On the basis of recent advancements in the Hamiltonian matrix density functional for multiple electronic eigenstates, this study delves into the mathematical foundation of the multistate density functional theory (MSDFT). We extend a number of physical concepts at the core of Kohn–Sham DFT, such as density representability, to the matrix density functional. In this work, we establish the existence of the universal matrix functional for many states as a proper generalization of the Lieb universal functional for the ground state. Consequently, the variation principle of MSDFT can be rigorously defined within an appropriate domain of matrix densities, thereby providing a solid framework for DFT of both the ground state and excited states. We further show that the analytical structure of the Hamiltonian matrix functional is considerably constrained by the subspace symmetry and invariance properties, requiring and ensuring that all elements of the Hamiltonian matrix functional are variationally optimized in a coherent manner until the Hamiltonian matrix within the subspace spanned by the lowest eigenstates is obtained. This work solidifies the theoretical foundation to treat multiple electronic states using density functional theory.

1.
P.
Hohenberg
and
W.
Kohn
, “
Inhomogeneous electron gas
,”
Phys. Rev.
136
,
B864
B871
(
1964
).
2.
W.
Kohn
and
L.
Sham
, “
Self-consistent equations including exchange and correlation effects
,”
Phys. Rev.
140
,
A1133
A1138
(
1965
).
3.
R. G.
Parr
and
W.
Yang
,
Density Functional Theory of Atoms and Molecules
(
Oxford University Press
,
New York
,
1989
), p.
352
.
4.
R. O.
Jones
, “
Density functional theory: Its origins, rise to prominence, and future
,”
Rev. Mod. Phys.
87
,
897
923
(
2015
).
5.
S.
Matsika
and
A. I.
Krylov
, “
Introduction: Theoretical modeling of excited state processes
,”
Chem. Rev.
118
,
6925
6926
(
2018
).
6.
L. M.
Thompson
and
H. P.
Hratchian
, “
Spin projection with double hybrid density functional theory
,”
J. Chem. Phys.
141
,
034108
(
2014
).
7.
H.
Laqua
,
J.
Kussmann
, and
C.
Ochsenfeld
, “
An improved molecular partitioning scheme for numerical quadratures in density functional theory
,”
J. Chem. Phys.
149
,
204111
(
2018
).
8.
E.
Runge
and
E. K. U.
Gross
, “
Density-functional theory for time-dependent systems
,”
Phys. Rev. Lett.
52
,
997
1000
(
1984
).
9.
B. G.
Levine
,
C.
Ko
,
J.
Quenneville
, and
T. J.
MartÍnez
, “
Conical intersections and double excitations in time-dependent density functional theory
,”
Mol. Phys.
104
,
1039
1051
(
2006
).
10.
A.
Dreuw
and
M.
Head-Gordon
, “
Failure of time-dependent density functional theory for long-range charge-transfer excited States: The Zincbacteriochlorin–Bacteriochlorin and Bacteriochlorophyll–Spheroidene complexes
,”
J. Am. Chem. Soc.
126
,
4007
4016
(
2004
).
11.
P.
Elliott
,
S.
Goldson
,
C.
Canahui
, and
N. T.
Maitra
, “
Perspectives on double-excitations in TDDFT
,”
Chem. Phys.
391
,
110
119
(
2011
).
12.
S.
Matsika
, “
Electronic structure methods for the description of nonadiabatic effects and conical intersections
,”
Chem. Rev.
121
,
9407
9449
(
2021
).
13.
R.
Dods
,
P.
Båth
,
D.
Morozov
,
V. A.
Gagnér
,
D.
Arnlund
,
H. L.
Luk
,
J.
Kübel
,
M.
Maj
,
A.
Vallejos
,
C.
Wickstrand
,
R.
Bosman
,
K. R.
Beyerlein
,
G.
Nelson
,
M.
Liang
,
D.
Milathianaki
,
J.
Robinson
,
R.
Harimoorthy
,
P.
Berntsen
,
E.
Malmerberg
,
L.
Johansson
,
R.
Andersson
,
S.
Carbajo
,
E.
Claesson
,
C. E.
Conrad
,
P.
Dahl
,
G.
Hammarin
,
M. S.
Hunter
,
C.
Li
,
S.
Lisova
,
A.
Royant
,
C.
Safari
,
A.
Sharma
,
G. J.
Williams
,
O.
Yefanov
,
S.
Westenhoff
,
J.
Davidsson
,
D. P.
DePonte
,
S.
Boutet
,
A.
Barty
,
G.
Katona
,
G.
Groenhof
,
G.
Brändén
, and
R.
Neutze
, “
Ultrafast structural changes within a photosynthetic reaction centre
,”
Nature
589
,
310
314
(
2021
).
14.
E. J.
Davis
,
B.
Ye
,
F.
Machado
,
S. A.
Meynell
,
W.
Wu
,
T.
Mittiga
,
W.
Schenken
,
M.
Joos
,
B.
Kobrin
,
Y.
Lyu
,
Z.
Wang
,
D.
Bluvstein
,
S.
Choi
,
C.
Zu
,
A. C. B.
Jayich
, and
N. Y.
Yao
, “
Probing many-body dynamics in a two-dimensional dipolar spin ensemble
,”
Nat. Phys.
19
,
836
844
(
2023
).
15.
C. L.
Benavides-Riveros
,
L.
Chen
,
C.
Schilling
,
S.
Mantilla
, and
S.
Pittalis
, “
Excitations of quantum many-body systems via purified ensembles: A unitary-coupled-cluster-based approach
,”
Phys. Rev. Lett.
129
,
066401
(
2022
).
16.
K.
Pernal
and
K. J.
Giesbertz
, “
Reduced density matrix functional theory (RDMFT) and linear response time-dependent RDMFT (TD-RDMFT)
,”
Top. Curr. Chem.
368
,
125
184
(
2016
).
17.
J. P.
Perdew
,
A.
Ruzsinszky
,
J.
Sun
,
N. K.
Nepal
, and
A. D.
Kaplan
, “
Interpretations of ground-state symmetry breaking and strong correlation in wavefunction and density functional theories
,”
Proc. Natl. Acad. Sci. U. S. A.
118
,
1
6
(
2021
).
18.
C.
Schilling
and
S.
Pittalis
, “
Ensemble reduced density matrix functional theory for excited states and hierarchical generalization of Pauli’s exclusion principle
,”
Phys. Rev. Lett.
127
,
023001
(
2021
).
19.
A. K.
Theophilou
, “
The energy density functional formalism for excited states
,”
J. Phys. C: Solid State Phys.
12
,
5419
5430
(
1979
).
20.
E. K. U.
Gross
,
L. N.
Oliveira
, and
W.
Kohn
, “
Rayleigh-Ritz variational principle for ensembles of fractionally occupied states
,”
Phys. Rev. A
37
,
2805
2808
(
1988
).
21.
T. L.
Gilbert
, “
Hohenberg-Kohn theorem for nonlocal external potentials
,”
Phys. Rev. B
12
,
2111
2120
(
1975
).
22.
M.
Filatov
,
S.
Lee
, and
C. H.
Choi
, “
Description of sudden polarization in the excited electronic states with an ensemble density functional theory method
,”
J. Chem. Theory Comput.
17
,
5123
5139
(
2021
).
23.
W.
Yang
and
P. W.
Ayers
, “
Foundation for the ΔSCF approach in density functional theory
,” arXiv:2403.04604 (
2024
).
24.
Y.
Lu
and
J.
Gao
, “
Multistate density functional theory of excited states
,”
J. Phys. Chem. Lett.
13
,
7762
7769
(
2022
).
25.
Y.
Lu
and
J.
Gao
, “
Fundamental variable and density representation in multistate DFT for excited states
,”
J. Chem. Theory Comput.
18
,
7403
7411
(
2022
).
26.
Y.
Lu
,
R.
Zhao
,
J.
Zhang
,
M.
Liu
, and
J.
Gao
, “
Minimal active space: NOSCF and NOSI in multistate density functional theory
,”
J. Chem. Theory Comput.
18
,
6407
6420
(
2022
).
27.
E. H.
Lieb
, “
Density functionals for Coulomb systems
,”
Int. J. Quantum Chem.
24
,
243
277
(
1983
).
28.
A. M.
Teale
,
T.
Helgaker
,
A.
Savin
,
C.
Adamo
,
B.
Aradi
,
A. V.
Arbuznikov
,
P. W.
Ayers
,
E. J.
Baerends
,
V.
Barone
,
P.
Calaminici
,
E.
Cancès
,
E. A.
Carter
,
P. K.
Chattaraj
,
H.
Chermette
,
I.
Ciofini
,
D.
Crawford
,
F.
De Proft
,
J.
Dobson
,
C.
Draxl
,
T.
Frauenheim
,
E.
Fromager
,
P.
Fuentealba
,
L.
Gagliardi
,
G.
Galli
,
J.
Gao
,
P.
Geerlings
,
N.
Gidopoulos
,
P. M. W.
Gill
,
P.
Gori-Giorgi
,
A.
Görling
,
T.
Gould
,
S.
Grimme
,
O.
Gritsenko
,
H. J. A.
Jensen
,
E. R.
Johnson
,
R. O.
Jones
,
M.
Kaupp
,
A. M.
Köster
,
L.
Kronik
,
A. I.
Krylov
,
S.
Kvaal
,
A.
Laestadius
,
M.
Levy
,
M.
Lewin
,
S.
Liu
,
P.-F.
Loos
,
N. T.
Maitra
,
F.
Neese
,
J. P.
Perdew
,
K.
Pernal
,
P.
Pernot
,
P.
Piecuch
,
E.
Rebolini
,
L.
Reining
,
P.
Romaniello
,
A.
Ruzsinszky
,
D. R.
Salahub
,
M.
Scheffler
,
P.
Schwerdtfeger
,
V. N.
Staroverov
,
J.
Sun
,
E.
Tellgren
,
D. J.
Tozer
,
S. B.
Trickey
,
C. A.
Ullrich
,
A.
Vela
,
G.
Vignale
,
T. A.
Wesolowski
,
X.
Xu
, and
W.
Yang
, “
DFT exchange: Sharing perspectives on the workhorse of quantum chemistry and materials science
,”
Phys. Chem. Chem. Phys.
24
,
28700
28781
(
2022
).
29.
T.
Helgaker
and
A. M.
Teale
, “
Lieb variation principle in density-functional theory
,” in
The Physics and Mathematics of Elliott Lieb
, edited by
R. L.
Frank
,
A.
Laptev
,
M.
Lewin
, and
R.
Seiringer
(
EMS Press
,
2022
), Chap. 1, pp.
527
559
.
30.
T.
Kato
,
Perturbation Theory for Linear Operators
, 2nd ed. (
Springer
,
1995
), p.
643
.
31.
K.
Schmudgen
, in
Unbounded Self-Adjoint Operators on Hilbert Space
, 1st ed.,
Graduate Texts in Mathematics, Vol. 1
, edited by
S.
Axler
and
K.
Ribet
(
Springer
,
2012
), p.
435
.
32.
B. C.
Hall
,
Lie Groups, Lie Algebras, and Representations
, Graduate Texts in Mathematics, 1st ed., edited by
S.
Axler
and
K.
Ribet
(Springer, 2013), pp. 1–566.
33.
F.
Rindler
, in
Calculus of Variations
, edited by
S.
Axler
,
C.
Casacuberta
,
A.
MacIntyre
,
K.
Ribet
,
C.
Sabbah
,
E.
Suli
, and
W. A.
Woyczynski
(
Springer
,
2018
), p.
446
.
34.
S.
Kvaal
, “
Moreau–yosida regularization in DFT
,” in
Density Functional Theory. Mathematics and Molecular Modeling
, edited by
E.
Cancès
and
G.
Friesecke
(
Springer
,
2023
), Chap. 5, pp.
267
306
.
35.
S.
Kvaal
,
U.
Ekström
,
A. M.
Teale
, and
T.
Helgaker
, “
Differentiable but exact formulation of density-functional theory
,”
J. Chem. Phys.
140
(
2014
).
36.
B. C.
Hall
, “
Lie groups, Lie algebras and representations: An elementary introduction
,”
Graduate Texts in Mathematics
(
Springer
,
2015
), p.
453
.
37.
Y.
Lu
and
J.
Gao
, “
Structure of multi-state correlation in electronic systems
,”
J. Chem. Theory Comput.
20
,
8474
8481
(
2024
).
38.
A.
Humeniuk
, “
Approximate functionals for multistate density functional theory
,”
J. Chem. Theory Comput.
20
,
5497
5509
(
2024
).
39.
P. E.
Lammert
, “
Differentiability of Lieb functional in electronic density functional theory
,”
Int. J. Quantum Chem.
107
,
1943
1953
(
2007
).
40.
P. D.
Hislop
and
I.
Sigal
, in
Introduction to Spectral Theory: With Applications to Schrodinger Operators
, edited by
J.
Marsden
and
L.
Sirovich
(
Springer
,
1996
), p.
331
.
You do not currently have access to this content.