The accurate treatment of noncovalent interactions is necessary to model a wide range of applications, from molecular crystals to surface catalysts to aqueous solutions and many more. Quantum diffusion Monte Carlo (DMC) and coupled cluster theory with single, double, and perturbative triple excitations [CCSD(T)] are considered two widely trusted methods for treating noncovalent interactions. However, while they have been well-validated for small molecules, recent work has indicated that these two methods can disagree by more than 7.5 kcal/mol for larger systems. The origin of this discrepancy remains unknown. Moreover, the lack of systematic comparisons, particularly for medium-sized complexes, has made it difficult to identify which systems may be prone to such disagreements and the potential scale of these differences. In this work, we leverage the latest developments in DMC to compute interaction energies for the entire S66 dataset, containing 66 medium-sized complexes with a balanced representation of dispersion and electrostatic interactions. Comparison to previous CCSD(T) references reveals systematic trends, with DMC predicting stronger binding than CCSD(T) for electrostatic-dominated systems, while the binding becomes weaker for dispersion-dominated systems. We show that the relative strength of this discrepancy is correlated to the ratio of electrostatic and dispersion interactions, as obtained from energy decomposition analysis methods. Finally, we have pinpointed model systems: the hydrogen-bonded acetic acid dimer (ID 20) and dispersion-dominated uracil–cyclopentane dimer (ID 42), where these discrepancies are particularly prominent. These systems offer cost-effective benchmarks to guide future developments in DMC, CCSD(T), as well as the wider electronic structure theory community.

1.
G. J. O.
Beran
, “
Modeling polymorphic molecular crystals with electronic structure theory
,”
Chem. Rev.
116
,
5567
5613
(
2016
).
2.
K. E.
Riley
and
P.
Hobza
, “
Noncovalent interactions in biochemistry
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
1
,
3
17
(
2011
).
3.
M.
Raynal
,
P.
Ballester
,
A.
Vidal-Ferran
, and
P. W. N. M.
van Leeuwen
, “
Supramolecular catalysis. Part 1: Non-covalent interactions as a tool for building and modifying homogeneous catalysts
,”
Chem. Soc. Rev.
43
,
1660
1733
(
2014
).
4.
N.
Planas
,
A. L.
Dzubak
,
R.
Poloni
,
L.-C.
Lin
,
A.
McManus
,
T. M.
McDonald
,
J. B.
Neaton
,
J. R.
Long
,
B.
Smit
, and
L.
Gagliardi
, “
The mechanism of carbon dioxide adsorption in an alkylamine-functionalized metal–organic framework
,”
J. Am. Chem. Soc.
135
,
7402
7405
(
2013
).
5.
R.
Poloni
,
B.
Smit
, and
J. B.
Neaton
, “
Ligand-assisted enhancement of CO2 capture in metal–organic frameworks
,”
J. Am. Chem. Soc.
134
,
6714
6719
(
2012
).
6.
X.
Du
,
Y.
Li
,
Y.-L.
Xia
,
S.-M.
Ai
,
J.
Liang
,
P.
Sang
,
X.-L.
Ji
, and
S.-Q.
Liu
, “
Insights into protein–ligand interactions: Mechanisms, models, and methods
,”
Int. J. Mol. Sci.
17
,
144
(
2016
).
7.
F. R.
Rehak
,
G.
Piccini
,
M.
Alessio
, and
J.
Sauer
, “
Including dispersion in density functional theory for adsorption on flat oxide surfaces, in metal–organic frameworks and in acidic zeolites
,”
Phys. Chem. Chem. Phys.
22
,
7577
7585
(
2020
).
8.
K.
Müller-Dethlefs
and
P.
Hobza
, “
Noncovalent interactions: A challenge for experiment and theory
,”
Chem. Rev.
100
,
143
168
(
2000
).
9.
W. M. C.
Foulkes
,
L.
Mitas
,
R. J.
Needs
, and
G.
Rajagopal
, “
Quantum Monte Carlo simulations of solids
,”
Rev. Mod. Phys.
73
,
33
83
(
2001
).
10.
R. J.
Bartlett
and
M.
Musiał
, “
Coupled-cluster theory in quantum chemistry
,”
Rev. Mod. Phys.
79
,
291
352
(
2007
).
11.
A. E.
Mattsson
,
P. A.
Schultz
,
M. P.
Desjarlais
,
T. R.
Mattsson
, and
K.
Leung
, “
Designing meaningful density functional theory calculations in materials science—A primer
,”
Modell. Simul. Mater. Sci. Eng.
13
,
R1
R31
(
2004
).
12.
D. M.
Ceperley
and
B. J.
Alder
, “
Ground state of the electron gas by a stochastic method
,”
Phys. Rev. Lett.
45
,
566
569
(
1980
).
13.
S.
Grimme
, “
Semiempirical GGA-type density functional constructed with a long-range dispersion correction
,”
J. Comput. Chem.
27
,
1787
1799
(
2006
).
14.
S.
Grimme
,
J.
Antony
,
S.
Ehrlich
, and
H.
Krieg
, “
A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu
,”
J. Chem. Phys.
132
,
154104
(
2010
).
15.
S.
Grimme
,
A.
Hansen
,
J. G.
Brandenburg
, and
C.
Bannwarth
, “
Dispersion-Corrected mean-field electronic structure methods
,”
Chem. Rev.
116
,
5105
5154
(
2016
).
16.
A. J. A.
Price
,
A.
Otero-de-la-Roza
, and
E. R.
Johnson
, “
XDM-corrected hybrid DFT with numerical atomic orbitals predicts molecular crystal lattice energies with unprecedented accuracy
,”
Chem. Sci.
14
,
1252
1262
(
2023
).
17.
A.
Zen
,
S.
Sorella
,
M. J.
Gillan
,
A.
Michaelides
, and
D.
Alfè
, “
Boosting the accuracy and speed of quantum Monte Carlo: Size consistency and time step
,”
Phys. Rev. B
93
,
241118
(
2016
).
18.
J. T.
Krogel
, “
Nexus: A modular workflow management system for quantum simulation codes
,”
Comput. Phys. Commun.
198
,
154
168
(
2016
).
19.
M. C.
Bennett
,
C. A.
Melton
,
A.
Annaberdiyev
,
G.
Wang
,
L.
Shulenburger
, and
L.
Mitas
, “
A new generation of effective core potentials for correlated calculations
,”
J. Chem. Phys.
147
,
224106
(
2017
).
20.
M. C.
Bennett
,
G.
Wang
,
A.
Annaberdiyev
,
C. A.
Melton
,
L.
Shulenburger
, and
L.
Mitas
, “
A new generation of effective core potentials from correlated calculations: 2nd row elements
,”
J. Chem. Phys.
149
,
104108
(
2018
).
21.
A.
Annaberdiyev
,
G.
Wang
,
C. A.
Melton
,
M. C.
Bennett
,
L.
Shulenburger
, and
L.
Mitas
, “
A new generation of effective core potentials from correlated calculations: 3d transition metal series
,”
J. Chem. Phys.
149
,
134108
(
2018
).
22.
A.
Zen
,
J. G.
Brandenburg
,
A.
Michaelides
, and
D.
Alfè
, “
A new scheme for fixed node diffusion quantum Monte Carlo with pseudopotentials: Improving reproducibility and reducing the trial-wave-function bias
,”
J. Chem. Phys.
151
,
134105
(
2019
).
23.
R. J.
Needs
,
M. D.
Towler
,
N. D.
Drummond
,
P.
López Ríos
, and
J. R.
Trail
, “
Variational and diffusion quantum Monte Carlo calculations with the CASINO code
,”
J. Chem. Phys.
152
,
154106
(
2020
).
24.
K.
Nakano
,
C.
Attaccalite
,
M.
Barborini
,
L.
Capriotti
,
M.
Casula
,
E.
Coccia
,
M.
Dagrada
,
C.
Genovese
,
Y.
Luo
,
G.
Mazzola
,
A.
Zen
, and
S.
Sorella
, “
TurboRVB: A many-body toolkit for ab initio electronic simulations by quantum Monte Carlo
,”
J. Chem. Phys.
152
,
204121
(
2020
).
25.
P. R. C.
Kent
,
A.
Annaberdiyev
,
A.
Benali
,
M. C.
Bennett
,
E. J.
Landinez Borda
,
P.
Doak
,
H.
Hao
,
K. D.
Jordan
,
J. T.
Krogel
,
I.
Kylänpää
,
J.
Lee
,
Y.
Luo
,
F. D.
Malone
,
C. A.
Melton
,
L.
Mitas
,
M. A.
Morales
,
E.
Neuscamman
,
F. A.
Reboredo
,
B.
Rubenstein
,
K.
Saritas
,
S.
Upadhyay
,
G.
Wang
,
S.
Zhang
, and
L.
Zhao
, “
QMCPACK: Advances in the development, efficiency, and application of auxiliary field and real-space variational and diffusion quantum Monte Carlo
,”
J. Chem. Phys.
152
,
174105
(
2020
).
26.
K.
Nakano
,
O.
Kohulák
,
A.
Raghav
,
M.
Casula
, and
S.
Sorella
, “
TurboGenius: Python suite for high-throughput calculations of ab initio quantum Monte Carlo methods
,”
J. Chem. Phys.
159
,
224801
(
2023
).
27.
C.
Riplinger
and
F.
Neese
, “
An efficient and near linear scaling pair natural orbital based local coupled cluster method
,”
J. Chem. Phys.
138
,
034106
(
2013
).
28.
C.
Riplinger
,
P.
Pinski
,
U.
Becker
,
E. F.
Valeev
, and
F.
Neese
, “
Sparse maps—A systematic infrastructure for reduced-scaling electronic structure methods. II. Linear scaling domain based pair natural orbital coupled cluster theory
,”
J. Chem. Phys.
144
,
024109
(
2016
).
29.
Q.
Ma
and
H.-J.
Werner
, “
Explicitly correlated local coupled-cluster methods using pair natural orbitals
,”
WIREs Comput. Mol. Sci.
8
,
e1371
(
2018
).
30.
P. R.
Nagy
,
G.
Samu
, and
M.
Kállay
, “
Optimization of the linear-scaling local natural orbital CCSD(T) method: Improved algorithm and benchmark applications
,”
J. Chem. Theory Comput.
14
,
4193
4215
(
2018
).
31.
P. R.
Nagy
and
M.
Kállay
, “
Approaching the basis set limit of CCSD(T) energies for large molecules with local natural orbital coupled-cluster methods
,”
J. Chem. Theory Comput.
15
,
5275
5298
(
2019
).
32.
N.
Masios
,
A.
Irmler
,
T.
Schäfer
, and
A.
Grüneis
, “
Averting the infrared catastrophe in the gold standard of quantum chemistry
,”
Phys. Rev. Lett.
131
,
186401
(
2023
).
33.
A.
Jiang
,
Z. L.
Glick
,
D.
Poole
,
J. M.
Turney
,
C. D.
Sherrill
, and
H. F.
Schaefer
, III
, “
Accurate and efficient open-source implementation of domain-based local pair natural orbital (DLPNO) coupled-cluster theory using a t1-transformed Hamiltonian
,”
J. Chem. Phys.
161
,
082502
(
2024
).
34.
H.-Z.
Ye
and
T. C.
Berkelbach
, “
Periodic local coupled-cluster theory for insulators and metals
,”
J. Chem. Theory Comput.
20
,
8948
8959
(
2024
).
35.
M.
Dubecký
,
P.
Jurečka
,
R.
Derian
,
P.
Hobza
,
M.
Otyepka
, and
L.
Mitas
, “
Quantum Monte Carlo methods describe noncovalent interactions with subchemical accuracy
,”
J. Chem. Theory Comput.
9
,
4287
4292
(
2013
).
36.
J.
Řezáč
,
M.
Dubecký
,
P.
Jurečka
, and
P.
Hobza
, “
Extensions and applications of the A24 data set of accurate interaction energies
,”
Phys. Chem. Chem. Phys.
17
,
19268
19277
(
2015
).
37.
A.
Raghav
,
R.
Maezono
,
K.
Hongo
,
S.
Sorella
, and
K.
Nakano
, “
Toward chemical accuracy using the Jastrow correlated antisymmetrized geminal power ansatz
,”
J. Chem. Theory Comput.
19
,
2222
2229
(
2023
).
38.
E.
Mostaani
,
N. D.
Drummond
, and
V. I.
Fal’ko
, “
Quantum Monte Carlo calculation of the binding energy of bilayer graphene
,”
Phys. Rev. Lett.
115
,
115501
(
2015
).
39.
A.
Zen
,
J. G.
Brandenburg
,
J.
Klimeš
,
A.
Tkatchenko
,
D.
Alfè
, and
A.
Michaelides
, “
Fast and accurate quantum Monte Carlo for molecular crystals
,”
Proc. Natl. Acad. Sci. U. S. A.
115
,
1724
1729
(
2018
).
40.
F.
Della Pia
,
A.
Zen
,
D.
Alfè
, and
A.
Michaelides
, “
DMC-ICE13: Ambient and high pressure polymorphs of ice from diffusion Monte Carlo and density functional theory
,”
J. Chem. Phys.
157
,
134701
(
2022
).
41.
F.
Della Pia
,
A.
Zen
,
D.
Alfè
, and
A.
Michaelides
, “
How accurate are simulations and experiments for the lattice energies of molecular crystals?
,”
Phys. Rev. Lett.
133
,
046401
(
2024
).
42.
O.
Karalti
,
D.
Alfè
,
M. J.
Gillan
, and
K. D.
Jordan
, “
Adsorption of a water molecule on the MgO(100) surface as described by cluster and slab models
,”
Phys. Chem. Chem. Phys.
14
,
7846
7853
(
2012
).
43.
Y. S.
Al-Hamdani
,
D.
Alfè
, and
A.
Michaelides
, “
How strongly do hydrogen and water molecules stick to carbon nanomaterials?
,”
J. Chem. Phys.
146
,
094701
(
2017
).
44.
T.
Tsatsoulis
,
F.
Hummel
,
D.
Usvyat
,
M.
Schütz
,
G. H.
Booth
,
S. S.
Binnie
,
M. J.
Gillan
,
D.
Alfè
,
A.
Michaelides
, and
A.
Grüneis
, “
A comparison between quantum chemistry and quantum Monte Carlo techniques for the adsorption of water on the (001) LiH surface
,”
J. Chem. Phys.
146
,
204108
(
2017
).
45.
Y. S.
Al-Hamdani
,
M.
Rossi
,
D.
Alfè
,
T.
Tsatsoulis
,
B.
Ramberger
,
J. G.
Brandenburg
,
A.
Zen
,
G.
Kresse
,
A.
Grüneis
,
A.
Tkatchenko
, and
A.
Michaelides
, “
Properties of the water to boron nitride interaction: From zero to two dimensions with benchmark accuracy
,”
J. Chem. Phys.
147
,
044710
(
2017
).
46.
J. G.
Brandenburg
,
A.
Zen
,
M.
Fitzner
,
B.
Ramberger
,
G.
Kresse
,
T.
Tsatsoulis
,
A.
Grüneis
,
A.
Michaelides
, and
D.
Alfè
, “
Physisorption of water on graphene: Subchemical accuracy from many-body electronic structure methods
,”
J. Phys. Chem. Lett.
10
,
358
368
(
2019
).
47.
B. X.
Shi
,
A.
Zen
,
V.
Kapil
,
P. R.
Nagy
,
A.
Grüneis
, and
A.
Michaelides
, “
Many-body methods for surface chemistry come of age: Achieving consensus with experiments
,”
J. Am. Chem. Soc.
145
,
25372
25381
(
2023
).
48.
B. X.
Shi
,
V.
Kapil
,
A.
Zen
,
J.
Chen
,
A.
Alavi
, and
A.
Michaelides
, “
General embedded cluster protocol for accurate modeling of oxygen vacancies in metal-oxides
,”
J. Chem. Phys.
156
,
124704
(
2022
).
49.
Y. S.
Al-Hamdani
,
P. R.
Nagy
,
A.
Zen
,
D.
Barton
,
M.
Kállay
,
J. G.
Brandenburg
, and
A.
Tkatchenko
, “
Interactions between large molecules pose a puzzle for reference quantum mechanical methods
,”
Nat. Commun.
12
,
3927
(
2021
).
50.
T.
Schäfer
,
A.
Irmler
,
A.
Gallo
, and
A.
Grüneis
, “
Understanding discrepancies of wavefunction theories for large molecules
,” arXiv:2407.01442 (
2024
).
51.
F.
Ballesteros
,
S.
Dunivan
, and
K. U.
Lao
, “
Coupled cluster benchmarks of large noncovalent complexes: The L7 dataset as well as DNA–ellipticine and buckycatcher–fullerene
,”
J. Chem. Phys.
154
,
154104
(
2021
).
52.
C.
Villot
,
F.
Ballesteros
,
D.
Wang
, and
K. U.
Lao
, “
Coupled cluster benchmarking of large noncovalent complexes in L7 and S12L as well as the C60 dimer, DNA–ellipticine, and HIV–indinavir
,”
J. Phys. Chem. A
126
,
4326
4341
(
2022
).
53.
V.
Fishman
,
M.
Lesiuk
,
J. M. L.
Martin
, and
A. D.
Boese
, “
Another angle on benchmarking noncovalent interactions
,”
J. Chem. Theory Comput.
21
,
2311
2324
(
2025
).
54.
S.
Lambie
,
D.
Kats
,
D.
Usyvat
, and
A.
Alavi
, “
On the applicability of CCSD(T) for dispersion interactions in large conjugated systems
,”
J. Chem. Phys.
162
,
114112
(
2025
).
55.
K. U.
Lao
, “
Canonical coupled cluster binding benchmark for nanoscale noncovalent complexes at the hundred-atom scale
,”
J. Chem. Phys.
161
,
234103
(
2024
).
56.
E.
Semidalas
,
A. D.
Boese
, and
J. M. L.
Martin
, “
Post-CCSD(T) corrections in the S66 noncovalent interactions benchmark
,”
Chem. Phys. Lett.
863
,
141874
(
2025
).
57.
R.
Pariser
and
R. G.
Parr
, “
A semi-empirical theory of the electronic spectra and electronic structure of complex unsaturated molecules. I
,”
J. Chem. Phys.
21
,
466
471
(
1953
).
58.
R.
Pariser
and
R. G.
Parr
, “
A semi-empirical theory of the electronic spectra and electronic structure of complex unsaturated molecules. II
,”
J. Chem. Phys.
21
,
767
776
(
1953
).
59.
J. A.
Pople
, “
Electron interaction in unsaturated hydrocarbons
,”
Trans. Faraday Soc.
49
,
1375
1385
(
1953
).
60.
R.
Sure
and
S.
Grimme
, “
Comprehensive benchmark of association (free) energies of realistic host–guest complexes
,”
J. Chem. Theory Comput.
11
,
3785
3801
(
2015
).
61.
S.
Grimme
, “
Supramolecular binding thermodynamics by dispersion-corrected density functional theory
,”
Chem.– Eur. J.
18
,
9955
9964
(
2012
).
62.
J.
Řezáč
and
P.
Hobza
, “
Describing noncovalent interactions beyond the common approximations: How accurate is the ‘gold standard,’ CCSD(T) at the complete basis set limit?
,”
J. Chem. Theory Comput.
9
,
2151
2155
(
2013
).
63.
P.
Jurečka
,
J.
Šponer
,
J.
Černý
, and
P.
Hobza
, “
Benchmark database of accurate (MP2 and CCSD(T) complete basis set limit) interaction energies of small model complexes, DNA base pairs, and amino acid pairs
,”
Phys. Chem. Chem. Phys.
8
,
1985
1993
(
2006
).
64.
J.
Řezáč
,
K. E.
Riley
, and
P.
Hobza
, “
S66: A well-balanced database of benchmark interaction energies relevant to biomolecular structures
,”
J. Chem. Theory Comput.
7
,
2427
2438
(
2011
).
65.
M. O.
Sinnokrot
and
C. D.
Sherrill
, “
Highly accurate coupled cluster potential energy curves for the benzene dimer: Sandwich, T-shaped, and parallel-displaced configurations
,”
J. Phys. Chem. A
108
,
10200
10207
(
2004
).
66.
L.
Goerigk
,
H.
Kruse
, and
S.
Grimme
, “
Benchmarking density functional methods against the S66 and S66x8 datasets for non-covalent interactions
,”
ChemPhysChem
12
,
3421
3433
(
2011
).
67.
T.
Gao
,
H.
Li
,
W.
Li
,
L.
Li
,
C.
Fang
,
H.
Li
,
L.
Hu
,
Y.
Lu
, and
Z.-M.
Su
, “
A machine learning correction for DFT non-covalent interactions based on the S22, S66 and X40 benchmark databases
,”
J. Cheminform.
8
,
24
(
2016
).
68.
H.
Peng
,
Z.-H.
Yang
,
J. P.
Perdew
, and
J.
Sun
, “
Versatile van der Waals density functional based on a meta-generalized gradient approximation
,”
Phys. Rev. X
6
,
041005
(
2016
).
69.
F.
Yu
and
Y.
Wang
, “
Dual-hybrid direct random phase approximation and second-order screened exchange with nonlocal van der Waals correlations for noncovalent interactions
,”
J. Comput. Chem.
41
,
1018
1025
(
2020
).
70.
S.
Grimme
,
A.
Hansen
,
S.
Ehlert
, and
J.-M.
Mewes
, “
r2SCAN-3c: A ‘Swiss army knife’ composite electronic-structure method
,”
J. Chem. Phys.
154
,
064103
(
2021
).
71.
S.
Ehlert
,
U.
Huniar
,
J.
Ning
,
J. W.
Furness
,
J.
Sun
,
A. D.
Kaplan
,
J. P.
Perdew
, and
J. G.
Brandenburg
, “
r2SCAN-D4: Dispersion corrected meta-generalized gradient approximation for general chemical applications
,”
J. Chem. Phys.
154
,
061101
(
2021
).
72.
M.
Müller
,
A.
Hansen
, and
S.
Grimme
, “
ωB97X-3c: A composite range-separated hybrid DFT method with a molecule-optimized polarized valence double-ζ basis set
,”
J. Chem. Phys.
158
,
014103
(
2023
).
73.
T.
Lu
and
Q.
Chen
, “
Simple, efficient, and universal energy decomposition analysis method based on dispersion-corrected density functional theory
,”
J. Phys. Chem. A
127
,
7023
7035
(
2023
).
74.
M.
Lee
,
B.
Kim
,
M.
Sim
,
M.
Sogal
,
Y.
Kim
,
H.
Yu
,
K.
Burke
, and
E.
Sim
, “
Correcting dispersion corrections with density-corrected DFT
,”
J. Chem. Theory Comput.
20
,
7155
7167
(
2024
).
75.
J.
Řezáč
,
K. E.
Riley
, and
P.
Hobza
, “
Extensions of the S66 data set: More accurate interaction energies and angular-displaced nonequilibrium geometries
,”
J. Chem. Theory Comput.
7
,
3466
3470
(
2011
).
76.
K. E.
Riley
,
J.
Řezáč
, and
P.
Hobza
, “
The performance of MP2.5 and MP2.X methods for nonequilibrium geometries of molecular complexes
,”
Phys. Chem. Chem. Phys.
14
,
13187
13193
(
2012
).
77.
A.
Altun
,
F.
Neese
, and
G.
Bistoni
, “
Extrapolation to the limit of a complete pair natural orbital space in local coupled-cluster calculations
,”
J. Chem. Theory Comput.
16
,
6142
6149
(
2020
).
78.
J.
Shee
,
M.
Loipersberger
,
A.
Rettig
,
J.
Lee
, and
M.
Head-Gordon
, “
Regularized second-order Møller–Plesset theory: A more accurate alternative to conventional MP2 for noncovalent interactions and transition metal thermochemistry for the same computational cost
,”
J. Phys. Chem. Lett.
12
,
12084
12097
(
2021
).
79.
J.
Lupi
,
S.
Alessandrini
,
C.
Puzzarini
, and
V.
Barone
, “
junChS and junChS-F12 models: Parameter-free efficient yet accurate composite schemes for energies and structures of noncovalent complexes
,”
J. Chem. Theory Comput.
17
,
6974
6992
(
2021
).
80.
E.
Semidalas
,
G.
Santra
,
N.
Mehta
, and
J. M. L.
Martin
, “
S66 noncovalent interactions benchmark re-examined: Composite localized coupled cluster approaches
,”
AIP Conf. Proc.
2611
,
020016
(
2022
).
81.
G. J. O.
Beran
,
C.
Greenwell
,
C.
Cook
, and
J.
Řezáč
, “
Improved description of intra- and intermolecular interactions through dispersion-corrected second-order Møller–Plesset perturbation theory
,”
Acc. Chem. Res.
56
,
3525
3534
(
2023
).
82.
A. S.
Christensen
,
S. K.
Sirumalla
,
Z.
Qiao
,
M. B.
O’Connor
,
D. G. A.
Smith
,
F.
Ding
,
P. J.
Bygrave
,
A.
Anandkumar
,
M.
Welborn
,
F. R.
Manby
, and
T. F.
Miller
, III
, “
OrbNet Denali: A machine learning potential for biological and organic chemistry with semi-empirical cost and DFT accuracy
,”
J. Chem. Phys.
155
,
204103
(
2021
).
83.
C.
Villot
and
K. U.
Lao
, “
Ab initio dispersion potentials based on physics-based functional forms with machine learning
,”
J. Chem. Phys.
160
,
184103
(
2024
).
84.
J. R.
Trail
and
R. J.
Needs
, “
Shape and energy consistent pseudopotentials for correlated electron systems
,”
J. Chem. Phys.
146
,
204107
(
2017
).
85.
P.
Giannozzi
,
S.
Baroni
,
N.
Bonini
,
M.
Calandra
,
R.
Car
,
C.
Cavazzoni
,
D.
Ceresoli
,
G. L.
Chiarotti
,
M.
Cococcioni
,
I.
Dabo
,
A.
Dal Corso
,
S.
de Gironcoli
,
S.
Fabris
,
G.
Fratesi
,
R.
Gebauer
,
U.
Gerstmann
,
C.
Gougoussis
,
A.
Kokalj
,
M.
Lazzeri
,
L.
Martin-Samos
,
N.
Marzari
,
F.
Mauri
,
R.
Mazzarello
,
S.
Paolini
,
A.
Pasquarello
,
L.
Paulatto
,
C.
Sbraccia
,
S.
Scandolo
,
G.
Sclauzero
,
A. P.
Seitsonen
,
A.
Smogunov
,
P.
Umari
, and
R. M.
Wentzcovitch
, “
QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials
,”
J. Phys.: Condens. Matter
21
,
395502
(
2009
).
86.
P.
Giannozzi
,
O.
Baseggio
,
P.
Bonfà
,
D.
Brunato
,
R.
Car
,
I.
Carnimeo
,
C.
Cavazzoni
,
S.
de Gironcoli
,
P.
Delugas
,
F.
Ferrari Ruffino
,
A.
Ferretti
,
N.
Marzari
,
I.
Timrov
,
A.
Urru
, and
S.
Baroni
, “
Quantum ESPRESSO toward the exascale
,”
J. Chem. Phys.
152
,
154105
(
2020
).
87.
D.
Alfè
and
M. J.
Gillan
, “
Efficient localized basis set for quantum Monte Carlo calculations on condensed matter
,”
Phys. Rev. B
70
,
161101
(
2004
).
88.
B.
Brauer
,
M. K.
Kesharwani
,
S.
Kozuch
, and
J. M. L.
Martin
, “
The S66x8 benchmark for noncovalent interactions revisited: Explicitly correlated ab initio methods and density functional theory
,”
Phys. Chem. Chem. Phys.
18
,
20905
20925
(
2016
).
89.
M. K.
Kesharwani
,
A.
Karton
,
N.
Sylvetsky
, and
J. M. L.
Martin
, “
The S66 non-covalent interactions benchmark reconsidered using explicitly correlated methods near the basis set limit
,”
Aust. J. Chem.
71
,
238
248
(
2018
).
90.
Q.
Ma
and
H.-J.
Werner
, “
Accurate intermolecular interaction energies using explicitly correlated local coupled cluster methods [PNO-LCCSD(T)-F12]
,”
J. Chem. Theory Comput.
15
,
1044
1052
(
2019
).
91.
G.
Santra
,
E.
Semidalas
,
N.
Mehta
,
A.
Karton
, and
J. M. L.
Martin
, “
S66x8 noncovalent interactions revisited: New benchmark and performance of composite localized coupled-cluster methods
,”
Phys. Chem. Chem. Phys.
24
,
25555
25570
(
2022
).
92.
P. R.
Nagy
,
L.
Gyevi-Nagy
,
B. D.
Lőrincz
, and
M.
Kállay
, “
Pursuing the basis set limit of CCSD(T) non-covalent interaction energies for medium-sized complexes: Case study on the S66 compilation
,”
Mol. Phys.
121
,
e2109526
(
2023
).
93.

Note that the difficulty of reaching the complete basis set (CBS) limit is the principle reason for several CCSD(T) evaluations of S66. As reaching the CBS limit remains a challenge, particularly in dispersion bound complexes.

94.
L. A.
Burns
,
J. C.
Faver
,
Z.
Zheng
,
M. S.
Marshall
,
D. G. A.
Smith
,
K.
Vanommeslaeghe
,
A. D.
MacKerell
, Jr.
,
K. M.
Merz
, Jr.
, and
C. D.
Sherrill
, “
The BioFragment database (BFDb): An open-data platform for computational chemistry analysis of noncovalent interactions
,”
J. Chem. Phys.
147
,
161727
(
2017
).
95.
T. M.
Parker
,
L. A.
Burns
,
R. M.
Parrish
,
A. G.
Ryno
, and
C. D.
Sherrill
, “
Levels of symmetry adapted perturbation theory (SAPT). I. Efficiency and performance for interaction energies
,”
J. Chem. Phys.
140
,
094106
(
2014
).
96.
K.
Nakano
,
B. X.
Shi
,
D.
Alfè
, and
A.
Zen
, “
Basis set incompleteness errors in fixed-node diffusion Monte Carlo calculations on non-covalent interactions
,” arXiv:2412.00368 [physics] (
2024
).
97.
A.
Karton
and
J. M. L.
Martin
, “
Prototypical π–π dimers re-examined by means of high-level CCSDT(Q) composite ab initio methods
,”
J. Chem. Phys.
154
,
124117
(
2021
).
You do not currently have access to this content.