear polarization in the solid state: A transition between the cross effect and the solid effect
,”
Phys. Chem. Chem. Phys.
14
(
16
),
5729
5743
(
2012
).
38.
Y.
Zhao
,
H.
El Mkami
,
R. I.
Hunter
,
G.
Casano
,
O.
Ouari
, and
G. M.
Smith
, “
Large cross-effect dynamic nuclear polarisation enhancements with kilowatt inverting chirped pulses at 94 GHz
,”
Commun. Chem.
6
(
1
),
171
(
2023
).
39.
A.
Equbal
,
Y.
Li
,
T.
Tabassum
, and
S.
Han
, “
Crossover from a solid effect to thermal mixing 1H dynamic nuclear polarization with trityl-OX063
,”
J. Phys. Chem. Lett.
11
(
9
),
3718
3723
(
2020
).
40.
A.
Equbal
,
A.
Leavesley
,
S. K.
Jain
, and
S.
Han
, “
Cross-effect dynamic nuclear polarization explained: Polarization, depolarization, and oversaturation
,”
J. Phys. Chem. Lett.
10
(
3
),
548
558
(
2019
).
41.
C. T.
Farrar
,
D. A.
Hall
,
G. J.
Gerfen
,
S. J.
Inati
, and
R. G.
Griffin
, “
Mechanism of dynamic nuclear polarization in high magnetic fields
,”
J. Chem. Phys.
114
(
11
),
4922
4933
(
2001
).
42.
K. O.
Tan
,
M.
Mardini
,
C.
Yang
,
J. H.
Ardenkjær-Larsen
, and
R. G.
Griffin
, “
Three-spin solid effect and the spin diffusion barrier in amorphous solids
,”
Sci. Adv.
5
(
7
),
eaax2743
(
2019
).
43.
Y.
Quan
,
Y.
Ouyang
,
M.
Mardini
,
R. S.
Palani
,
D.
Banks
,
J.
Kempf
,
W. T.
Wenckebach
, and
R. G.
Griffin
, “
Resonant mixing dynamic nuclear polarization
,”
J. Phys. Chem. Lett.
14
(
31
),
7007
7013
(
2023
).
44.
K.
Kundu
,
M. R.
Cohen
,
A.
Feintuch
,
D.
Goldfarb
, and
S.
Vega
, “
Experimental quantification of electron spectral-diffusion under static DNP conditions
,”
Phys. Chem. Chem. Phys.
21
(
1
),
478
489
(
2019
).
45.
K.
Kundu
,
A.
Feintuch
, and
S.
Vega
, “
Electron–electron cross-relaxation and spectral diffusion during dynamic nuclear polarization experiments on solids
,”
J. Phys. Chem. Lett.
9
(
7
),
1793
1802
(
2018
).
46.
Y.
Hovav
,
A.
Feintuch
, and
S.
Vega
, “
Theoretical aspects of dynamic nuclear polarization in the solid state – The cross effect
,”
J. Magn. Reson.
214
,
29
41
(
2012
).
47.
Y.
Hovav
,
A.
Feintuch
, and
S.
Vega
, “
Theoretical aspects of dynamic nuclear polarization in the solid state – The solid effect
,”
J. Magn. Reson.
207
(
2
),
176
189
(
2010
).
48.
D.
Shimon
,
A.
Feintuch
,
D.
Goldfarb
, and
S.
Vega
, “
Static 1H dynamic nuclear polarization with the biradical TOTAPOL: A transition between the solid effect and the cross effect
,”
Phys. Chem. Chem. Phys.
16
(
14
),
6687
6699
(
2014
).
49.
W. T.
Wenckebach
, “
Dynamic nuclear polarization via the cross effect and thermal mixing: A. The role of triple spin flips
,”
J. Magn. Reson.
299
,
124
134
(
2019
).
50.
W. T.
Wenckebach
, “
Spectral diffusion of electron spin polarization in glasses doped with radicals for DNP
,”
J. Magn. Reson.
360
,
107651
(
2024
).
51.
C. F.
Hwang
and
D. A.
Hill
, “
Phenomenological model for the new effect in dynamic polarization
,”
Phys. Rev. Lett.
19
(
18
),
1011
1014
(
1967
).
52.
D. S.
Wollan
, “
Dynamic nuclear polarization with an inhomogeneously broadened ESR line. I. Theory
,”
Phys. Rev. B
13
(
9
),
3671
3685
(
1976
).
53.
Y.
Hovav
,
I.
Kaminker
,
D.
Shimon
,
A.
Feintuch
,
D.
Goldfarb
, and
S.
Vega
, “
The electron depolarization during dynamic nuclear polarization: Measurements and simulations
,”
Phys. Chem. Chem. Phys.
17
(
1
),
226
244
(
2015
).
54.
F.
Bloch
, “
Nuclear induction
,”
Phys. Rev.
70
(
7–8
),
460
474
(
1946
).
55.
H. C.
Torrey
, “
Bloch equations with diffusion terms
,”
Phys. Rev.
104
(
3
),
563
565
(
1956
).
56.
B. N.
Provotorov
, “
Magnetic resonance saturation in crystals
,”
Sov. Phys. JETP
14
(
5
),
1126
1131
(
1962
).
57.
E. M. M.
Weber
,
H.
Vezin
,
J. G.
Kempf
,
G.
Bodenhausen
,
D.
Abergél
, and
D.
Kurzbach
, “
Anisotropic longitudinal electronic relaxation affects DNP at cryogenic temperatures
,”
Phys. Chem. Chem. Phys.
19
(
24
),
16087
16094
(
2017
).
58.
E.
Vaneeckhaute
and
S.
Jannin
(
2025
). “
Dynamic nuclear polarization mechanisms using TEMPOL and trityl OX063 radicals at 1 T and 77 K
,” Zenodo. https://doi.org/10.5281/zenodo.15041609
59.
E.
Vaneeckhaute
and
S.
Jannin
(
2024
). “
Dynamic nuclear polarization mechanisms using TEMPOL and trityl OX063 radicals at 1 T and 77 K
,” Zenodo. https://doi.org/10.5281/zenodo.14338967
60.
G.
Mathies
,
M. A.
Caporini
,
V. K.
Michaelis
,
Y.
Liu
,
K.-N.
Hu
,
D.
Mance
,
J. L.
Zweier
,
M.
Rosay
,
M.
Baldus
, and
R. G.
Griffin
, “
Efficient dynamic nuclear polarization at 800 MHz/527 GHz with trityl-nitroxide biradicals
,”
Angew. Chem., Int. Ed.
54
(
40
),
11770
11774
(
2015
).
61.
A.
Equbal
,
K.
Tagami
, and
S.
Han
, “
Balancing dipolar and exchange coupling in biradicals to maximize cross effect dynamic nuclear polarization
,”
Phys. Chem. Chem. Phys.
22
(
24
),
13569
13579
(
2020
).
62.
A. A.
Smith
,
B.
Corzilius
,
A. B.
Barnes
,
T.
Maly
, and
R. G.
Griffin
, “
Solid effect dynamic nuclear polarization and polarization pathways
,”
J. Chem. Phys.
136
(
1
),
015101
(
2012
).
63.
W. T.
Wenckebach
, “
The solid effect
,”
Appl. Magn. Reson.
34
(
3–4
),
227
(
2008
).
64.
K. O.
Tan
and
R. G.
Griffin
, “
Observation of a four-spin solid effect
,”
J. Chem. Phys.
156
(
17
),
174201
(
2022
).
65.
D.
Daube
,
V.
Aladin
,
J.
Heiliger
,
J. J.
Wittmann
,
D.
Barthelmes
,
C.
Bengs
,
H.
Schwalbe
, and
B.
Corzilius
, “
Heteronuclear cross-relaxation under solid-state dynamic nuclear polarization
,”
J. Am. Chem. Soc.
138
(
51
),
16572
16575
(
2016
).
66.
K. J.
Donovan
,
A.
Lupulescu
, and
L.
Frydman
, “
Heteronuclear cross-relaxation effects in the NMR spectroscopy of hyperpolarized targets
,”
ChemPhysChem
15
(
3
),
436
443
(
2014
).
67.
R.
Shankar Palani
,
M.
Mardini
,
Y.
Quan
, and
R. G.
Griffin
, “
Dynamic nuclear polarization with trityl radicals
,”
J. Magn. Reson.
349
,
107411
(
2023
).
68.
N. A.
Prisco
,
A. C.
Pinon
,
L.
Emsley
, and
B. F.
Chmelka
, “
Scaling analyses for hyperpolarization transfer across a spin-diffusion barrier and into bulk solid media
,”
Phys. Chem. Chem. Phys.
23
(
2
),
1006
1020
(
2021
).
69.
W. E.
Blumberg
, “
Nuclear spin-lattice relaxation caused by paramagnetic impurities
,”
Phys. Rev.
119
(
1
),
79
84
(
1960
).
70.
K.
Kundu
,
A.
Feintuch
, and
S.
Vega
, “
Theoretical aspects of the cross effect enhancement of nuclear polarization under static dynamic nuclear polarization conditions
,”
J. Phys. Chem. Lett.
10
(
8
),
1769
1778
(
2019
).
71.
S.
Stoll
and
A.
Schweiger
, “
EasySpin, a comprehensive software package for spectral simulation and analysis in EPR
,”
J. Magn. Reson.
178
(
1
),
42
55
(
2006
).
72.
L.
Lumata
,
Z.
Kovacs
,
A. D.
Sherry
,
C.
Malloy
,
S.
Hill
,
J.
van Tol
,
L.
Yu
,
L.
Song
, and
M. E.
Merritt
, “
Electron spin resonance studies of trityl OX063 at a concentration optimal for DNP
,”
Phys. Chem. Chem. Phys.
15
(
24
),
9800
9807
(
2013
).
73.
P.
Demay-Drouhard
,
H. Y. V.
Ching
,
C.
Decroos
,
R.
Guillot
,
Y.
Li
,
L. C.
Tabares
,
C.
Policar
,
H. C.
Bertrand
, and
S.
Un
, “
Understanding the g-tensors of perchlorotriphenylmethyl and Finland-type trityl radicals
,”
Phys. Chem. Chem. Phys.
22
(
36
),
20792
20800
(
2020
).
74.
J. R.
Biller
,
V. M.
Meyer
,
H.
Elajaili
,
G. M.
Rosen
,
S. S.
Eaton
, and
G. R.
Eaton
, “
Frequency dependence of electron spin relaxation times in aqueous solution for a nitronyl nitroxide radical and perdeuterated-tempone between 250 MHz and 34 GHz
,”
J. Magn. Reson.
225
,
52
57
(
2012
).
75.
J.-L.
Du
,
G. R.
Eaton
, and
S. S.
Eaton
, “
Temperature and orientation dependence of electron-spin relaxation rates for bis(diethyldithiocarbamato)copper(II)
,”
J. Magn. Reson., Ser. A
117
(
1
),
67
72
(
1995
).
76.
D.
Banerjee
,
D.
Shimon
,
A.
Feintuch
,
S.
Vega
, and
D.
Goldfarb
, “
The interplay between the solid effect and the cross effect mechanisms in solid state 13C DNP at 95 GHz using trityl radicals
,”
J. Magn. Reson.
230
,
212
219
(
2013
).
77.
W. T.
Wenckebach
,
Essentials of Dynamic Nuclear Polarization
(
Spindrift Publications
,
2016
).
78.
G.
Menzildjian
,
J.
Schlagnitweit
,
G.
Casano
,
O.
Ouari
,
D.
Gajan
, and
A.
Lesage
, “
Polarizing agents for efficient high field DNP solid-state NMR spectroscopy under magic-angle spinning: From design principles to formulation strategies
,”
Chem. Sci.
14
(
23
),
6120
6148
(
2023
).
79.
V. K.
Michaelis
,
A. A.
Smith
,
B.
Corzilius
,
O.
Haze
,
T. M.
Swager
, and
R. G.
Griffin
, “
High-field 13C dynamic nuclear polarization with a radical mixture
,”
J. Am. Chem. Soc.
135
(
8
),
2935
2938
(
2013
).
80.
D.
Shimon
,
Y.
Hovav
,
I.
Kaminker
,
A.
Feintuch
,
D.
Goldfarb
, and
S.
Vega
, “
Simultaneous DNP enhancements of 1H and 13C nuclei: Theory and experiments
,”
Phys. Chem. Chem. Phys.
17
(
17
),
11868
11883
(
2015
).
81.
K.
Takegoshi
and
T.
Terao
, “
13C nuclear Overhauser polarization nuclear magnetic resonance in rotating solids: Replacement of cross polarization in uniformly 13C labeled molecules with methyl groups
,”
J. Chem. Phys.
117
(
4
),
1700
1707
(
2002
).
82.
A. W.
Overhauser
, “
Polarization of nuclei in metals
,”
Phys. Rev.
92
(
2
),
411
(
1953
).
83.
R.
Kaiser
, “
Use of the nuclear Overhauser effect in the analysis of high-resolution nuclear magnetic resonance spectra
,”
J. Chem. Phys.
39
(
10
),
2435
2442
(
1963
).
84.
V.
Copie
,
A. E.
McDermott
,
K.
Beshah
,
J. C.
Williams
,
M.
Spijker-Assink
,
R.
Gebhard
,
J.
Lugtenburg
,
J.
Herzfeld
, and
R. G.
Griffin
, “
Deuterium solid-state nuclear magnetic resonance studies of methyl group dynamics in bacteriorhodopsin and retinal model compounds: Evidence for a 6-s-Trans chromophore in the protein
,”
Biochemistry
33
(
11
),
3280
3286
(
1994
).
85.
J. L.
White
and
P.
Mirau
, “
Probing miscibility and intermolecular interactions in solid polymer blends using the nuclear overhauser effect
,”
Macromolecules
26
(
12
),
3049
3054
(
1993
).
86.
J. L.
White
, “
Exploiting methyl groups as motional labels for structure analysis in solid polymers
,”
Solid State Nucl. Magn. Reson.
10
(
1–2
),
79
88
(
1997
).
87.
V.
Aladin
,
M.
Vogel
,
R.
Binder
,
I.
Burghardt
,
B.
Suess
, and
B.
Corzilius
, “
Complex formation of the tetracycline-binding aptamer investigated by specific cross-relaxation under DNP
,”
Angew. Chem., Int. Ed.
58
(
15
),
4863
4868
(
2019
).
88.
V.
Aladin
and
B.
Corzilius
, “
Methyl dynamics in amino acids modulate heteronuclear cross relaxation in the solid state under MAS DNP
,”
Solid State Nucl. Magn. Reson.
99
,
27
35
(
2019
).
You do not currently have access to this content.