We have measured the linear and nonlinear dielectric responses of S-methoxypropylene carbonate, a highly polar glass-former, for which it has been reported that the “hump,” which is typical of third harmonic susceptibilities, disappears across a 5 K temperature change. To understand this unusual feature, we have measured the responses to high amplitude ac and dc electric fields at the fundamental frequency. The static limits of these results are entered into a model aimed at reproducing nonlinear dielectric susceptibility spectra using the concept of a fictive electric field. This model reproduces the “hump” in the third-harmonic response and its seeming disappearance. It is revealed that the “hump” is predominantly the result of reduced time constants, a consequence of the energy the sample absorbs from the electric field. At elevated temperatures, the “hump” only appears to vanish because its reduced amplitude submerges below the extraordinarily high level of polarization saturation of this liquid.

1.
C. A.
Angell
,
K. L.
Ngai
,
G. B.
McKenna
,
P. F.
McMillan
, and
S. W.
Martin
, “
Relaxation in glassforming liquids and amorphous solids
,”
J. Appl. Phys.
88
,
3113
(
2000
).
2.
Broadband Dielectric Spectroscopy
, edited by
F.
Kremer
and
A.
Schönhals
(
Springer
,
Berlin
,
2002
).
3.
R.
Richert
, “
Supercooled liquids and glasses by dielectric relaxation spectroscopy
,”
Adv. Chem. Phys.
156
,
101
(
2014
).
4.
B.
Schiener
,
R.
Böhmer
,
A.
Loidl
, and
R. V.
Chamberlin
, “
Nonresonant spectral hole burning in the slow dielectric response of supercooled liquids
,”
Science
274
,
752
(
1996
).
5.
R.
Richert
and
S.
Weinstein
, “
Nonlinear dielectric response and thermodynamic heterogeneity in liquids
,”
Phys. Rev. Lett.
97
,
095703
(
2006
).
6.
C.
Crauste-Thibierge
,
C.
Brun
,
F.
Ladieu
,
D.
L’Hôte
,
G.
Biroli
, and
J.-P.
Bouchaud
, “
Evidence of growing spatial correlations at the glass transition from nonlinear response experiments
,”
Phys. Rev. Lett.
104
,
165703
(
2010
).
7.
L. P.
Singh
and
R.
Richert
, “
Watching hydrogen-bonded structures in an alcohol convert from rings to chains
,”
Phys. Rev. Lett.
109
,
167802
(
2012
).
8.
Th.
Bauer
,
P.
Lunkenheimer
,
S.
Kastner
, and
A.
Loidl
, “
Nonlinear dielectric response at the excess wing of glass-forming liquids
,”
Phys. Rev. Lett.
110
,
107603
(
2013
).
9.
Th.
Bauer
,
P.
Lunkenheimer
, and
A.
Loidl
, “
Cooperativity and the freezing of molecular motion at the glass transition
,”
Phys. Rev. Lett.
111
,
225702
(
2013
).
10.
R.
Richert
, “
Nonlinear dielectric effects in liquids: A guided tour
,”
J. Phys.: Condens. Matter
29
,
363001
(
2017
).
11.
Nonlinear Dielectric Spectroscopy
, edited by
R.
Richert
(
Springer
,
Cham
,
2018
).
12.
G. P.
Johari
, “
Effects of electric field on the entropy, viscosity, relaxation time, and glass-formation
,”
J. Chem. Phys.
138
,
154503
(
2013
).
13.
J.-P.
Bouchaud
and
G.
Biroli
, “
Nonlinear susceptibility in glassy systems: A probe for cooperative dynamical length scales
,”
Phys. Rev. B
72
,
064204
(
2005
).
14.
C.
Brun
,
F.
Ladieu
,
D.
L’Hôte
,
M.
Tarzia
,
G.
Biroli
, and
J.-P.
Bouchaud
, “
Nonlinear dielectric susceptibilities: Accurate determination of the growing correlation volume in a supercooled liquid
,”
Phys. Rev. B
84
,
104204
(
2011
).
15.
S.
Albert
,
Th.
Bauer
,
M.
Michl
,
G.
Biroli
,
J.-P.
Bouchaud
,
A.
Loidl
,
P.
Lunkenheimer
,
R.
Tourbot
,
C.
Wiertel-Gasquet
, and
F.
Ladieu
, “
Fifth-order susceptibility unveils growth of thermodynamic amorphous order in glass-formers
,”
Science
352
,
1308
(
2016
).
16.
G.
Diezemann
, “
Nonlinear response theory for Markov processes: Simple models for glassy relaxation
,”
Phys. Rev. E
85
,
051502
(
2012
).
17.
P.
Kim
,
A. R.
Young-Gonzales
, and
R.
Richert
, “
Dynamics of glass-forming liquids. XX. Third harmonic experiments of non-linear dielectric effects versus a phenomenological model
,”
J. Chem. Phys.
145
,
064510
(
2016
).
18.
K.
Moch
,
C.
Gainaru
, and
R.
Böhmer
, “
Dielectric and shear-mechanical ‘humps’ in the nonlinear response of polar glassformers
,”
J. Phys. Chem. B
128
,
8846
(
2024
).
19.
A.
Jedrzejowska
,
K. L.
Ngai
, and
M.
Paluch
, “
Modifications of structure and intermolecular potential of a canonical glassformer: Dynamics changing with dipole–dipole interaction
,”
J. Phys. Chem. A
120
,
8781
(
2016
).
20.
A. R.
Young-Gonzales
,
K.
Adrjanowicz
,
M.
Paluch
, and
R.
Richert
, “
Nonlinear dielectric features of highly polar glass formers: Derivatives of propylene carbonate
,”
J. Chem. Phys.
147
,
224501
(
2017
).
21.
H.
Wagner
and
R.
Richert
, “
Equilibrium and non-equilibrium type β-relaxations: d-sorbitol versus o-terphenyl
,”
J. Phys. Chem. B
103
,
4071
(
1999
).
22.
J.
Mazlecki
, “
The relaxation of the nonlinear dielectric effect
,”
J. Mol. Struct.
436–437
,
595
(
1997
).
23.
A. R.
Young-Gonzales
and
R.
Richert
, “
Field induced changes in the ring/chain equilibrium of hydrogen bonded structures: 5-methyl-3-heptanol
,”
J. Chem. Phys.
145
,
074503
(
2016
).
24.
P.
Debye
,
Polar Molecules
(
Chemical Catalog Co.
,
New York
,
1929
).
25.
D. V.
Matyushov
, “
Nonlinear dielectric response of polar liquids
,”
J. Chem. Phys.
142
,
244502
(
2015
).
26.
D.
L’Hôte
,
R.
Tourbot
,
F.
Ladieu
, and
P.
Gadige
, “
Control parameter for the glass transition of glycerol evidenced by the static-field-induced nonlinear response
,”
Phys. Rev. B
90
,
104202
(
2014
).
27.
S.
Samanta
and
R.
Richert
, “
Electrorheological source of nonlinear dielectric effects in molecular glass-forming liquids
,”
J. Phys. Chem. B
120
,
7737
(
2016
).
28.
S.
Samanta
and
R.
Richert
, “
Dynamics of glass-forming liquids. XVIII. Does entropy control structural relaxation times?
,”
J. Chem. Phys.
142
,
044504
(
2015
).
29.
B.
Riechers
and
R.
Richert
, “
Structural recovery and fictive variables: The fictive electric field
,”
Thermochim. Acta
677
,
54
(
2019
).
30.
A. J.
Kovacs
,
J. J.
Aklonis
,
J. M.
Hutchinson
, and
A. R.
Ramos
, “
Isobaric volume and enthalpy recovery of glasses. II. A transparent multiparameter theory
,”
J. Polym. Sci.: Polym. Phys. Ed.
17
,
1097
(
1979
).
31.
I. M.
Hodge
, “
Enthalpy relaxation and recovery in amorphous materials
,”
J. Non-Cryst. Solids
169
,
211
(
1994
).
32.
B.
Riechers
and
R.
Richert
, “
Rate exchange rather than relaxation controls structural recovery
,”
Phys. Chem. Chem. Phys.
21
,
32
(
2019
).
33.
A. R.
Young-Gonzales
,
S.
Samanta
, and
R.
Richert
, “
Dynamics of glass-forming liquids. XIX. Rise and decay of field induced anisotropy in the non-linear regime
,”
J. Chem. Phys.
143
,
104504
(
2015
).
34.
B.
Schiener
,
R. V.
Chamberlin
,
G.
Diezemann
, and
R.
Böhmer
, “
Nonresonant dielectric hole burning spectroscopy of supercooled liquids
,”
J. Chem. Phys.
107
,
7746
(
1997
).
35.
K. R.
Jeffrey
,
R.
Richert
, and
K.
Duvvuri
, “
Dielectric hole burning: Signature of dielectric and thermal relaxation time heterogeneity
,”
J. Chem. Phys.
119
,
6150
(
2003
).
36.
L.-M.
Wang
and
R.
Richert
, “
Measuring the configurational heat capacity of liquids
,”
Phys. Rev. Lett.
99
,
185701
(
2007
).
37.
R.
Richert
, “
To age or not to age: Anatomy of a supercooled liquid’s response to a high alternating electric field
,”
J. Chem. Phys.
158
,
034502
(
2023
).
38.
S.
Havriliak
and
S.
Negami
, “
A complex plane representation of dielectric and mechanical relaxation processes in some polymers
,”
Polymer
8
,
161
(
1967
).
39.
C. A.
Angell
, “
Relaxation in liquids, polymers and plastic crystals—Strong/fragile patterns and problems
,”
J. Non-Cryst. Solids
131–133
,
13
(
1991
).
40.
R.
Böhmer
,
K. L.
Ngai
,
C. A.
Angell
, and
D. J.
Plazek
, “
Nonexponential relaxations in strong and fragile glass formers
,”
J. Chem. Phys.
99
,
4201
(
1993
).
41.
F.
Stickel
,
E. W.
Fischer
, and
R.
Richert
, “
Dynamics of glass-forming liquids. II. Detailed comparison of dielectric relaxation, dc-conductivity, and viscosity data
,”
J. Chem. Phys.
104
,
2043
(
1996
).
42.
R.
Richert
,
F.
Stickel
,
R. S.
Fee
, and
M.
Maroncelli
, “
Solvation dynamics and the dielectric response in a glass-forming solvent: From picoseconds to seconds
,”
Chem. Phys. Lett.
229
,
302
(
1994
).
43.
R.
Richert
and
D. V.
Matyushov
, “
Quantifying dielectric permittivities in the nonlinear regime
,”
J. Phys.: Condens. Matter
33
,
385101
(
2021
).
44.
E.
Thoms
and
R.
Richert
, “
New experimental approach to nonlinear dielectric effects in the static limit
,”
J. Mol. Liq.
340
,
117107
(
2021
).
45.
Y.
Marcus
and
G.
Hefter
, “
On the pressure and electric field dependencies of the relative permittivity of liquids
,”
J. Solution Chem.
28
,
575
(
1999
).
46.
M.
Hénot
and
F.
Ladieu
, “
Emergence of a hump in the cubic dielectric response of glycerol: A MD study
,” arXiv:2410.00867 [cond-mat.soft] (
2024
).
You do not currently have access to this content.