Gas diffusion in graphene nanochannels is pivotal for applications such as gas sensing and membrane separation, where nanoscale confinement introduces unique transport phenomena. Unlike bulk-phases, diffusion in graphene nanochannels is significantly influenced by adsorption, which modifies density distributions and alters diffusivity behavior. In this study, molecular dynamics simulations are combined with a theoretical framework to comprehensively investigate gas diffusion under varying pressures and channel heights. A modified Chapman–Enskog model, derived from atomistic Lennard-Jones potential parameters, is proposed to account for the effects of confinement. Simulation results reveal that gas diffusivity decreases with increasing gas-phase pressure and decreasing channel height due to enhanced density in the nanochannels. Interestingly, for ultra-narrow channels (h ≲ 0.7 nm), the diffusivity correction factor exhibits non-monotonic behavior, initially decreasing but subsequently increasing due to overlapping repulsive potential fields. The proposed model integrates adsorption effects through density predictions based on the Boltzmann distribution and effectively predicts gas diffusivities with relative errors of less than 13%, even under strong confinement. These findings highlight the critical interplay between adsorption and confinement in shaping gas transport within graphene nanochannels. The theoretical model provides a predictive tool for designing graphene-based gas separation and sensing devices, offering fundamental insights for optimizing their performance.

1.
A. K.
Geim
and
K. S.
Novoselov
,
Nat. Mater.
6
,
183
(
2007
).
3.
A.
Keerthi
,
A. K.
Geim
,
A.
Janardanan
,
A. P.
Rooney
,
A.
Esfandiar
,
S.
Hu
,
S. A.
Dar
,
I. V.
Grigorieva
,
S. J.
Haigh
,
F. C.
Wang
, and
B.
Radha
,
Nature
558
,
420
(
2018
).
4.
B.
Radha
,
A.
Esfandiar
,
F. C.
Wang
,
A. P.
Rooney
,
K.
Gopinadhan
,
A.
Keerthi
,
A.
Mishchenko
,
A.
Janardanan
,
P.
Blake
,
L.
Fumagalli
et al,
Nature
538
,
222
(
2016
).
5.
C.
Sun
,
R.
Zhou
,
Z.
Zhao
, and
B.
Bai
,
J. Phys. Chem. Lett.
11
,
4678
(
2020
).
6.
R.
Zhou
,
C.
Sun
, and
B.
Bai
,
J. Chem. Phys.
154
,
074709
(
2021
).
7.
C.
Sun
,
R.
Zhou
,
Z.
Zhao
, and
B.
Bai
,
Langmuir
37
,
6158
(
2021
).
8.
P. V.
Kamat
,
J. Phys. Chem. Lett.
1
,
587
(
2010
).
9.
C.
Fang
,
X.
Wu
,
F.
Yang
, and
R.
Qiao
,
J. Chem. Phys.
148
,
064702
(
2018
).
10.
R.
Zhou
,
M.
Neek-Amal
,
F. M.
Peeters
,
B.
Bai
, and
C.
Sun
,
Phys. Rev. Lett.
132
,
184001
(
2024
).
11.
T.
Barkan
,
C. R.
Ratwani
,
D.
Johnson
,
K.
Thodkar
, and
C.
Hill
,
Nat. Rev. Phys.
6
,
646
647
(
2024
).
12.
W.
Tian
,
X.
Liu
, and
W.
Yu
,
Appl. Sci.
8
,
1118
(
2018
).
13.
S.
Huang
,
M.
Dakhchoune
,
W.
Luo
,
E.
Oveisi
,
G.
He
,
M.
Rezaei
,
J.
Zhao
,
D. T. L.
Alexander
,
A.
Züttel
,
M. S.
Strano
, and
K. V.
Agrawal
,
Nat. Commun.
9
,
2632
(
2018
).
14.
D. J.
Buckley
,
N. C. G.
Black
,
E. G.
Castanon
,
C.
Melios
,
M.
Hardman
, and
O.
Kazakova
,
2D Mater.
7
,
032002
(
2020
).
15.
I.
Choudhuri
,
N.
Patra
,
A.
Mahata
,
R.
Ahuja
, and
B.
Pathak
,
J. Phys. Chem. C
119
,
24827
(
2015
).
16.
Y.
Zhu
,
H.
Wu
, and
F.
Wang
,
Sci. Sin. Phys., Mech. Astron.
48
,
094609
(
2018
).
17.
B.
Zhao
,
R.
Zhou
,
C.
Sun
, and
B.
Bai
,
Chem. Phys. Lett.
795
,
139502
(
2022
).
18.
H.
Li
,
B.
Zhao
,
C.
Sun
, and
B.
Bai
,
Sci. China: Phys., Mech. Astron.
66
,
284711
(
2023
).
19.
E. R.
Gilliland
,
R. F.
Baddour
,
G. P.
Perkinson
, and
K. J.
Sladek
,
Ind. Eng. Chem. Fundam.
13
,
95
(
1974
).
20.
R. T.
Yang
,
J. B.
Fenn
, and
G. L.
Haller
,
AIChE J.
19
,
1052
(
1973
).
21.
Y. D.
Chen
and
R. T.
Yang
,
AIChE J.
37
,
1579
(
1991
).
22.
S.-T.
Hwang
and
K.
Kammermeyer
,
Can. J. Chem. Eng.
44
,
82
(
1966
).
23.
L. A.
Roybal
and
S. I.
Sandler
,
AIChE J.
18
,
39
(
1972
).
24.
R. E.
Cunningham
and
R.
Williams
,
Diffusion in Gases and Porous Media
(
Springer
,
1980
), Vol.
1
.
25.
C.
Sun
and
B.
Bai
,
Phys. Chem. Chem. Phys.
19
,
3894
(
2017
).
26.
27.
E. L.
Cussler
,
Diffusion: Mass Transfer in Fluid Systems
(
Cambridge University Press
,
2009
).
28.
S.
Chapman
and
T. G.
Cowling
,
The Mathematical Theory of Non-uniform Gases: An Account of the Kinetic Theory of Viscosity, Thermal Conduction and Diffusion in Gases
(
Cambridge University Press
,
1970
).
29.
K.
Miyazaki
,
G.
Srinivas
, and
B.
Bagchi
,
J. Chem. Phys.
114
,
6276
(
2001
).
30.
C.
Muckenfuss
,
J. Chem. Phys.
59
,
1747
(
1973
).
31.
P. D.
Neufeld
,
A. R.
Janzen
, and
R. A.
Aziz
,
J. Chem. Phys.
57
,
1100
(
1972
).
32.
B. E.
Poling
,
J. M.
Prausnitz
,
J. P.
O’connell
et al,
The Properties of Gases and Liquids
(
McGraw-Hill
,
New York
,
2001
), Vol.
5
.
33.
C.
Sun
,
K.
Luo
,
R.
Zhou
, and
B.
Bai
,
Phys. Chem. Chem. Phys.
23
,
7057
(
2021
).
34.
R.
Zhou
,
C.
Sun
, and
B.
Bai
,
Sci. Sin. Phys., Mech. Astron.
54
,
224708
(
2024
).
35.
X.
Wang
,
S.
Ramírez-Hinestrosa
,
J.
Dobnikar
, and
D.
Frenkel
,
Phys. Chem. Chem. Phys.
22
,
10624
(
2020
).
36.
J. O.
Hirschfelder
,
C. F.
Curtiss
,
R. B.
Bird
et al,
Molecular Theory of Gases and Liquids
(
Wiley
,
New York
,
1964
).
37.
G. J.
Tjatjopoulos
,
D. L.
Feke
, and
J. A.
Mann
, Jr.
,
J. Phys. Chem.
92
,
4006
(
1988
).
38.
G. J.
Wang
and
N. G.
Hadjiconstantinou
,
Phys. Fluids
27
,
052006
(
2015
).
39.
D. A.
McQuarrie
,
Statistical Thermodynamics
(
Harper Row
,
New York
,
1973
).
40.
R. B.
Shirts
and
M. R.
Shirts
,
J. Chem. Phys.
117
,
5564
(
2002
).
41.
R.
Hołyst
,
K.
Makuch
,
A.
Maciołek
, and
P. J.
Żuk
,
J. Chem. Phys.
157
,
194108
(
2022
).
42.
A. P.
Thompson
,
H. M.
Aktulga
,
R.
Berger
,
D. S.
Bolintineanu
,
W. M.
Brown
,
P. S.
Crozier
,
P. J.
in’t Veld
,
A.
Kohlmeyer
,
S. G.
Moore
,
T. D.
Nguyen
et al,
Comput. Phys. Commun.
271
,
108171
(
2022
).
43.
C.
Sun
,
R.
Zhou
,
B.
Bai
, and
B.
Bai
,
Phys. Fluids
35
,
042005
(
2023
).
44.
O. C.
Ibe
,
Elements of Random Walk and Diffusion Processes
(
John Wiley & Sons
,
2013
).
45.
L.
Costigliola
,
D. M.
Heyes
,
T. B.
Schrøder
, and
J. C.
Dyre
,
J. Chem. Phys.
150
,
021101
(
2019
).
46.
M.
Cappelezzo
,
C. A.
Capellari
,
S. H.
Pezzin
, and
L. A. F.
Coelho
,
J. Chem. Phys.
126
,
224516
(
2007
).
47.
G. J.
Wang
and
N. G.
Hadjiconstantinou
,
Langmuir
34
,
6976
(
2018
).
48.
R.
Zhou
,
X.
Ma
,
H.
Li
,
C.
Sun
, and
B.
Bai
,
Front. Energy Res.
9
,
736713
(
2021
).
49.
S. J.
Blundell
and
K. M.
Blundell
,
Concepts in Thermal Physics
(
Oxford University Press
,
2010
).
50.
J.
Qian
,
H.
Wu
, and
F.
Wang
,
Nat. Commun.
14
,
7386
(
2023
).
51.
J.
Qian
,
Y.
Li
,
H.
Wu
, and
F.
Wang
,
Carbon
180
,
85
(
2021
).
You do not currently have access to this content.