In this article, we present our strategy for studying amino-acid sequence dependences on protein structures. For this purpose, performing Metropolis Monte Carlo simulations in the amino-acid sequence space is necessary. We want to use a coarse-grained protein model with an accurate potential energy function. We introduce a method for optimizing potential-energy parameters based on the native protein structure database, Protein Data Bank.

1.
N.
Metropolis
,
A. W.
Rosenbluth
,
M. N.
Rosenbluth
,
A. H.
Teller
, and
E.
Teller
,
J. Chem. Phys.
21
,
1087
1092
(
1953
).
3.
Y.
Kuroda
and
P. S.
Kim
,
J. Mol. Biol.
298
,
493
501
(
2000
).
5.
K.
Röder
and
D. J.
Wales
,
J. Phys. Chem. Lett.
9
,
6169
6173
(
2018
).
6.
Coarse-Graining of Condensed Phase and Biomolecular Systems
, edited by
G. A.
Voth
(
CRC Press
,
Boca Raton
,
2008
).
7.
S.
Kmiecik
,
D.
Gront
,
M.
Kolinski
,
L.
Wieteska
,
A. E.
Dawid
, and
A.
Kolinski
,
Chem. Rev.
116
,
7898
7936
(
2016
).
8.
Protein Structure Prediction Center, https://predictioncenter.org/index.cgi.
9.
P.-S.
Huang
,
S. E.
Boyken
, and
D.
Baker
,
Nature
537
,
320
326
(
2016
).
10.
A.
Liwo
,
C.
Czaplewski
,
S.
Oldziej
,
A. V.
Rojas
,
R.
Kazmierkiewicz
,
M.
Makowski
,
R. K.
Murarka
, and
H. A.
Scheraga
, in
Coarse-Graining of Condensed Phase and Biomolecular Systems
, edited by
G. A.
Voth
(
CRC Press
,
Boca Raton
,
2008
), pp.
1391
1411
.
11.
Protein Data Bank, https://www.wwpdb.org/.
12.
Y.
Sakae
and
Y.
Okamoto
,
Chem. Phys. Lett.
382
,
626
636
(
2003
).
13.
Y.
Sakae
and
Y.
Okamoto
,
Mol. Simul.
39
,
85
93
(
2013
).
14.
Y.
Sakae
and
Y.
Okamoto
(unpublished).
15.
W. D.
Cornell
,
P.
Cieplak
,
C. I.
Bayly
,
I. R.
Gould
,
K. M.
Merz
, Jr.
,
D. M.
Ferguson
,
D. C.
Spellmeyer
,
T.
Fox
,
J. W.
Caldwell
, and
P. A.
Kollman
,
J. Am. Chem. Soc.
117
,
5179
5197
(
1995
).
16.
P. A.
Kollman
,
R.
Dixon
,
W.
Cornell
,
T.
Fox
,
C.
Chipot
, and
A.
Pohorille
, in
Computer Simulations of Biological Systems
, edited by
W. F.
van Gunsteren
(
ESCOM
,
Dordrecht
,
1997
), Vol.
3
, pp.
83
96
.
17.
T.
Yoda
,
Y.
Sugita
, and
Y.
Okamoto
,
Chem. Phys. Lett.
386
,
460
467
(
2004
).
18.
Y.
Sakae
and
Y.
Okamoto
,
J. Phys. Soc. Jpn.
75
,
054802
(
2006
).
19.

The author thanks one of the reviewers for bringing this point up.

20.
A. D.
Mackerell
, Jr.
,
J. Comput. Chem.
25
,
1584
1604
(
2004
).
21.
A. D.
Mackerell
, Jr.
,
M.
Feig
, and
C. L.
Brooks
III
,
J. Am. Chem. Soc.
126
,
698
699
(
2004
).
22.
Y.
Gao
,
Y.
Li
,
L.
Mou
,
W.
Hu
,
J.
Zheng
,
J. Z. H.
Zhang
, and
Y.
Mei
,
J. Phys. Chem. B
119
,
4188
4193
(
2015
).
23.
A. G.
Lipska
,
A. K.
Sieradzan
,
S.
Atmaca
,
C.
Czaplewski
, and
A.
Liwo
,
J. Phys. Chem. Lett.
14
,
9824
9833
(
2023
).
24.
S.
Kirkpatrick
,
C. D.
Gelatt
, Jr.
, and
M. P.
Vecchi
,
Science
220
,
671
680
(
1983
).
25.
A.
Mitsutake
,
Y.
Sugita
, and
Y.
Okamoto
,
Biopolymers
60
,
96
123
(
2001
).
26.
D. J.
Wales
and
J. P. K.
Doye
,
J. Phys. Chem. A
101
,
5111
5116
(
1997
).
27.
W. C.
Still
,
A.
Tempczyk
,
R. C.
Hawley
, and
T.
Hendrickson
,
J. Am. Chem. Soc.
112
,
6127
6129
(
1990
).
28.
S.
Honda
,
N.
Kobayashi
, and
E.
Munekata
,
J. Mol. Biol.
295
,
269
278
(
2000
).
29.
K. R.
Shoemaker
,
P. S.
Kim
,
D. N.
Brems
,
S.
Marqusee
,
E. J.
York
,
I. M.
Chaiken
,
J. M.
Stewart
, and
R. L.
Baldwin
,
Proc. Natl. Acad. Sci. U. S. A.
82
,
2349
2353
(
1985
).
30.
J. J.
Osterhout
, Jr.
,
R. L.
Baldwin
,
E. J.
York
,
J. M.
Stewart
,
H. J.
Dyson
, and
P. E.
wright
,
Biochemistry
28
,
7059
7064
(
1989
).
31.
F. J.
Blanco
,
G.
Rivas
, and
L.
Serrano
,
Nat. Struct. Mol. Biol.
1
,
584
590
(
1994
).
32.
N.
Kobayashi
,
S.
Honda
,
H.
Yoshii
,
H.
Uedaira
, and
E.
Munekata
,
FEBS Lett.
366
,
99
103
(
1995
).
33.
Y.
Sugita
and
Y.
Okamoto
,
Chem. Phys. Lett.
314
,
141
151
(
1999
).
34.
TINKER program package, version 2. https://github.com/TinkerTools/tinker
You do not currently have access to this content.