The classical simulation of quantum circuits is of central importance for benchmarking near-term quantum devices. The fact that gates belonging to the Clifford group can be simulated efficiently on classical computers has motivated a range of methods that scale exponentially only in the number of non-Clifford gates. Here, we consider the expectation value problem for circuits composed of Clifford gates and non-Clifford Pauli rotations and introduce a heuristic perturbative approach based on the truncation of the exponentially growing sum of Pauli terms in the Heisenberg picture. Numerical results are shown on a quantum approximate optimization algorithm benchmark for the E3LIN2 problem, and we also demonstrate how this method can be used to quantify coherent and incoherent errors of local observables in Clifford circuits. Our results indicate that this systematically improvable perturbative method offers a viable alternative to exact methods for approximating expectation values of large near-Clifford circuits.

1.
A. W.
Cross
,
L. S.
Bishop
,
S.
Sheldon
,
P. D.
Nation
, and
J. M.
Gambetta
, “
Validating quantum computers using randomized model circuits
,”
Phys. Rev. A
100
,
032328
(
2019
).
2.
D.
Gottesman
, “
The Heisenberg representation of quantum computers
,” arXiv:9807006 [quant-ph] (
1998
).
3.
S.
Aaronson
and
D.
Gottesman
, “
Improved simulation of stabilizer circuits
,”
Phys. Rev. A
70
,
052328
(
2004
).
4.
M.
Van Den Nest
, “
Classical simulation of quantum computation, the Gottesman-Knill theorem, and slightly beyond
,”
Quantum Inf. Comput.
10
,
258
271
(
2010
).
5.
S.
Bravyi
and
D.
Gosset
, “
Improved classical simulation of quantum circuits dominated by Clifford gates
,”
Phys. Rev. Lett.
116
,
250501
(
2016
).
6.
R. S.
Bennink
,
E. M.
Ferragut
,
T. S.
Humble
,
J. A.
Laska
,
J. J.
Nutaro
,
M. G.
Pleszkoch
, and
R. C.
Pooser
, “
Unbiased simulation of near-Clifford quantum circuits
,”
Phys. Rev. A
95
,
062337
(
2017
).
7.
H.
Qassim
,
J. J.
Wallman
, and
J.
Emerson
, “
Clifford recompilation for faster classical simulation of quantum circuits
,”
Quantum
3
,
170
(
2019
).
8.
S.
Bravyi
,
D.
Browne
,
P.
Calpin
,
E.
Campbell
,
D.
Gosset
, and
M.
Howard
, “
Simulation of quantum circuits by low-rank stabilizer decompositions
,”
Quantum
3
,
181
(
2019
).
9.
Y.
Huang
and
P.
Love
, “
Feynman-path-type simulation using stabilizer projector decomposition of unitaries
,”
Phys. Rev. A
103
,
022428
(
2021
).
10.
A.
Kissinger
and
J.
van de Wetering
, “
Simulating quantum circuits with ZX-calculus reduced stabiliser decompositions
,”
Quantum Sci. Technol.
7
,
044001
(
2022
).
11.
S.
Bravyi
,
D.
Gosset
, and
R.
Movassagh
, “
Classical algorithms for quantum mean values
,”
Nat. Phys.
17
,
337
(
2021
).
12.
M.
Cerezo
,
A.
Arrasmith
,
R.
Babbush
,
S. C.
Benjamin
,
S.
Endo
,
K.
Fujii
,
J. R.
McClean
,
K.
Mitarai
,
X.
Yuan
,
L.
Cincio
, and
P. J.
Coles
, “
Variational quantum algorithms
,”
Nat. Rev. Phys.
3
,
625
(
2021
).
13.
A.
Peruzzo
,
J.
McClean
,
P.
Shadbolt
,
M.-H.
Yung
,
X.-Q.
Zhou
,
P. J.
Love
,
A.
Aspuru-Guzik
, and
J. L.
O’Brien
, “
A variational eigenvalue solver on a photonic quantum processor
,”
Nat. Commun.
5
,
4213
(
2014
).
14.
E.
Farhi
,
J.
Goldstone
, and
S.
Gutmann
, “
A quantum approximate optimization algorithm
,” arXiv:1411.4028 [quant-ph] (
2014
).
15.
E.
Farhi
and
A. W.
Harrow
, “
Quantum Supremacy through the Quantum Approximate Optimization Algorithm
,” arXiv:1602.07674 (
2016
).
16.
B.
Bauer
,
S.
Bravyi
,
M.
Motta
, and
G. K.-L.
Chan
, “
Quantum algorithms for quantum chemistry and quantum materials science
,”
Chem. Rev.
120
,
12685
(
2020
).
17.
I. G.
Ryabinkin
,
T.-C.
Yen
,
S. N.
Genin
, and
A. F.
Izmaylov
, “
Qubit coupled-cluster method: A systematic approach to quantum chemistry on a quantum computer
,”
J. Chem. Theory Comput.
14
(
12
),
6317
6326
(
2018
).
18.
I. G.
Ryabinkin
,
A. F.
Izmaylov
, and
S. N.
Genin
, “
A posteriori corrections to the iterative qubit coupled cluster method to minimize the use of quantum resources in large-scale calculations
,”
Quantum Sci. Technol.
6
,
024012
(
2021
).
19.
M. H.
Cheng
,
K. E.
Khosla
,
C. N.
Self
,
M.
Lin
,
B. X.
Li
,
A. C.
Medina
, and
M. S.
Kim
, “
Clifford circuit initialisation for variational quantum algorithms
,” arXiv:2207.01539 (
2022
).
20.
R. V.
Mishmash
,
T. P.
Gujarati
,
M.
Motta
,
H.
Zhai
,
G. K.-L.
Chan
, and
A.
Mezzacapo
, “
Hierarchical Clifford transformations to reduce entanglement in quantum chemistry wavefunctions
,”
J. Chem. Theory Comput.
19
(
11
),
3194
3208
(
2023
).
21.
P.
Schleich
,
J.
Boen
,
L.
Cincio
,
A.
Anand
,
J. S.
Kottmann
,
S.
Tretiak
,
P. A.
Dub
, and
A.
Aspuru-Guzik
, “
Partitioning quantum chemistry simulations with Clifford circuits
,”
J. Chem. Theory Comput.
19
(
15
),
4952
4964
(
2023
).
22.
H.
Pashayan
,
S. D.
Bartlett
, and
D.
Gross
, “
From estimation of quantum probabilities to simulation of quantum circuits
,”
Quantum
4
,
223
(
2020
).
23.
J. R.
Seddon
and
E. T.
Campbell
, “
Quantifying magic for multi-qubit operations
,”
Proc. R. Soc. A
475
,
20190251
(
2019
).
24.
H.
Pashayan
,
O.
Reardon-Smith
,
K.
Korzekwa
, and
S. D.
Bartlett
, “
Fast estimation of outcome probabilities for quantum circuits
,”
PRX Quantum
3
,
020361
(
2022
).
25.
P.
Rall
,
D.
Liang
,
J.
Cook
, and
W.
Kretschmer
, “
Simulation of qubit quantum circuits via Pauli propagation
,”
Phys. Rev. A
99
,
062337
(
2019
).
26.
K.
Mitarai
,
Y.
Suzuki
,
W.
Mizukami
,
Y. O.
Nakagawa
, and
K.
Fujii
, “
Quadratic Clifford expansion for efficient benchmarking and initialization of variational quantum algorithms
,”
Phys. Rev. Res.
4
,
033012
(
2022
).
27.
N. A.
Nemkov
,
E. O.
Kiktenko
, and
A. K.
Fedorov
, “
Fourier expansion in variational quantum algorithms
,”
Phys. Rev. A
108
,
032406
(
2023
).
28.
T.
Begušić
,
J.
Gray
, and
G. K.-L.
Chan
, “
Fast and converged classical simulations of evidence for the utility of quantum computing before fault tolerance
,”
Sci. Adv.
10
,
eadk4321
(
2024
).
29.
Y.
Shao
,
F.
Wei
,
S.
Cheng
, and
Z.
Liu
, “
Simulating noisy variational quantum algorithms: A polynomial approach
,”
Phys. Rev. Lett.
133
,
120603
(
2024
).
30.
E.
Fontana
,
M. S.
Rudolph
,
R.
Duncan
,
I.
Rungger
, and
C.
Cîrstoiu
, “
Classical simulations of noisy variational quantum circuits
,” arXiv:2306.05400 [quant-ph] (
2023
).
31.
M. S.
Rudolph
,
E.
Fontana
,
Z.
Holmes
, and
L.
Cincio
, “
Classical surrogate simulation of quantum systems with LOWESA
,” arXiv:2308.09109 [quant-ph] (
2023
).
32.
Y.
Kim
,
A.
Eddins
,
S.
Anand
,
K. X.
Wei
,
E.
van den Berg
,
S.
Rosenblatt
,
H.
Nayfeh
,
Y.
Wu
,
M.
Zaletel
,
K.
Temme
, and
A.
Kandala
, “
Evidence for the utility of quantum computing before fault tolerance
,”
Nature
618
,
500
(
2023
).
33.
D.
Aharonov
,
X.
Gao
,
Z.
Landau
,
Y.
Liu
, and
U.
Vazirani
, “
A polynomial-time classical algorithm for noisy random circuit sampling
,” in
Proceedings of the 55th Annu. ACM Symp. Theory Comput.
(
ACM
,
New York
,
2023
), pp.
945
957
; arXiv:2211.03999.
34.
T.
Schuster
,
C.
Yin
,
X.
Gao
, and
N. Y.
Yao
, “
A polynomial-time classical algorithm for noisy quantum circuits
,” arXiv:2407.12768 (
2024
).
35.
S.
Lerch
,
R.
Puig
,
M. S.
Rudolph
,
A.
Angrisani
,
T.
Jones
,
M.
Cerezo
,
S.
Thanasilp
, and
Z.
Holmes
, “
Efficient quantum-enhanced classical simulation for patches of quantum landscapes
,” arXiv:2411.19896 [quant-ph] (
2024
).
36.
A.
Angrisani
,
A.
Schmidhuber
,
M. S.
Rudolph
,
M.
Cerezo
,
Z.
Holmes
, and
H.-Y.
Huang
, “
Classically estimating observables of noiseless quantum circuits
,” arXiv:2409.01706 [quant-ph] (
2024
).
37.
N.
Dowling
,
P.
Kos
, and
X.
Turkeshi
, “
Magic of the Heisenberg picture
,” arXiv:2408.16047 [quant-ph] (
2024
).
38.
A.
Javadi-Abhari
,
M.
Treinish
,
K.
Krsulich
,
C. J.
Wood
,
J.
Lishman
,
J.
Gacon
,
S.
Martiel
,
P. D.
Nation
,
L. S.
Bishop
,
A. W.
Cross
,
B. R.
Johnson
, and
J. M.
Gambetta
, “
Quantum computing with Qiskit
,” arXiv:2405.08810 [quant-ph] (
2024
).
39.
E.
Farhi
,
J.
Goldstone
, and
S.
Gutmann
, “
A quantum approximate optimization algorithm applied to a bounded occurrence constraint problem
,” arXiv:1412.6062 (
2015
).
40.
Y.
Ouyang
, “
Avoiding coherent errors with rotated concatenated stabilizer codes
,”
npj Quantum Inf.
7
,
87
(
2021
).
41.
W.-F.
Zhuang
,
Y.-N.
Pu
,
H.-Z.
Xu
,
X.
Chai
,
Y.
Gu
,
Y.
Ma
,
S.
Qamar
,
C.
Qian
,
P.
Qian
,
X.
Xiao
,
M.-J.
Hu
, and
D. E.
Liu
, “
Efficient classical computation of quantum mean values for shallow QAOA circuits
,” arXiv:2112.11151 (
2021
).
42.
S.
Bravyi
,
J. A.
Latone
, and
D.
Maslov
, “
6-qubit optimal Clifford circuits
,”
npj Quantum Inf.
8
,
79
(
2022
).
43.
M. A.
Nielsen
and
I. L.
Chuang
,
Quantum Computation and Quantum Information
(
Cambridge University Press
,
Cambridge
,
2010
).
44.
Q.
Huang
and
C. B.
Mendl
, “
Classical simulation of quantum circuits using a multiqubit Bloch vector representation of density matrices
,”
Phys. Rev. A
105
,
022409
(
2022
).
You do not currently have access to this content.