The calculation of the coherent nonlinear response of a system is essential to correctly interpret results from advanced techniques such as two-dimensional coherent spectroscopy. Usually, even for the simplest systems, such calculations are either performed for low-intensity excitations where perturbative methods are valid and/or by assuming a simplified pulse envelope, such as a δ-function in time. Here, we use the phase-cycling method for the exact calculation of the nonlinear response without making the aforementioned approximations even for high-intensity excitation. We compare the simulation results to several experimental observations to prove the validity of these calculations. The saturation of the photon-echo signal from excitons in a semiconductor quantum well sample is measured. The excitation-intensity dependent measurement shows nonlinear contributions up to twelfth order. Intensity-dependent simulations reproduce this effect without explicitly considering higher-order interactions. In addition, we present simulation results that replicate previously reported experiments with high-intensity excitation of semiconductor quantum dots. By accurately reproducing a variety of phenomena such as higher-order contributions, switching of coherent signals, and changes in photon-echo transients, we prove the efficacy of the phase-cycling method to calculate the coherent nonlinear signal for high-intensity excitation. This method would be particularly useful for systems with multiple, well-separated peaks and/or large inhomogeneities.

1.
S.
Mukamel
,
Principles of Nonlinear Optical Spectroscopy
(
Oxford University Press
,
1995
).
2.
S. T.
Cundiff
, “
Coherent spectroscopy of semiconductors
,”
Opt. Express
16
,
4639
(
2008
).
3.
Y. R.
Shen
,
Principles of Nonlinear Optics
(
Wiley-Interscience
,
2003
).
4.
J.
Bokor
,
R. R.
Freeman
,
R. L.
Panock
, and
J. C.
White
, “
Generation of high-brightness coherent radiation in the vacuum ultraviolet by four-wave parametric oscillation in mercury vapor
,”
Opt. Lett.
6
,
182
(
1981
).
5.
J. C.
Vaughan
,
T.
Hornung
,
K. W.
Stone
, and
K. A.
Nelson
, “
Coherently controlled ultrafast four-wave mixing spectroscopy
,”
J. Phys. Chem. A
111
,
4873
4883
(
2007
).
6.
Z.
Zhang
,
K. L.
Wells
,
M. T.
Seidel
, and
H.-S.
Tan
, “
Fifth-order three-dimensional electronic spectroscopy using a pump–probe configuration
,”
J. Phys. Chem. B
117
,
15369
15385
(
2013
).
7.
G.
Gibson
,
T. S.
Luk
,
A.
McPherson
, and
C. K.
Rhodes
, “
Generation of coherent extreme-ultraviolet and infrared radiation using six-wave mixing in argon
,”
Phys. Rev. A
43
,
371
375
(
1991
).
8.
R.
Trebino
and
L. A.
Rahn
, “
Subharmonic resonances in higher-order collision-enhanced wave mixing in a sodium-seeded flame
,”
Opt. Lett.
12
,
912
(
1987
).
9.
K.
Tominaga
and
K.
Yoshihara
, “
Overtone vibrational dephasing in liquids studied by femtosecond fifth-order nonlinear spectroscopy
,”
Phys. Rev. Lett.
76
,
987
990
(
1996
).
10.
T.
Steffen
and
K.
Duppen
, “
Femtosecond two-dimensional spectroscopy of molecular motion in liquids
,”
Phys. Rev. Lett.
76
,
1224
1227
(
1996
).
11.
R. P.
Lucht
,
R.
Trebino
, and
L. A.
Rahn
, “
Resonant multiwave-mixing spectra of gas-phase sodium: Nonperturbative calculations
,”
Phys. Rev. A
45
,
8209
8227
(
1992
).
12.
H.
Kang
,
G.
Hernandez
, and
Y.
Zhu
, “
Slow-light six-wave mixing at low light intensities
,”
Phys. Rev. Lett.
93
,
073601
(
2004
).
13.
T. A. A.
Oliver
and
G. R.
Fleming
, “
Following coupled electronic-nuclear motion through conical intersections in the ultrafast relaxation of β-Apo-8′-carotenal
,”
J. Phys. Chem. B
119
,
11428
11441
(
2015
).
14.
P.
Bhattacharyya
and
G. R.
Fleming
, “
Two-dimensional electronic–vibrational spectroscopy of coupled molecular complexes: A near-analytical approach
,”
J. Phys. Chem. Lett.
10
,
2081
2089
(
2019
).
15.
A.
Liu
,
D. B.
Almeida
,
W. K.
Bae
,
L. A.
Padilha
, and
S. T.
Cundiff
, “
Simultaneous existence of confined and delocalized vibrational modes in colloidal quantum dots
,”
J. Phys. Chem. Lett.
10
,
6144
6150
(
2019
).
16.
H.
Li
,
Optical Multidimensional Coherent Spectroscopy
(
Oxford University Press
,
2023
).
17.
T. A. A.
Oliver
, “
Recent advances in multidimensional ultrafast spectroscopy
,”
R. Soc. Open Sci.
5
,
171425
(
2018
).
18.
P.
Hamm
,
Concepts and Methods of 2D Infrared Spectroscopy
(
Cambridge University Press
,
2011
).
19.
S. M.
Gallagher Faeder
and
D. M.
Jonas
, “
Two-dimensional electronic correlation and relaxation spectra: Theory and model calculations
,”
J. Phys. Chem. A
103
,
10489
10505
(
1999
).
20.
M.
Cho
, “
Coherent two-dimensional optical spectroscopy
,”
Chem. Rev.
108
,
1331
1418
(
2008
).
21.
T.
Brixner
,
R.
Hildner
,
J.
Köhler
,
C.
Lambert
, and
F.
Würthner
, “
Exciton transport in molecular aggregates – From natural antennas to synthetic chromophore systems
,”
Adv. Energy Mater.
7
,
1700236
(
2017
).
22.
Z.
Zhang
,
X.
Nie
,
D.
Lei
, and
S.
Mukamel
, “
Multidimensional coherent spectroscopy of molecular polaritons: Langevin approach
,”
Phys. Rev. Lett.
130
,
103001
(
2023
).
23.
Z.
Zhang
,
K. L.
Wells
, and
H.-S.
Tan
, “
Purely absorptive fifth-order three-dimensional electronic spectroscopy
,”
Opt. Lett.
37
,
5058
(
2012
).
24.
E.
Thyrhaug
,
K.
Žídek
,
J.
Dostál
,
D.
Bína
, and
D.
Zigmantas
, “
Exciton structure and energy transfer in the Fenna–Matthews–Olson complex
,”
J. Phys. Chem. Lett.
7
,
1653
1660
(
2016
).
25.
O.
Bixner
,
V.
Lukeš
,
T.
Mančal
,
J.
Hauer
,
F.
Milota
,
M.
Fischer
,
I.
Pugliesi
,
M.
Bradler
,
W.
Schmid
,
E.
Riedle
,
H. F.
Kauffmann
, and
N.
Christensson
, “
Ultrafast photo-induced charge transfer unveiled by two-dimensional electronic spectroscopy
,”
J. Chem. Phys.
136
,
204503
(
2012
).
26.
G.
Bressan
,
A. N.
Cammidge
,
G. A.
Jones
,
I. A.
Heisler
,
D.
Gonzalez-Lucas
,
S.
Remiro-Buenamañana
, and
S. R.
Meech
, “
Electronic energy transfer in a subphthalocyanine–Zn porphyrin dimer studied by linear and nonlinear ultrafast spectroscopy
,”
J. Phys. Chem. A
123
,
5724
5733
(
2019
).
27.
P.
Nuernberger
,
S.
Ruetzel
, and
T.
Brixner
, “
Multidimensional electronic spectroscopy of photochemical reactions
,”
Angew. Chem., Int. Ed.
54
,
11368
11386
(
2015
).
28.
V.
Butkus
,
J.
Alster
,
E.
Bašinskaitė
,
R.
Augulis
,
P.
Neuhaus
,
L.
Valkunas
,
H. L.
Anderson
,
D.
Abramavicius
, and
D.
Zigmantas
, “
Discrimination of diverse coherences allows identification of electronic transitions of a molecular nanoring
,”
J. Phys. Chem. Lett.
8
,
2344
2349
(
2017
).
29.
D. B.
Turner
and
K. A.
Nelson
, “
Coherent measurements of high-order electronic correlations in quantum wells
,”
Nature
466
,
1089
1092
(
2010
).
30.
A.
Singh
,
G.
Moody
,
S.
Wu
,
Y.
Wu
,
N. J.
Ghimire
,
J.
Yan
,
D. G.
Mandrus
,
X.
Xu
, and
X.
Li
, “
Coherent electronic coupling in atomically thin MoSe2
,”
Phys. Rev. Lett.
112
,
216804
(
2014
).
31.
H.
Li
,
A. D.
Bristow
,
M. E.
Siemens
,
G.
Moody
, and
S. T.
Cundiff
, “
Unraveling quantum pathways using optical 3D Fourier-transform spectroscopy
,”
Nat. Commun.
4
,
1390
(
2013
).
32.
P.
Wen
and
K. A.
Nelson
, “
Selective enhancements in 2D Fourier transform optical spectroscopy with tailored pulse shapes
,”
J. Phys. Chem. A
117
,
6380
6387
(
2013
).
33.
J. M.
Shacklette
and
S. T.
Cundiff
, “
Nonperturbative transient four-wave-mixing line shapes due to excitation-induced shift and excitation-induced dephasing
,”
J. Opt. Soc. Am. B
20
,
764
(
2003
).
34.
M.
Erementchouk
,
M. N.
Leuenberger
, and
L. J.
Sham
, “
Many-body interaction in semiconductors probed with two-dimensional Fourier spectroscopy
,”
Phys. Rev. B
76
,
115307
(
2007
).
35.
L.
Yang
,
I. V.
Schweigert
,
S. T.
Cundiff
, and
S.
Mukamel
, “
Two-dimensional optical spectroscopy of excitons in semiconductor quantum wells: Liouville-space pathway analysis
,”
Phys. Rev. B
75
,
125302
(
2007
).
36.
P. A.
Rose
and
J. J.
Krich
, “
Automatic Feynman diagram generation for nonlinear optical spectroscopies and application to fifth-order spectroscopy with pulse overlaps
,”
J. Chem. Phys.
154
,
034109
(
2021
).
37.
P. F.
Tekavec
,
G. A.
Lott
, and
A. H.
Marcus
, “
Fluorescence-detected two-dimensional electronic coherence spectroscopy by acousto-optic phase modulation
,”
J. Chem. Phys.
127
,
214307
(
2007
).
38.
M. F.
Gelin
,
B. J.
Rao
,
M.
Nest
, and
W.
Domcke
, “
Domain of validity of the perturbative approach to femtosecond optical spectroscopy
,”
J. Chem. Phys.
139
,
224107
(
2013
).
39.
M. F.
Gelin
,
D.
Egorova
, and
W.
Domcke
, “
Efficient calculation of time- and frequency-resolved four-wave-mixing signals
,”
Acc. Chem. Res.
42
,
1290
1298
(
2009
).
40.
M. F.
Gelin
,
A. V.
Pisliakov
,
D.
Egorova
, and
W.
Domcke
, “
A simple model for the calculation of nonlinear optical response functions and femtosecond time-resolved spectra
,”
J. Chem. Phys.
118
,
5287
5301
(
2003
).
41.
J.
Süß
,
J.
Wehner
,
J.
Dostál
,
T.
Brixner
, and
V.
Engel
, “
Mapping of exciton–exciton annihilation in a molecular dimer via fifth-order femtosecond two-dimensional spectroscopy
,”
J. Chem. Phys.
150
,
104304
(
2019
).
42.
D.
Liang
and
H.
Li
, “
Optical two-dimensional coherent spectroscopy of many-body dipole–dipole interactions and correlations in atomic vapors
,”
J. Chem. Phys.
154
,
214301
(
2021
).
43.
T.
Suzuki
,
R.
Singh
,
M.
Bayer
,
A.
Ludwig
,
A. D.
Wieck
, and
S. T.
Cundiff
, “
Coherent control of the exciton-biexciton system in an inas self-assembled quantum dot ensemble
,”
Phys. Rev. Lett.
117
,
157402
(
2016
).
44.
G.
Cerullo
,
C.
Bardeen
,
Q.
Wang
, and
C.
Shank
, “
High-power femtosecond chirped pulse excitation of molecules in solution
,”
Chem. Phys. Lett.
262
,
362
368
(
1996
).
45.
J.
Schneider
,
M.
Wollenhaupt
,
A.
Winzenburg
,
T.
Bayer
,
J.
Köhler
,
R.
Faust
, and
T.
Baumert
, “
Efficient and robust strong-field control of population transfer in sensitizer dyes with designed femtosecond laser pulses
,”
Phys. Chem. Chem. Phys.
13
,
8733
(
2011
).
46.
P.
Malý
and
T.
Mančal
, “
Signatures of exciton delocalization and exciton–exciton annihilation in fluorescence-detected two-dimensional coherent spectroscopy
,”
J. Phys. Chem. Lett.
9
,
5654
5659
(
2018
).
47.
G.
Trinkunas
,
J. L.
Herek
,
T.
Polívka
,
V.
Sundström
, and
T.
Pullerits
, “
Exciton delocalization probed by excitation annihilation in the light-harvesting antenna LH2
,”
Phys. Rev. Lett.
86
,
4167
4170
(
2001
).
48.
L.
Chen
,
E.
Palacino-González
,
M. F.
Gelin
, and
W.
Domcke
, “
Nonperturbative response functions: A tool for the interpretation of four-wave-mixing signals beyond third order
,”
J. Chem. Phys.
147
,
234104
(
2017
).
49.
S.
Hahn
and
G.
Stock
, “
Efficient calculation of time- and frequency-resolved spectra: A mixed non-perturbative/perturbative approach
,”
Chem. Phys. Lett.
296
,
137
145
(
1998
).
50.
G.
Bressan
and
J. J.
van Thor
, “
Theory of two-dimensional spectroscopy with intense laser fields
,”
J. Chem. Phys.
154
,
244111
(
2021
).
51.
M.
Binz
,
L.
Bruder
,
L.
Chen
,
M. F.
Gelin
,
W.
Domcke
, and
F.
Stienkemeier
, “
Effects of high pulse intensity and chirp in two-dimensional electronic spectroscopy of an atomic vapor
,”
Opt. Express
28
,
25806
(
2020
).
52.
A.
Anda
and
J. H.
Cole
, “
Two-dimensional spectroscopy beyond the perturbative limit: The influence of finite pulses and detection modes
,”
J. Chem. Phys.
154
,
114113
(
2021
).
53.
B. J.
Rao
,
M. F.
Gelin
, and
W.
Domcke
, “
Resonant femtosecond stimulated Raman spectroscopy with an intense actinic pump pulse: Application to conical intersections
,”
J. Chem. Phys.
146
,
084105
(
2017
).
54.
M. F.
Gelin
,
D.
Egorova
, and
W.
Domcke
, “
Optical N-wave-mixing spectroscopy with strong and temporally well-separated pulses: the doorway−window representation
,”
J. Phys. Chem. B
115
,
5648
5658
(
2011
).
55.
C. L.
Smallwood
,
T. M.
Autry
, and
S. T.
Cundiff
, “
Analytical solutions to the finite-pulse Bloch model for multidimensional coherent spectroscopy
,”
J. Opt. Soc. Am. B
34
,
419
(
2017
).
56.
T. N.
Do
,
M. F.
Gelin
, and
H.-S.
Tan
, “
Simplified expressions that incorporate finite pulse effects into coherent two-dimensional optical spectra
,”
J. Chem. Phys.
147
,
144103
(
2017
).
57.
J. D.
Hybl
,
A.
Albrecht Ferro
, and
D. M.
Jonas
, “
Two-dimensional Fourier transform electronic spectroscopy
,”
J. Chem. Phys.
115
,
6606
6622
(
2001
).
58.
H.
Li
,
A. P.
Spencer
,
A.
Kortyna
,
G.
Moody
,
D. M.
Jonas
, and
S. T.
Cundiff
, “
Pulse propagation effects in optical 2D Fourier-transform spectroscopy: Experiment
,”
J. Phys. Chem. A
117
,
6279
6287
(
2013
).
59.
A.
Hedse
,
A. A. S.
Kalaee
,
A.
Wacker
, and
T.
Pullerits
, “
Pulse overlap artifacts and double quantum coherence spectroscopy
,”
J. Chem. Phys.
158
,
141104
(
2023
).
60.
P.
Malý
,
J.
Lüttig
,
P. A.
Rose
,
A.
Turkin
,
C.
Lambert
,
J. J.
Krich
, and
T.
Brixner
, “
Separating single- from multi-particle dynamics in nonlinear spectroscopy
,”
Nature
616
,
280
287
(
2023
).
61.
J.
Lüttig
,
P. A.
Rose
,
P.
Malý
,
A.
Turkin
,
M.
Bühler
,
C.
Lambert
,
J. J.
Krich
, and
T.
Brixner
, “
High-order pump–probe and high-order two-dimensional electronic spectroscopy on the example of squaraine oligomers
,”
J. Chem. Phys.
158
,
234201
(
2023
).
62.
J.
Lüttig
,
S.
Mueller
,
P.
Malý
,
J. J.
Krich
, and
T.
Brixner
, “
Higher-order multidimensional and pump–probe spectroscopies
,”
J. Phys. Chem. Lett.
14
,
7556
7573
(
2023
).
63.
P.
Tian
,
D.
Keusters
,
Y.
Suzaki
, and
W. S.
Warren
, “
Femtosecond phase-coherent two-dimensional spectroscopy
,”
Science
300
,
1553
1555
(
2003
).
64.
H.-S.
Tan
, “
Theory and phase-cycling scheme selection principles of collinear phase coherent multi-dimensional optical spectroscopy
,”
J. Chem. Phys.
129
,
124501
(
2008
).
65.
Z.
Zhang
,
K. L.
Wells
,
E. W. J.
Hyland
, and
H.-S.
Tan
, “
Phase-cycling schemes for pump–probe beam geometry two-dimensional electronic spectroscopy
,”
Chem. Phys. Lett.
550
,
156
161
(
2012
).
66.
M. F.
Gelin
,
L.
Chen
, and
W.
Domcke
, “
Equation-of-motion methods for the calculation of femtosecond time-resolved 4-wave-mixing and N-wave-mixing signals
,”
Chem. Rev.
122
,
17339
17396
(
2022
).
67.
H.
Wang
and
M.
Thoss
, “
Nonperturbative quantum simulation of time-resolved nonlinear spectra: Methodology and application to electron transfer reactions in the condensed phase
,”
Chem. Phys.
347
,
139
151
(
2008
).
68.
L.
Seidner
,
G.
Stock
, and
W.
Domcke
, “
Nonperturbative approach to femtosecond spectroscopy: General theory and application to multidimensional nonadiabatic photoisomerization processes
,”
J. Chem. Phys.
103
,
3998
4011
(
1995
).
69.
D.
Keusters
,
H.-S.
Tan
, and
W. S.
Warren
, “
Role of pulse phase and direction in two-dimensional optical spectroscopy
,”
J. Phys. Chem. A
103
,
10369
10380
(
1999
).
70.
S. M.
Gallagher
,
A. W.
Albrecht
,
J. D.
Hybl
,
B. L.
Landin
,
B.
Rajaram
, and
D. M.
Jonas
, “
Heterodyne detection of the complete electric field of femtosecond four-wave mixing signals
,”
J. Opt. Soc. Am. B
15
,
2338
(
1998
).
71.
S.
Mukamel
and
D.
Abramavicius
, “
Many-body approaches for simulating coherent nonlinear spectroscopies of electronic and vibrational excitons
,”
Chem. Rev.
104
,
2073
2098
(
2004
).
72.
A. D.
Bristow
,
D.
Karaiskaj
,
X.
Dai
,
T.
Zhang
,
C.
Carlsson
,
K. R.
Hagen
,
R.
Jimenez
, and
S. T.
Cundiff
, “
A versatile ultrastable platform for optical multidimensional Fourier-transform spectroscopy
,”
Rev. Sci. Instrum.
80
,
073108
(
2009
).
73.
G.
Nardin
,
T. M.
Autry
,
G.
Moody
,
R.
Singh
,
H.
Li
, and
S. T.
Cundiff
, “
Multi-dimensional coherent optical spectroscopy of semiconductor nanostructures: Collinear and non-collinear approaches
,”
J. Appl. Phys.
117
,
112804
(
2015
).
74.
M.
Aeschlimann
,
T.
Brixner
,
A.
Fischer
,
C.
Kramer
,
P.
Melchior
,
W.
Pfeiffer
,
C.
Schneider
,
C.
Strüber
,
P.
Tuchscherer
, and
D. V.
Voronine
, “
Coherent two-dimensional nanoscopy
,”
Science
333
,
1723
1726
(
2011
).
75.
C. L.
Smallwood
,
R.
Ulbricht
,
M. W.
Day
,
T.
Schröder
,
K. M.
Bates
,
T. M.
Autry
,
G.
Diederich
,
E.
Bielejec
,
M. E.
Siemens
, and
S. T.
Cundiff
, “
Hidden silicon-vacancy centers in diamond
,”
Phys. Rev. Lett.
126
,
213601
(
2021
).
76.
R. W.
Boyd
,
Nonlinear Optics
(
Academic Press
,
2008
).
77.
P. R.
Berman
,
Principles of Laser Spectroscopy and Quantum Optics
(
Princeton University Press
,
2011
).
78.
P.
Kumar
,
B.
De
,
R.
Tripathi
, and
R.
Singh
, “
Exciton-exciton interaction: A quantitative comparison between complimentary phenomenological models
,”
Phys. Rev. B
109
,
155423
(
2024
).
79.
F.
Fras
,
Q.
Mermillod
,
G.
Nogues
,
C.
Hoarau
,
C.
Schneider
,
M.
Kamp
,
S.
Höfling
,
W.
Langbein
, and
J.
Kasprzak
, “
Multi-wave coherent control of a solid-state single emitter
,”
Nat. Photonics
10
,
155
158
(
2016
).
80.
D.
Gammon
,
E. S.
Snow
,
B. V.
Shanabrook
,
D. S.
Katzer
, and
D.
Park
, “
Fine structure splitting in the optical spectra of single GaAs quantum dots
,”
Phys. Rev. Lett.
76
,
3005
3008
(
1996
).
81.
G.
Moody
,
M. E.
Siemens
,
A. D.
Bristow
,
X.
Dai
,
A. S.
Bracker
,
D.
Gammon
, and
S. T.
Cundiff
, “
Exciton relaxation and coupling dynamics in a GaAs/AlxGa1−xAs quantum well and quantum dot ensemble
,”
Phys. Rev. B
83
,
245316
(
2011
).
82.
E. W.
Martin
and
S. T.
Cundiff
, “
Inducing coherent quantum dot interactions
,”
Phys. Rev. B
97
,
081301
(
2018
).
83.
G.
Nardin
,
T. M.
Autry
,
K. L.
Silverman
, and
S. T.
Cundiff
, “
Multidimensional coherent photocurrent spectroscopy of a semiconductor nanostructure
,”
Opt. Express
21
,
28617
(
2013
).
84.
D.
Huang
,
K.
Sampson
,
Y.
Ni
,
Z.
Liu
,
D.
Liang
,
K.
Watanabe
,
T.
Taniguchi
,
H.
Li
,
E.
Martin
,
J.
Levinsen
,
M. M.
Parish
,
E.
Tutuc
,
D. K.
Efimkin
, and
X.
Li
, “
Quantum dynamics of attractive and repulsive polarons in a doped MoSe2 monolayer
,”
Phys. Rev. X
13
,
011029
(
2023
).
85.
K. E.
Połczyńska
,
S.
Le Denmat
,
T.
Taniguchi
,
K.
Watanabe
,
M.
Potemski
,
P.
Kossacki
,
W.
Pacuski
, and
J.
Kasprzak
, “
Coherent imaging and dynamics of excitons in MoSe2 monolayers epitaxially grown on hexagonal boron nitride
,”
Nanoscale
15
,
6941
6946
(
2023
).
86.
G.
Christmann
,
A.
Askitopoulos
,
G.
Deligeorgis
,
Z.
Hatzopoulos
,
S. I.
Tsintzos
,
P. G.
Savvidis
, and
J. J.
Baumberg
, “
Oriented polaritons in strongly-coupled asymmetric double quantum well microcavities
,”
Appl. Phys. Lett.
98
,
081111
(
2011
).
87.
G.
Moody
,
R.
Singh
,
H.
Li
,
I. A.
Akimov
,
M.
Bayer
,
D.
Reuter
,
A. D.
Wieck
, and
S. T.
Cundiff
, “
Fifth-order nonlinear optical response of excitonic states in an InAs quantum dot ensemble measured with two-dimensional spectroscopy
,”
Phys. Rev. B
87
,
045313
(
2013
).
88.
S. V.
Poltavtsev
,
M.
Salewski
,
Y. V.
Kapitonov
,
I. A.
Yugova
,
I. A.
Akimov
,
C.
Schneider
,
M.
Kamp
,
S.
Höfling
,
D. R.
Yakovlev
,
A. V.
Kavokin
, and
M.
Bayer
, “
Photon echo transients from an inhomogeneous ensemble of semiconductor quantum dots
,”
Phys. Rev. B
93
,
121304
(
2016
).
89.
D.
Abramavicius
,
V.
Butkus
,
J.
Bujokas
, and
L.
Valkunas
, “
Manipulation of two-dimensional spectra of excitonically coupled molecules by narrow-bandwidth laser pulses
,”
Chem. Phys.
372
,
22
32
(
2010
).
90.
X.
Leng
,
S.
Yue
,
Y. X.
Weng
,
K.
Song
, and
Q.
Shi
, “
Effects of finite laser pulse width on two-dimensional electronic spectroscopy
,”
Chem. Phys. Lett.
667
,
79
86
(
2017
).
91.
I. V.
Schweigert
and
S.
Mukamel
, “
Simulating multidimensional optical wave-mixing signals with finite-pulse envelopes
,”
Phys. Rev. A
77
,
033802
(
2008
).
92.
F.
Meinardi
,
M.
Cerminara
,
A.
Sassella
,
R.
Bonifacio
, and
R.
Tubino
, “
Superradiance in molecular H aggregates
,”
Phys. Rev. Lett.
91
,
247401
(
2003
).
93.
V.
Tiwari
,
W. K.
Peters
, and
D. M.
Jonas
, “
Electronic resonance with anticorrelated pigment vibrations drives photosynthetic energy transfer outside the adiabatic framework
,”
Proc. Natl. Acad. Sci. U. S. A.
110
,
1203
1208
(
2012
).
94.
D.
Egorova
,
M. F.
Gelin
,
M.
Thoss
,
H.
Wang
, and
W.
Domcke
, “
Effects of intense femtosecond pumping on ultrafast electronic-vibrational dynamics in molecular systems with relaxation
,”
J. Chem. Phys.
129
,
214303
(
2008
).
95.
L.
Chen
,
D. I. G.
Bennett
, and
A.
Eisfeld
, “
Calculating nonlinear response functions for multidimensional electronic spectroscopy using dyadic non-Markovian quantum state diffusion
,”
J. Chem. Phys.
157
,
114104
(
2022
).
96.
Q. Q.
Wang
,
A.
Muller
,
M. T.
Cheng
,
H. J.
Zhou
,
P.
Bianucci
, and
C. K.
Shih
, “
Coherent control of a V-type three-level system in a single quantum dot
,”
Phys. Rev. Lett.
95
,
187404
(
2005
).
97.
J.
Lim
,
H.-g.
Lee
,
S.
Lee
, and
J.
Ahn
, “
Quantum control in two-dimensional Fourier-transform spectroscopy
,”
Phys. Rev. A
84
,
013425
(
2011
).
98.
C.
Wu
,
R.
Hu
,
J.
Luo
, and
Y.
Yan
, “
Destructive interference effects in two distant three-level V-type systems
,”
Phys. Rev. A
110
,
053512
(
2024
).
99.
K. L. M.
Lewis
and
J. P.
Ogilvie
, “
Probing photosynthetic energy and charge transfer with two-dimensional electronic spectroscopy
,”
J. Phys. Chem. Lett.
3
,
503
510
(
2012
).
100.
H.-G.
Duan
,
V. I.
Prokhorenko
,
E.
Wientjes
,
R.
Croce
,
M.
Thorwart
, and
R. J. D.
Miller
, “
Primary charge separation in the photosystem II reaction center revealed by a global analysis of the two-dimensional electronic spectra
,”
Sci. Rep.
7
,
12347
(
2017
).
101.
P. R.
Berman
, “
Validity conditions for the optical Bloch equations
,”
J. Opt. Soc. Am. B
3
,
564
(
1986
).
102.
K. G.
Kay
, “
The Bloch equation for multiphoton absorption. I. Derivation
,”
J. Chem. Phys.
75
,
1690
1711
(
1981
).
103.
L.
Allen
and
J. H.
Eberly
,
Optical Resonance and Two−level Atoms
(
Dover Publications
,
1987
).
104.
X.
Li
,
T.
Zhang
,
C. N.
Borca
, and
S. T.
Cundiff
, “
Many-body interactions in semiconductors probed by optical two-dimensional Fourier transform spectroscopy
,”
Phys. Rev. Lett.
96
,
057406
(
2006
).
You do not currently have access to this content.