Phycobilisomes are antenna protein complexes in cyanobacteria and red algae. In phycobilisomes, energy transfer is unidirectional with an extremely high quantum efficiency close to unity. We investigate intraprotein energy relaxation and quantum coherence of constituent chromoproteins of allophycocyanin (APC) and two kinds of C-phycocyanin (CPC) in phycobilisomes using two-dimensional electronic spectroscopy. These chromoproteins produced by an Escherichia coli expression system have similar adjacent pairs of pigments α84 and β84, which are excited to delocalized exciton states. However, the kinetics and coherence of exciton states are significantly different from each other. Even CPCs with almost the same molecular structure display different 2D spectra when the locations in the phycobilisome are different. The spectra of the inner CPC in the phycobilisome are red-shifted relative to that of the outer one. This may promote the efficient and unidirectional energy transfer to the APC core. We observe low-frequency coherent vibrational motion of ∼200 cm−1 with large amplitude and a decay time of 200 fs. The wave packet motion involving energy relaxation and oscillatory motions on the potential energy surface of the exciton state is clearly visualized using beat-frequency-resolved 2D-ES.

1.
R. E.
Blankenship
,
Molecular Mechanisms of Photosynthesis
(
Wiley
,
2021
).
2.
G. D.
Scholes
,
G. R.
Fleming
,
A.
Olaya-Castro
, and
R.
van Grondelle
, “
Lessons from nature about solar light harvesting
,”
Nat. Chem.
3
,
763
774
(
2011
).
3.
G. S.
Engel
,
T. R.
Calhoun
,
E. L.
Read
,
T.-K.
Ahn
,
T.
Mančal
,
Y.-C.
Cheng
,
R. E.
Blankenship
, and
G. R.
Fleming
, “
Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems
,”
Nature
446
,
782
786
(
2007
).
4.
G.
Panitchayangkoon
,
D.
Hayes
,
K. A.
Fransted
,
J. R.
Caram
,
E.
Harel
,
J.
Wen
,
R. E.
Blankenship
, and
G. S.
Engel
, “
Long-lived quantum coherence in photosynthetic complexes at physiological temperature
,”
Proc. Natl. Acad. Sci. U. S. A.
107
,
12766
12770
(
2010
).
5.
A.
Ishizaki
and
G. R.
Fleming
, “
Quantum coherence in photosynthetic light harvesting
,”
Annu. Rev. Condens. Matter Phys.
3
,
333
361
(
2012
).
6.
E.
Collini
,
C. Y.
Wong
,
K. E.
Wilk
,
P. M. G.
Curmi
,
P.
Brumer
, and
G. D.
Scholes
, “
Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature
,”
Nature
463
,
644
647
(
2010
).
7.
D. B.
Turner
,
K. E.
Wilk
,
P. M. G.
Curmi
, and
G. D.
Scholes
, “
Comparison of electronic and vibrational coherence measured by two-dimensional electronic spectroscopy
,”
J. Phys. Chem. Lett.
2
,
1904
1911
(
2011
).
8.
D. B.
Turner
,
R.
Dinshaw
,
K.-K.
Lee
,
M. S.
Belsley
,
K. E.
Wilk
,
P. M. G.
Curmi
, and
G. D.
Scholes
, “
Quantitative investigations of quantum coherence for a light-harvesting protein at conditions simulating photosynthesis
,”
Phys. Chem. Chem. Phys.
14
,
4857
4874
(
2012
).
9.
G. H.
Richards
,
K. E.
Wilk
,
P. M. G.
Curmi
, and
J. A.
Davis
, “
Disentangling electronic and vibrational coherence in the phycocyanin-645 light-harvesting complex
,”
J. Phys. Chem. Lett.
5
,
43
49
(
2014
).
10.
J. M.
Womick
and
A. M.
Moran
, “
Exciton coherence and energy transport in the light-harvesting dimers of allophycocyanin
,”
J. Phys. Chem. B
113
,
15747
15759
(
2009
).
11.
J. M.
Womick
,
B. A.
West
,
N. F.
Scherer
, and
A. M.
Moran
, “
Vibronic effects in the spectroscopy and dynamics of C-phycocyanin
,”
J. Phys. B: At., Mol. Opt. Phys.
45
,
154016
(
2012
).
12.
H.-G.
Duan
,
V. I.
Prokhorenko
,
R. J.
Cogdell
,
K.
Ashraf
,
A. L.
Stevens
,
M.
Thorwart
, and
R. J. D.
Miller
, “
Nature does not rely on long-lived electronic quantum coherence for photosynthetic energy transfer
,”
Proc. Natl. Acad. Sci. U. S. A.
114
,
8493
8498
(
2017
).
13.
J.
Cao
,
R. J.
Cogdell
,
D. F.
Coker
,
H.-G.
Duan
,
J.
Hauer
,
U.
Kleinekathöfer
,
T. L. C.
Jansen
,
T.
Mančal
,
R. J. D.
Miller
,
J. P.
Ogilvie
,
V. I.
Prokhorenko
,
T.
Renger
,
H.-S.
Tan
,
R.
Tempelaar
,
M.
Thorwart
,
E.
Thyrhaug
,
S.
Westenhoff
, and
D.
Zigmantas
, “
Quantum biology revisited
,”
Sci. Adv.
6
,
eaaz4888
(
2020
).
14.
T.
Mirkovic
,
E. E.
Ostroumov
,
J. M.
Anna
,
R.
van Grondelle
, and
G. D.
Scholes
, “
Light absorption and energy transfer in the antenna complexes of photosynthetic organisms
,”
Chem. Rev.
117
,
249
293
(
2017
).
15.
E.
Gantt
, “
Phycobilisomes: Light-harvesting pigment complexes
,”
Bioscience
25
,
781
788
(
1975
).
16.
L.
Zheng
,
Z.
Zheng
,
X.
Li
,
G.
Wang
,
K.
Zhang
,
P.
Wei
,
J.
Zhao
, and
N.
Gao
, “
Structural insight into the mechanism of energy transfer in cyanobacterial phycobilisomes
,”
Nat. Commun.
12
,
5497
(
2021
).
17.
J.
Ma
,
X.
You
,
S.
Sun
,
X.
Wang
,
S.
Qin
, and
S. F.
Sui
, “
Structural basis of energy transfer in porphyridium purpureum phycobilisome
,”
Nature
579
,
146
(
2020
).
18.
M. A.
Domínguez-Martín
,
P. V.
Sauer
,
H.
Kirst
,
M.
Sutter
,
D.
Bína
,
B. J.
Greber
,
E.
Nogales
,
T.
Polívka
, and
C. A.
Kerfeld
, “
Structures of a phycobilisome in light-harvesting and photoprotected states
,”
Nature
609
,
835
(
2022
).
19.
K.
Kawakami
,
T.
Hamaguchi
,
Y.
Hirose
,
D.
Kosumi
,
M.
Miyata
,
N.
Kamiya
, and
K.
Yonekura
, “
Core and rod structures of a thermophilic cyanobacterial light-harvesting phycobilisome
,”
Nat. Commun.
13
,
3389
(
2022
).
20.
S.
Sil
,
R. W.
Tilluck
,
N.
Mohan T. M.
,
C. H.
Leslie
,
J. B.
Rose
,
M. A.
Domínguez-Martín
,
W.
Lou
,
C. A.
Kerfeld
, and
W. F.
Beck
, “
Excitation energy transfer and vibronic coherence in intact phycobilisomes
,”
Nat. Chem.
14
,
1286
(
2022
).
21.
S.
Sohoni
,
L. T.
Lloyd
,
A.
Hitchcock
,
C.
MacGregor-Chatwin
,
A.
Iwanicki
,
I.
Ghosh
,
Q.
Shen
,
C. N.
Hunter
, and
G. S.
Engel
, “
Phycobilisome’s exciton transfer efficiency relies on an energetic funnel driven by chromophore–linker protein interactions
,”
J. Am. Chem. Soc.
145
,
11659
11668
(
2023
).
22.
P.
Navotnaya
,
S.
Sohoni
,
L. T.
Lloyd
,
S. M.
Abdulhadi
,
P. C.
Ting
,
J. S.
Higgins
, and
G. S.
Engel
, “
Annihilation of excess excitations along phycocyanin rods precedes downhill flow to allophycocyanin cores in the phycobilisome of synechococcus elongatus PCC 7942
,”
J. Phys. Chem. B
126
,
23
(
2022
).
23.
Y.
Hirota
,
H.
Serikawa
,
K.
Kawakami
,
M.
Ueno
,
N.
Kamiya
, and
D.
Kosumi
, “
Ultrafast energy transfer dynamics of phycobilisome from Thermosynechococcus vulcanus, as revealed by ps fluorescence and fs pump-probe spectroscopies
,”
Photosynth. Res.
148
,
181
(
2021
).
24.
K.
Brejc
,
R.
Ficner
,
R.
Huber
, and
S.
Steinbacher
, “
Isolation, crystallization, crystal structure analysis and refinement of allophycocyanin from the cyanobacterium Spirulina platensis at 2.3 Å resolution
,”
J. Mol. Biol.
249
,
424
440
(
1995
).
25.
R.
Zhu
,
W.
Li
,
Z.
Zhen
,
J.
Zou
,
G.
Liao
,
J.
Wang
,
Z.
Wang
,
H.
Chen
,
S.
Qin
, and
Y.
Weng
, “
Quantum phase synchronization via exciton-vibrational energy dissipation sustains long-lived coherence in photosynthetic antennas
,”
Nat. Commun.
15
,
3171
(
2024
).
26.
R.
MacColl
, “
Allophycocyanin and energy transfer
,”
Biochim. Biophys. Acta, Bioenerg.
1657
,
73
81
(
2004
).
27.
M. D.
Edington
,
R. E.
Riter
, and
W. F.
Beck
, “
Evidence for coherent energy transfer in allophycocyanin trimers
,”
J. Phys. Chem.
99
,
15699
15704
(
1995
).
28.
M. D.
Edington
,
R. E.
Riter
, and
W. F.
Beck
, “
Interexciton-state relaxation and exciton localization in allophycocyanin trimers
,”
J. Phys. Chem.
100
,
14206
14217
(
1996
).
29.
M. D.
Edington
,
R. E.
Riter
, and
W. F.
Beck
, “
Femtosecond transient hole-burning detection of interexciton-state radiationless decay in allophycocyanin trimers
,”
J. Phys. Chem. B
101
,
4473
4477
(
1997
).
30.
B. J.
Homoelle
,
M. D.
Edington
,
W. M.
Diffey
, and
W. F.
Beck
, “
Stimulated photon-echo and transient-grating studies of protein-matrix solvation dynamics and interexciton-state radiationless decay in α phycocyanin and allophycocyanin
,”
J. Phys. Chem. B
102
,
3044
3052
(
1998
).
31.
J. M.
Zhang
,
Y. J.
Shiu
,
M.
Hayashi
,
K. K.
Liang
,
C. H.
Chang
,
V.
Gulbinas
,
C. M.
Yang
,
T. S.
Yang
,
H. Z.
Wang
,
Y. T.
Chen
, and
S. H.
Lin
, “
Investigations of ultrafast exciton dynamics in allophycocyanin trimer
,”
J. Phys. Chem. A
105
,
8878
8891
(
2001
).
32.
J. M.
Womick
and
A. M.
Moran
, “
Nature of excited states and relaxation mechanisms in C-Phycocyanin
,”
J. Phys. Chem. B
113
,
15771
(
2009
).
33.
J. M.
Womick
,
S. A.
Miller
, and
A. M.
Moran
, “
Toward the origin of exciton electronic structure in phycobiliproteins
,”
J. Chem. Phys.
133
,
024507
(
2010
).
34.
J. M.
Womick
and
A. M.
Moran
, “
Vibronic enhancement of exciton sizes and energy transport in photosynthetic complexes
,”
J. Phys. Chem. B
115
,
1347
1356
(
2011
).
35.
A.
Fălămaș
,
S. A.
Porav
, and
V.
Tosa
, “
Investigations of the energy transfer in the phycobilisome antenna of Arthrospira platensis using femtosecond spectroscopy
,”
Appl. Sci.
10
,
4045
(
2020
).
36.
R.
Moya
,
A. C.
Norris
,
T.
Kondo
, and
G. S.
Schlau-Cohen
, “
Observation of robust energy transfer in the photosynthetic protein allophycocyanin using single-molecule pump–probe spectroscopy
,”
Nat. Chem.
14
,
153
(
2022
).
37.
P.-J. E.
Wu
,
S.
Sohoni
, and
G. S.
Engel
, “
Vibrational relaxation completes the excitation energy transfer and localization of vibronic excitons in allophycocyanin α8484
,”
J. Phys. Chem. Lett.
15
,
11577
11586
(
2024
).
38.
S.
Sohoni
,
P.-J. E.
Wu
,
Q.
Shen
,
L. T.
Lloyd
,
C.
MacGregor-Chatwin
,
A.
Hitchcock
, and
G. S.
Engel
, “
Resonant vibrational enhancement of downhill energy transfer in the C-phycocyanin chromophore dimer
,”
J. Phys. Chem. Lett.
15
,
11569
11576
(
2024
).
39.
S.
Mukamel
, “
Multidimensional femtosecond correlation spectroscopies of electronic and vibrational excitations
,”
Annu. Rev. Phys. Chem.
51
,
691
729
(
2000
).
40.
J. D.
Hybl
,
A. A.
Ferro
, and
D. M.
Jonas
, “
Two-dimensional Fourier transform electronic spectroscopy
,”
J. Chem. Phys.
115
,
6606
6622
(
2001
).
41.
D. M.
Jonas
, “
Two-dimensional femtosecond spectroscopy
,”
Annu. Rev. Phys. Chem.
54
,
425
463
(
2003
).
42.
T.
Mančal
,
A. V.
Pisliakov
, and
G. R.
Fleming
, “
Two-dimensional optical three-pulse photon echo spectroscopy. I. Nonperturbative approach to the calculation of spectra
,”
J. Chem. Phys.
124
,
234504
(
2006
).
43.
A. V.
Pisliakov
,
T.
Mančal
, and
G. R.
Fleming
, “
Two-dimensional optical three-pulse photon echo spectroscopy. II. Signatures of coherent electronic motion and exciton population transfer in dimer two-dimensional spectra
,”
J. Chem. Phys.
124
,
234505
(
2006
).
44.
T. A. A.
Oliver
, “
Recent advances in multidimensional ultrafast spectroscopy
,”
R. Soc. Open Sci.
5
,
171425
(
2018
).
45.
A.
Gelzinis
,
R.
Augulis
,
V.
Butkus
,
B.
Robert
, and
L.
Valkunas
, “
Two-dimensional spectroscopy for non-specialists
,”
Biochim. Biophys. Acta, Bioenerg.
1860
,
271
285
(
2019
).
46.
E.
Romero
,
V. I.
Novoderezhkin
, and
R.
van Grondelle
, “
Quantum design of photosynthesis for bio-inspired solar-energy conversion
,”
Nature
543
,
355
365
(
2017
).
47.
G. D.
Scholes
,
G. R.
Fleming
,
L. X.
Chen
,
A.
Aspuru-Guzik
,
A.
Buchleitner
,
D. F.
Coker
,
G. S.
Engel
,
R.
van Grondelle
,
A.
Ishizaki
,
D. M.
Jonas
,
J. S.
Lundeen
,
J. K.
McCusker
,
S.
Mukamel
,
J. P.
Ogilvie
,
A.
Olaya-Castro
,
M. A.
Ratner
,
F. C.
Spano
,
K. B.
Whaley
, and
X.
Zhu
, “
Using coherence to enhance function in chemical and biophysical systems
,”
Nature
543
,
647
656
(
2017
).
48.
M.
Tsubouchi
,
N.
Ishii
,
Y.
Kagotani
,
R.
Shimizu
,
T.
Fujita
,
M.
Adachi
, and
R.
Itakura
, “
Beat-frequency-resolved two-dimensional electronic spectroscopy: Disentangling vibrational coherences in artificial fluorescent proteins with sub-10-fs visible laser pulses
,”
Opt. Express
31
,
6890
6906
(
2023
).
49.
S.-H.
Shim
and
M. T.
Zanni
, “
How to turn your pump–probe instrument into a multidimensional spectrometer: 2D IR and Vis spectroscopies via pulse shaping
,”
Phys. Chem. Chem. Phys.
11
,
748
761
(
2009
).
50.
D.
Brida
,
C.
Manzoni
, and
G.
Cerullo
, “
Phase-locked pulses for two-dimensional spectroscopy by a birefringent delay line
,”
Opt. Lett.
37
,
3027
3029
(
2012
).
51.
J.
Réhault
,
M.
Maiuri
,
A.
Oriana
, and
G.
Cerullo
, “
Two-dimensional electronic spectroscopy with birefringent wedges
,”
Rev. Sci. Instrum.
85
,
123107
(
2014
).
52.
V. R.
Policht
,
A.
Niedringhaus
,
R.
Willow
,
P. D.
Laible
,
D. F.
Bocian
,
C.
Kirmaier
,
D.
Holten
,
T.
Mančal
, and
J. P.
Ogilvie
, “
Hidden vibronic and excitonic structure and vibronic coherence transfer in the bacterial reaction center
,”
Sci. Adv.
8
,
eabk0953
(
2022
).
53.
F. D.
Fuller
,
J.
Pan
,
A.
Gelzinis
,
V.
Butkus
,
S. S.
Senlik
,
D. E.
Wilcox
,
C. F.
Yocum
,
L.
Valkunas
,
D.
Abramavicius
, and
J. P.
Ogilvie
, “
Vibronic coherence in oxygenic photosynthesis
,”
Nat. Chem.
6
,
706
711
(
2014
).
54.
E.
Romero
,
R.
Augulis
,
V. I.
Novoderezhkin
,
M.
Ferretti
,
J.
Thieme
,
D.
Zigmantas
, and
R.
van Grondelle
, “
Quantum coherence in photosynthesis for efficient solar-energy conversion
,”
Nat. Phys.
10
,
676
682
(
2014
).
55.
M.
Maiuri
,
E. E.
Ostroumov
,
R. G.
Saer
,
R. E.
Blankenship
, and
G. D.
Scholes
, “
Coherent wavepackets in the Fenna–Matthews–Olson complex are robust to excitonic-structure perturbations caused by mutagenesis
,”
Nat. Chem.
10
,
177
183
(
2018
).
56.
E.
Thyrhaug
,
R.
Tempelaar
,
M. J. P.
Alcocer
,
K.
Žídek
,
D.
Bína
,
J.
Knoester
,
T. L. C.
Jansen
, and
D.
Zigmantas
, “
Identification and characterization of diverse coherences in the Fenna–Matthews–Olson complex
,”
Nat. Chem.
10
,
780
786
(
2018
).
You do not currently have access to this content.