Cyanogen chloride (CNCl) is a toxic chemical that poses significant risks to human health and the environment; therefore, its level must be accurately monitored. Herein, the adsorption of CNCl by transition metal-doped fluorinated diamanes (F-diamanes) has been extensively studied via first-principles calculations. Key parameters such as adsorption energies, charge transfer amounts, bandgaps, sensitivity, densities of states, projected density of states, charge density differences, and recovery time were systematically analyzed. Results reveal that monometallic doping significantly enhances CNCl adsorption, with increases in adsorption energy by 164%–368% and charge transfer by 1234%–1571%, particularly in the AuFD-CNCl, AgFD-CNCl, and CuFD-CNCl systems, which demonstrated improved sensing performances. Similarly, bimetallic co-doping further strengthened adsorption, with energy enhancements of 277%–309% and charge transfer increases of 1238%–1505%. Au-CuFD-CNCl, Au-AgFD-CNCl, and Cu-AgFD-CNCl systems also showed superior sensing performances. Meanwhile, the recovery time of CNCl molecules on the AuFD, AgFD, Au-CuFD, and Au-AgFD surfaces was drastically reduced to acceptable levels at 279–412 K, leading to their desorption. Therefore, these four systems exhibited excellent reversibility properties, suggesting their applicability in gas-sensing applications. This work can facilitate the applications of doped F-diamanes in environmental conservation, energy storage, and chemical engineering.

1.
S. I.
Trevisanato
,
Med. Hypotheses
69
,
1371
1374
(
2007
).
2.
N. J.
Beeching
,
D. A. B.
Dance
,
A. R. O.
Miller
, and
R. C.
Spencer
,
BMJ
324
,
336
339
(
2002
).
3.
R. L.
Bennett
,
Int. J. Environ. Res. Public Health
3
,
67
75
(
2006
).
4.
K.
Kim
,
O. G.
Tsay
,
D. A.
Atwood
, and
D. G.
Churchill
,
Chem. Rev.
111
,
5345
5403
(
2011
).
5.
T.
Movlarooy
and
M. A.
Fadradi
,
Chem. Phys. Lett.
700
,
7
14
(
2018
).
6.
W. N.
Aldridge
and
C. L.
Evans
,
Exp. Physiol.
33
,
241
266
(
1946
).
7.
J.
Shen
,
Y.
He
,
J.
Wu
,
C.
Gao
,
K.
Keyshar
,
X.
Zhang
,
Y.
Yang
,
M.
Ye
,
R.
Vajtai
,
J.
Lou
, and
P. M.
Ajayan
,
Nano Lett.
15
,
5449
5454
(
2015
).
8.
Z.
Cai
,
B.
Liu
,
X.
Zou
, and
H.-M.
Cheng
,
Chem. Rev.
118
,
6091
6133
(
2018
).
9.
K. S.
Novoselov
,
A. K.
Geim
,
S. V.
Morozov
,
D.
Jiang
,
Y.
Zhang
,
S. V.
Dubonos
,
I. V.
Grigorieva
, and
A. A.
Firsov
,
Science
306
,
666
669
(
2004
).
10.
P. V.
Bakharev
,
M.
Huang
,
M.
Saxena
,
S. W.
Lee
,
S. H.
Joo
,
S. O.
Park
,
J.
Dong
,
D. C.
Camacho-Mojica
,
S.
Jin
,
Y.
Kwon
,
M.
Biswal
,
F.
Ding
,
S. K.
Kwak
,
Z.
Lee
, and
R. S.
Ruoff
,
Nat. Nanotechnol.
15
,
59
66
(
2020
).
11.
X.
Chen
,
M.
Dubois
,
S.
Radescu
,
A.
Rawal
, and
C.
Zhao
,
Carbon
175
,
124
130
(
2021
).
12.
M.
Colin
,
X.
Chen
,
M.
Dubois
,
A.
Rawal
, and
D. J.
Kim
,
Appl. Surf. Sci.
583
,
152534
(
2022
).
13.
T.
Cheng
,
Z.
Liu
, and
Z.
Liu
,
J. Mater. Chem. C
8
,
13819
13826
(
2020
).
14.
D.
Singh
,
N.
Khossossi
,
W.
Luo
,
A.
Ainane
, and
R.
Ahuja
,
Mater. Today Adv.
14
,
100225
(
2022
).
15.
B.
Mortazavi
,
F.
Shojaei
,
B.
Javvaji
,
M.
Azizi
,
H.
Zhan
,
T.
Rabczuk
, and
X.
Zhuang
,
Appl. Surf. Sci.
528
,
147035
(
2020
).
16.
Y.
Liu
,
L.
Gao
,
S.
Fu
,
S.
Cheng
,
N.
Gao
, and
H.
Li
,
Appl. Surf. Sci.
611
,
155694
(
2023
).
17.
S.
Fu
,
Y.
Liu
,
J.
Li
,
L.
Wan
,
N.
Gao
, and
H.
Li
,
J. Phys. Chem. C
127
(
20
),
9939
9946
(
2023
).
18.
H.
Zhang
,
R.
Zhang
,
S.
Hu
,
K.
Yang
,
C.
Sun
,
Q.
Wang
, and
Y.
Tang
,
Chem. -Eur. J.
30
,
e202303995
(
2024
).
19.
Y.
Liu
,
Y.
Yang
,
W.
Cheng
,
Z.
Ma
,
N.
Gao
, and
H.
Li
,
Langmuir
40
,
14623
14632
(
2024
).
20.
W.
Yu
,
Y.
Zhu
,
J.
Zhao
, and
P.
Zhu
,
Appl. Surf. Sci.
670
,
160672
(
2024
).
21.
A. R.
Baboukani
,
S. M.
Aghaei
,
I.
Khakpour
,
V.
Drozd
,
A.
Aasi
, and
C.
Wang
,
Surf. Sci.
720
,
122052
(
2022
).
22.
A.
Aasi
,
S. M.
Aghaei
, and
B.
Panchapakesan
,
Int. J. Comput. Mater. Sci. Eng.
13
,
2350014
(
2024
).
23.
A.
Aasi
,
S. M.
Aghaei
,
S. E.
Bajgani
, and
B.
Panchapakesan
,
Adv. Theory Simul.
4
,
2100256
(
2021
).
24.
H.
Cui
,
X.
Zhang
,
G.
Zhang
, and
J.
Tang
,
Appl. Surf. Sci.
470
,
1035
1042
(
2019
).
25.
Y.
Wang
,
Y.
Gui
,
C.
Ji
,
C.
Tang
,
Q.
Zhou
,
J.
Li
, and
X.
Zhang
,
Appl. Surf. Sci.
459
,
242
248
(
2018
).
26.
K.
Nakada
and
A.
Ishii
,
Solid State Commun.
151
,
13
16
(
2011
).
27.
R.
Nityananda
,
P.
Hohenberg
, and
W.
Kohn
,
Resonance
22
,
809
811
(
2017
).
28.
S.
Tian
,
Y.
Du
,
P.
Wang
,
T.
Chen
,
J.
Xu
,
H.
Yu
, and
B.
Guo
,
ACS Sustainable Chem. Eng.
11
,
6652
6664
(
2023
).
29.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
3868
(
1996
).
30.
H.
Cui
,
T.
Liu
,
Y.
Zhang
, and
X.
Zhang
,
IEEE Sens. J.
19
,
5249
5255
(
2019
).
31.
Y.
Gui
,
C.
Tang
,
Q.
Zhou
,
L.
Xu
,
Z.
Zhao
, and
X.
Zhang
,
Appl. Surf. Sci.
440
,
846
852
(
2018
).
32.
S.
Grimme
,
J. Comput. Chem.
27
,
1787
1799
(
2006
).
33.
H.
Cui
,
G.
Zhang
,
X.
Zhang
, and
J.
Tang
,
Nanoscale Adv.
1
,
772
780
(
2019
).
34.
S.
Grimme
,
J.
Antony
,
S.
Ehrlich
, and
H.
Krieg
,
J. Chem. Phys.
132
,
154104
(
2010
).
35.
E.
Clementi
and
D. L.
Raimondi
,
J. Chem. Phys.
38
,
2686
2689
(
1963
).
36.
H.
Wei
,
Y.
Gui
,
J.
Kang
,
W.
Wang
, and
C.
Tang
,
Nanomaterials
8
,
646
(
2018
).
37.
J.
Li
,
Y.
Gui
,
C.
Ji
,
C.
Tang
,
Q.
Zhou
,
Y.
Wang
, and
X.
Zhang
,
Comput. Mater. Sci.
152
,
248
255
(
2018
).
38.
A. P.
Rendell
,
Chem. Phys. Lett.
229
,
204
210
(
1994
).
39.
H. J.
Monkhorst
and
J. D.
Pack
,
Phys. Rev. B
13
,
5188
5192
(
1976
).
40.
H.
Cui
,
D.
Chen
,
Y.
Zhang
, and
X.
Zhang
,
Sustainable Mater. Technol.
20
,
e00094
(
2019
).
41.
B.
Delley
,
J. Chem. Phys.
92
,
508
517
(
1990
).
42.
J.
Heyd
,
G. E.
Scuseria
, and
M.
Ernzerhof
,
J. Chem. Phys.
118
,
8207
8215
(
2003
).
43.
J.
Heyd
,
J. E.
Peralta
,
G. E.
Scuseria
, and
R. L.
Martin
,
J. Chem. Phys.
123
,
174101
(
2005
).
44.
W.
Gao
,
P.
Xiao
,
G.
Henkelman
,
K. M.
Liechti
, and
R.
Huang
,
J. Phys. D: Appl. Phys.
47
,
255301
(
2014
).
45.
D.
Liu
,
Y.
Gui
,
C.
Ji
,
C.
Tang
,
Q.
Zhou
,
J.
Li
, and
X.
Zhang
,
Appl. Surf. Sci.
465
,
172
179
(
2019
).
46.
J.
Neugebauer
and
M.
Scheffler
,
Phys. Rev. B
46
,
16067
16080
(
1992
).
47.
A.
Aasi
,
S.
Ebrahimi Bajgani
, and
B.
Panchapakesan
,
AIP Adv.
13
,
025157
(
2023
).
48.
H.
Cui
,
X.
Zhang
,
Y.
Li
,
D.
Chen
, and
Y.
Zhang
,
Appl. Surf. Sci.
494
,
859
866
(
2019
).
49.
D.
Li
,
X.
Chen
,
C.
Shu
,
Y.
Huang
,
P.
Zhang
,
B.
Xiao
, and
D.
Zhou
,
Appl. Surf. Sci.
563
,
150233
(
2021
).
50.
D.
Sarkar
,
X.
Xie
,
J.
Kang
,
H.
Zhang
,
W.
Liu
,
J.
Navarrete
,
M.
Moskovits
, and
K.
Banerjee
,
Nano Lett.
15
,
2852
2862
(
2015
).
51.
T.
Hussain
,
B.
Pathak
,
M.
Ramzan
,
T. A.
Maark
, and
R.
Ahuja
,
Appl. Phys. Lett.
100
,
183902
(
2012
).
52.
T.
Hussain
,
P.
Panigrahi
, and
R.
Ahuja
,
Phys. Chem. Chem. Phys.
16
,
8100
8105
(
2014
).
54.
J. C.
Tung
and
G. Y.
Guo
,
Phys. Rev. B
76
,
094413
(
2007
).
55.
X.
Zhang
,
L.
Yu
,
X.
Wu
, and
W.
Hu
,
Adv. Sci. (Weinh)
2
,
1500101
(
2015
).
56.
H.
Cui
,
P.
Jia
, and
X.
Peng
,
Appl. Surf. Sci.
513
,
145863
(
2020
).
57.
F.
Niu
,
J.-M.
Liu
,
L.-M.
Tao
,
W.
Wang
, and
W.-G.
Song
,
J. Mater. Chem. A
1
,
6130
6133
(
2013
).
58.
M. T.
Baei
,
M. R.
Taghartapeh
,
A.
Soltani
,
K. H.
Amirabadi
, and
N.
Gholami
,
Russ. J. Phys. Chem. B
11
,
354
360
(
2017
).
59.
M. D.
Mohammadi
,
H. Y.
Abdullah
,
G.
Biskos
, and
S.
Bhowmick
,
Comput. Theor. Chem.
1220
,
113980
(
2023
).
60.
P.
Zhu
,
J.
Zhao
,
W.
Yu
, and
Y.
Zhu
,
Comput. Theor. Chem.
1237
,
114657
(
2024
).
61.
P.
Zhu
,
F.
Tang
,
S.
Wang
,
W.
Cao
, and
Q.
Wang
,
Mater. Today Commun.
33
,
104280
(
2022
).
62.
A.
Kanzariya
,
S.
Vadalkar
,
S. K.
Jana
,
L. K.
Saini
, and
P. K.
Jha
,
J. Phys. Chem. Solids
186
,
111799
(
2024
).
You do not currently have access to this content.