Elucidating the nature of intramolecular vibrational energy redistribution (IVR) can guide the design of molecular wires. The ability to steer these processes through a mechanistic understanding of IVR is assessed by utilizing two-dimensional infrared (2D IR) spectroscopy. 2D IR spectroscopy allows for the direct investigation of timescales of energy transfer within three aromatic molecular scaffolds: 4′-azido-[1,1′-biphenyl]-4-carbonitrile (PAB), 2′-azido-[1,1′-biphenyl]-4-carbonitrile (OAB), and 4′-(azidomethyl)-[1,1′-biphenyl]-4-carbonitrile (PAMB). Energy transfer pathways between azido (N3)- and cyano (CN)-vibrational reporters uncover the importance of Fermi resonances, anharmonic coupling, and specific structural components in directing energy flow. Among these systems, PAB exhibits the fastest energy transfer (22 ps), facilitated by its co-planar biphenyl structure, enabling strong π–π stacking interactions to optimize vibrational coupling. In contrast, OAB demonstrates a moderate IVR timescale (38 ps) due to an orthogonal molecular plane and steric hindrance, which disrupts coupling pathways. PAMB, with a para-methylene group, introduces a structural bottleneck that significantly impedes energy flow, slowing down the energy transfer to 84 ps. The observed IVR rates align with computational predictions, highlighting intermediate ring modes in PAB as efficient energy transfer bridges, a mechanism that is less pronounced in OAB and PAMB. This study demonstrates that IVR is dictated not only by anharmonic coupling strengths but also by the extended alignment of vibrational modes across molecular planes and their delocalization within aromatic scaffolds. By modulating structural features, such as steric constraints and π–π interactions, we provide a framework for tailoring energy flow in conjugated molecular systems. These findings offer new insights into IVR dynamics for applications in molecular electronics.

1.
P.
Hamm
et al,
Proc. Natl. Acad. Sci. U. S. A.
96
,
2036
(
1999
).
2.
F.
Chalyavi
et al,
Angew. Chem., Int. Ed.
57
,
7528
(
2018
).
3.
A. J.
Schmitz
et al,
J. Phys. Chem. B
120
,
9387
(
2016
).
4.
H. T.
Kratochvil
et al,
Science
353
,
1040
(
2016
).
5.
I. V.
Rubtsov
,
Acc. Chem. Res.
42
,
1385
(
2009
).
6.
F.
Chalyavi
,
O.
Adeyiga
,
J. M.
Weiner
,
J. N.
Monzy
,
A. J.
Schmitz
,
J. K.
Nguyen
,
E. E.
Fenlon
,
S. H.
Brewer
,
S. O.
Odoh
, and
M. J.
Tucker
,
J. Chem. Phys.
152
,
074201
(
2020
).
7.
F.
Chalyavi
,
A. J.
Schmitz
, and
M. J.
Tucker
,
J. Phys. Chem. Lett.
11
,
832
(
2020
).
8.
M. T.
Zanni
,
Proc. Natl. Acad. Sci. U. S. A.
113
,
4890
(
2016
).
9.
N. H. C.
Lewis
et al,
J. Phys. Chem. C
124
,
3470
(
2020
).
10.
J. S.
Ostrander
et al,
J. Phys. Chem. B
121
,
1352
(
2017
).
11.
R.
Yuan
and
M. D.
Fayer
,
J. Phys. Chem. B
123
,
7628
(
2019
).
12.
M. J.
Tucker
,
C. J.
Mallon
, and
M.
Hassani
,
J. Phys. Chem. B
129
,
1439
(
2024
).
13.
C. J.
Mallon
et al,
J. Am. Chem. Soc.
147
,
7264
(
2025
).
14.
M.
Hassani
et al,
Chem. Phys. Lett.
828
,
140723
(
2023
).
15.
M.
Hassani
et al,
J. Chem. Phys.
158
,
224201
(
2023
).
16.
A. J.
Schmitz
et al,
J. Phys. Chem. A
123
,
10571
(
2019
).
17.
A.
Ghosh
,
M. J.
Tucker
, and
R. M.
Hochstrasser
,
J. Phys. Chem. A
115
,
9731
(
2011
).
18.
N. I.
Rubtsova
and
I. V.
Rubtsov
, in
Annual Review of Physical Chemistry
, edited by
M. A.
Johnson
and
T. J.
Martinez
(
Annual Reviews, Palo Alto, CA
,
2015
), p.
717
.
19.
H.
Bian
et al,
J. Chem. Phys.
133
,
034505
(
2010
).
20.
X.
He
et al,
J. Phys. Chem. B
121
,
9411
(
2017
).
21.
D. V.
Kurochkin
,
S. R. G.
Naraharisetty
, and
I. V.
Rubtsov
,
Proc. Natl. Acad. Sci. U. S. A.
104
,
14209
(
2007
).
22.
L. P.
DeFlores
et al,
J. Phys. Chem. B
110
,
18973
(
2006
).
24.
D. M.
Leitner
and
H. D.
Pandey
,
Ann. Phys.
527
,
601
(
2015
).
25.
H. D.
Pandey
and
D. M.
Leitner
,
Chem. Phys.
482
,
81
(
2017
).
26.
D. M.
Leitner
and
H. D.
Pandey
,
J. Chem. Phys.
143
,
144301
(
2015
).
27.
H.
Fujisaki
and
G.
Stock
,
J. Chem. Phys.
129
,
134110
(
2008
).
28.
P. H.
Nguyen
,
S. M.
Park
, and
G.
Stock
,
J. Chem. Phys.
132
,
025102
(
2010
).
29.
B. C.
Pein
and
D. D.
Dlott
,
J. Phys. Chem. A
118
,
965
(
2014
).
30.
B. C.
Pein
,
Y.
Sun
, and
D. D.
Dlott
,
J. Phys. Chem. A
117
,
6066
(
2013
).
31.
X.
Dong
et al,
J. Phys. Chem. B
122
,
1296
(
2018
).
32.
F.
Yang
,
J.
Zhao
, and
J.
Wang
,
J. Phys. Chem. B
120
,
1304
(
2016
).
33.
I. V.
Rubtsov
and
R. M.
Hochstrasser
,
J. Phys. Chem. B
106
,
9165
(
2002
).
34.
J. C.
Owrutsky
,
D.
Raftery
, and
R. M.
Hochstrasser
,
Annu. Rev. Phys. Chem.
45
,
519
(
1994
).
35.
H.
Bian
,
W.
Zhao
, and
J.
Zheng
,
J. Chem. Phys.
131
,
124501
(
2009
).
36.
H.
Bian
et al,
J. Chem. Phys.
132
,
184505
(
2010
).
37.
H.
Chen
et al,
J. Phys. Chem. B
119
,
4333
(
2015
).
38.
J.
Li
et al,
J. Phys. Chem. B
117
,
4274
(
2013
).
39.
H.
Bian
et al,
Proc. Natl. Acad. Sci. U. S. A.
108
,
4737
(
2011
).
40.
Z.
Lin
et al,
Phys. Chem. Chem. Phys.
14
,
10445
(
2012
).
41.
V. M.
Kasyanenko
et al,
J. Chem. Phys.
131
,
154508
(
2009
).
42.
Z.
Lin
et al,
J. Am. Chem. Soc.
131
,
18060
(
2009
).
43.
D. S.
Wang
et al,
J. Chem. Phys.
157
,
224304
(
2022
).
44.
H. D.
Pandey
and
D. M.
Leitner
,
J. Phys. Chem. Lett.
7
,
5062
(
2016
).
45.
R. G.
Smock
and
L. M.
Gierasch
,
Science
324
,
198
(
2009
).
46.
S.
Kaziannis
et al,
Phys. Chem. Chem. Phys.
13
,
10295
(
2011
).
47.
M.
Delor
et al,
J. Phys. Chem. B
118
,
11781
(
2014
).
48.
V. M.
Kasyanenko
et al,
J. Phys. Chem. B
115
,
11063
(
2011
).
49.
S. R. G.
Naraharisetty
,
V. M.
Kasyanenko
, and
I. V.
Rubtsov
,
J. Chem. Phys.
128
,
104502
(
2008
).
50.
N. I.
Rubtsova
et al,
J. Phys. Chem. B
118
,
8381
(
2014
).
51.
V. F.
Crum
,
L. M.
Kiefer
, and
K. J.
Kubarych
,
J. Chem. Phys.
155
,
134502
(
2021
).
52.
D. G.
Osborne
et al,
J. Chem. Phys.
138
,
144501
(
2013
).
53.
B. J.
Stokes
et al,
J. Org. Chem.
74
,
3225
(
2009
).
54.
Y. S.
Kim
and
R. M.
Hochstrasser
,
J. Phys. Chem. B
109
,
6884
(
2005
).
55.
Y. S.
Kim
,
J.
Wang
, and
R. M.
Hochstrasser
,
J. Phys. Chem. B
109
,
7511
(
2005
).
56.
C.
Fang
and
R. M.
Hochstrasser
,
J. Phys. Chem. B
109
,
18652
(
2005
).
57.
M. J.
Frisch
et al, Gaussian 16, Revision C.01,
Gaussian, Inc.
,
Wallingford, CT
,
2016
.
59.
J.
Fabian
and
P. B.
Allen
,
Phys. Rev. Lett.
77
,
3839
(
1996
).
60.
H. D.
Pandey
and
D. M.
Leitner
,
J. Phys. Chem. A
122
,
6856
(
2018
).
61.
A.
Maitra
et al,
J. Phys. Chem. Lett.
12
,
7818
(
2021
).
62.
H.
Poudel
,
P. H.
Shaon
, and
D. M.
Leitner
,
J. Phys. Chem. C
128
,
8628
(
2024
).
63.
T.
Rožić
et al,
J. Chem. Theory Comput.
20
,
9048
(
2024
).
64.
J. S.
Lipkin
et al,
J. Phys. Chem. Lett.
2
,
1672
(
2011
).
65.
W.
Zhang
et al,
Phys. Chem. Chem. Phys.
18
,
7027
(
2016
).
67.
J. T.
King
,
J. M.
Anna
, and
K. J.
Kubarych
,
Phys. Chem. Chem. Phys.
13
,
5579
(
2011
).
68.
I. V.
Rubtsov
and
A. L.
Burin
,
J. Chem. Phys.
150
,
020901
(
2019
).
69.
A.
Aerts
,
A.
Brown
, and
F.
Gatti
,
J. Chem. Phys.
157
,
014306
(
2022
).
70.
D. J.
Nesbitt
and
R. W.
Field
,
J. Phys. Chem.
100
,
12735
(
1996
).
71.
J. M.
Anna
,
J. T.
King
, and
K. J.
Kubarych
,
Inorg. Chem.
50
,
9273
(
2011
).
You do not currently have access to this content.