We present the theory and implementation of a relativistic third-order algebraic diagrammatic construction [ADC(3)] method based on a four-component (4c) Dirac–Coulomb Hamiltonian for the calculation of ionization potentials (IPs), electron affinities (EAs), and excitation energies (EEs). Benchmarking calculations for IP, EA, and EE were performed on both atomic and molecular systems to assess the accuracy of the newly developed four-component relativistic ADC(3) method. The results show good agreement with the available experimental data. The Hermitian nature of the 4c-ADC(3) Hamiltonian, combined with the perturbative truncation of the wave function, offers significant computational advantages over the standard equation-of-motion coupled-cluster approach, particularly for property calculations. The method’s suitability for property calculations is further demonstrated by computing oscillator strengths and excited-state dipole moments for heavy elements.

1.
L.
González
and
R.
Lindh
,
Quantum Chemistry and Dynamics of Excited States: Methods and Applications
(
John Wiley & Sons
,
2020
).
2.
A. I.
Krylov
, “
Equation-of-motion coupled-cluster methods for open-shell and electronically excited species: The Hitchhiker’s guide to Fock space
,”
Annu. Rev. Phys. Chem.
59
,
433
462
(
2008
).
3.
M.
Nooijen
and
J. G.
Snijders
, “
Coupled cluster approach to the single-particle Green’s function
,”
Int. J. Quantum Chem.
44
(
S26
),
55
83
(
1992
).
4.
D. J.
Rowe
, “
Equations-of-motion method and the extended shell model
,”
Rev. Mod. Phys.
40
(
1
),
153
166
(
1968
).
5.
J. F.
Stanton
and
R. J.
Bartlett
, “
The equation of motion coupled-cluster method. A systematic biorthogonal approach to molecular excitation energies, transition probabilities, and excited state properties
,”
J. Chem. Phys.
98
(
9
),
7029
7039
(
1993
).
6.
H.
Sekino
and
R. J.
Bartlett
, “
A linear response, coupled-cluster theory for excitation energy
,”
Int. J. Quantum Chem.
26
(
S18
),
255
265
(
1984
).
7.
H.
Koch
,
H. J. A.
Jensen
,
P.
Jørgensen
, and
T.
Helgaker
, “
Excitation energies from the coupled cluster singles and doubles linear response function (CCSDLR). Applications to Be, CH+, CO, and H2O
,”
J. Chem. Phys.
93
(
5
),
3345
3350
(
1990
).
8.
J.
Schirmer
and
A. B.
Trofimov
, “
Intermediate state representation approach to physical properties of electronically excited molecules
,”
J. Chem. Phys.
120
(
24
),
11449
11464
(
2004
).
9.
F.
Mertins
and
J.
Schirmer
, “
Algebraic propagator approaches and intermediate-state representations. I. The biorthogonal and unitary coupled-cluster methods
,”
Phys. Rev. A
53
(
4
),
2140
2152
(
1996
).
10.
J.
Schirmer
, “
Closed-form intermediate representations of many-body propagators and resolvent matrices
,”
Phys. Rev. A
43
(
9
),
4647
4659
(
1991
).
11.
J.
Schirmer
, “
Beyond the random-phase approximation: A new approximation scheme for the polarization propagator
,”
Phys. Rev. A
26
(
5
),
2395
2416
(
1982
).
12.
A.
Dreuw
and
M.
Wormit
, “
The algebraic diagrammatic construction scheme for the polarization propagator for the calculation of excited states
,”
Wiley Interdiscip. Rev.:Comput. Mol. Sci.
5
(
1
),
82
95
(
2015
).
13.
A. L.
Dempwolff
,
M.
Schneider
,
M.
Hodecker
, and
A.
Dreuw
, “
Efficient implementation of the non-Dyson third-order algebraic diagrammatic construction approximation for the electron propagator for closed- and open-shell molecules
,”
J. Chem. Phys.
150
(
6
),
064108
(
2019
).
14.
W.
von Niessen
,
J.
Schirmer
, and
L. S.
Cederbaum
, “
Computational methods for the one-particle Green’s function
,”
Comput. Phys. Rep.
1
(
2
),
57
125
(
1984
).
15.
A. L.
Fetter
and
J. D.
Walecka
,
Quantum Theory of Many-Particle Systems
(
Courier Corporation
,
2012
).
16.
L.
Cederbaum
and
W.
Domcke
, “
Theoretical aspects of ionization potentials and photoelectron spectroscopy: A Green’s function approach
,”
Adv. Chem. Phys.
36
,
205
344
(
1977
).
17.
L. S.
Cederbaum
, “
One-body Green’s function for atoms and molecules: Theory and application
,”
J. Phys. B: At. Mol. Phys.
8
(
2
),
290
(
1975
).
18.
J.
Schirmer
and
L. S.
Cederbaum
, “
The two-particle-hole Tamm-Dancoff approximation (2ph-TDA) equations for closed-shell atoms and molecules
,”
J. Phys. B: At. Mol. Phys.
11
(
11
),
1889
(
1978
).
19.
D.
Mukherjee
and
W.
Kutzelnigg
, “
An effective Liouvillean formalism for propagators in Fock space: Connection with effective Hamiltonian approach for energy differences
,” in
Many-Body Methods in Quantum Chemistry
, edited by
U.
Kaldor
(
Springer
,
Berlin, Heidelberg
, 1989), pp.
257
274
, ISBN: 978-3-642-93424-7.
20.
S.
Banerjee
and
A. Y.
Sokolov
, “
Non-Dyson algebraic diagrammatic construction theory for charged excitations in solids
,”
J. Chem. Theory Comput.
18
(
9
),
5337
5348
(
2022
).
21.
S.
Banerjee
and
A. Y.
Sokolov
, “
Efficient implementation of the single-reference algebraic diagrammatic construction theory for charged excitations: Applications to the TEMPO radical and DNA base pairs
,”
J. Chem. Phys.
154
(
7
),
074105
(
2021
).
22.
S.
Banerjee
and
A. Y.
Sokolov
, “
Third-order algebraic diagrammatic construction theory for electron attachment and ionization energies: Conventional and Green’s function implementation
,”
J. Chem. Phys.
151
(
22
),
224112
(
2019
).
23.
A. Y.
Sokolov
, “
Multireference perturbation theories based on the Dyall Hamiltonian
,” in
Advances in Quantum Chemistry
, edited by
R. A. M.
Quintana
and
J. F.
Stanton
(
Academic Press
,
2024
), Chap. 4, pp.
121
155
.
24.
K. G.
Dyall
and
K.
Faegri
, Jr.
,
Introduction to Relativistic Quantum Chemistry
(
Oxford University Press
,
2007
).
25.
S.
Knippenberg
,
D. R.
Rehn
,
M.
Wormit
,
J. H.
Starcke
,
I. L.
Rusakova
,
A. B.
Trofimov
, and
A.
Dreuw
, “
Calculations of nonlinear response properties using the intermediate state representation and the algebraic-diagrammatic construction polarization propagator approach: Two-photon absorption spectra
,”
J. Chem. Phys.
136
(
6
),
064107
(
2012
).
26.
M.
Wormit
,
D. R.
Rehn
,
P. H. P.
Harbach
,
J.
Wenzel
,
C. M.
Krauter
,
E.
Epifanovsky
, and
A.
Dreuw
, “
Investigating excited electronic states using the algebraic diagrammatic construction (ADC) approach of the polarisation propagator
,”
Mol. Phys.
112
(
5–6
),
774
784
(
2014
).
27.
A. B.
Trofimov
,
I. L.
Krivdina
,
J.
Weller
, and
J.
Schirmer
, “
Algebraic-diagrammatic construction propagator approach to molecular response properties
,”
Chem. Phys.
329
(
1–3
),
1
10
(
2006
).
28.
D.
Mester
and
M.
Kállay
, “
Accurate spectral properties within double-hybrid density functional theory: A spin-scaled range-separated second-order algebraic-diagrammatic construction-based approach
,”
J. Chem. Theory Comput.
18
(
2
),
865
882
(
2022
).
29.
J.
Leitner
,
A. L.
Dempwolff
, and
A.
Dreuw
, “
The fourth-order algebraic diagrammatic construction scheme for the polarization propagator
,”
J. Chem. Phys.
157
(
18
),
184101
(
2022
).
30.
J.
Schirmer
,
L. S.
Cederbaum
, and
O.
Walter
, “
New approach to the one-particle Green’s function for finite Fermi systems
,”
Phys. Rev. A
28
(
3
),
1237
1259
(
1983
).
31.
G.
Angonoa
,
O.
Walter
, and
J.
Schirmer
, “
Theoretical K-shell ionization spectra of N2 and CO by a fourth-order Green’s function method
,”
J. Chem. Phys.
87
(
12
),
6789
6801
(
1987
).
32.
J.
Leitner
,
A. L.
Dempwolff
, and
A.
Dreuw
, “
Fourth-order algebraic diagrammatic construction for electron detachment and attachment: The IP- and EA-ADC(4) methods
,”
J. Phys. Chem. A
128
(
36
),
7680
7690
(
2024
).
33.
M.
Pernpointner
,
L.
Visscher
, and
A. B.
Trofimov
, “
Four-component polarization propagator calculations of electron excitations: Spectroscopic implications of spin–orbit coupling effects
,”
J. Chem. Theory Comput.
14
(
3
),
1510
1522
(
2018
).
34.
M.
Pernpointner
, “
The relativistic polarization propagator for the calculation of electronic excitations in heavy systems
,”
J. Chem. Phys.
140
(
8
),
084108
(
2014
).
35.
M.
Pernpointner
and
A. B.
Trofimov
, “
The one-particle Green’s function method in the Dirac–Hartree–Fock framework. I. Second-order valence ionization energies of Ne through Xe
,”
J. Chem. Phys.
120
(
9
),
4098
4106
(
2004
).
36.
M.
Pernpointner
, “
The one-particle Green’s function method in the Dirac–Hartree–Fock framework. II. Third-order valence ionization energies of the noble gases, CO and ICN
,”
J. Chem. Phys.
121
(
18
),
8782
8791
(
2004
).
37.
M.
Pernpointner
, “
The four-component two-particle propagator for the calculation of double-ionization spectra of heavy-element compounds: I. Method
,”
J. Phys. B: At., Mol. Opt. Phys.
43
(
20
),
205102
(
2010
).
38.
M.
Pernpointner
, “
The effect of the Gaunt interaction on the molecular ionization spectra of CO, H2S and TlH
,”
J. Phys. B: At., Mol. Opt. Phys.
38
(
12
),
1955
(
2005
).
39.
M.
Pernpointner
and
S.
Knecht
, “
The influence of relativistic effects on the ionization spectra of the alkali iodides
,”
Chem. Phys. Lett.
410
(
4–6
),
423
429
(
2005
).
40.
M.
Pernpointner
, “
Relativistic calculation of the SeH2 and TeH2 photoelectron spectra
,”
Chem. Phys.
329
(
1–3
),
256
265
(
2006
).
41.
M.
Pernpointner
and
L. S.
Cederbaum
, “
Pt F62− dianion and its detachment spectrum: A fully relativistic study
,”
J. Chem. Phys.
126
(
14
),
144310
(
2007
).
42.
M.
Pernpointner
, “
A fully relativistic study of the Pt(CN)42− and Pt(CN)62− photodetachment spectra
,”
Chem. Phys.
338
(
1
),
44
52
(
2007
).
43.
M.
Pernpointner
,
N. V.
Kryzhevoi
, and
S.
Urbaczek
, “
Possible electronic decay channels in the ionization spectra of small clusters composed of Ar and Kr: A four-component relativistic treatment
,”
J. Chem. Phys.
129
(
2
),
024304
(
2008
).
44.
M.
Pernpointner
,
T.
Rapps
, and
L. S.
Cederbaum
, “
Photodetachment spectra of the PtX42− (X = F, Cl, Br) dianions and their Jahn–Teller distortions: A fully relativistic study
,”
J. Chem. Phys.
129
(
17
),
174302
(
2008
).
45.
M.
Pernpointner
,
J. P.
Zobel
, and
N. V.
Kryzhevoi
, “
Strong configuration interaction in the double ionization spectra of noble gases studied by the relativistic propagator method
,”
Phys. Rev. A
85
(
1
),
012505
(
2012
).
46.
M.
Pernpointner
,
J. P.
Zobel
,
E.
Fasshauer
, and
A. N.
Sil
, “
Spin–orbit effects, electronic decay and breakdown phenomena in the photoelectron spectra of iodomethane
,”
Chem. Phys.
407
,
39
45
(
2012
).
47.
E.
Fasshauer
,
M.
Pernpointner
, and
K.
Gokhberg
, “
Interatomic decay of inner-valence ionized states in ArXe clusters: Relativistic approach
,”
J. Chem. Phys.
138
(
1
),
014305
(
2013
).
48.
P. H. P.
Harbach
,
M.
Wormit
, and
A.
Dreuw
, “
The third-order algebraic diagrammatic construction method (ADC(3)) for the polarization propagator for closed-shell molecules: Efficient implementation and benchmarking
,”
J. Chem. Phys.
141
(
6
),
064113
(
2014
).
49.
E. R.
Davidson
, “
The iterative calculation of a few of the lowest eigenvalues and corresponding eigenvectors of large real-symmetric matrices
,”
J. Comput. Phys.
17
(
1
),
87
94
(
1975
).
50.
R.
Maier
,
M.
Bauer
, and
A.
Dreuw
, “
Consistent third-order one-particle transition and excited-state properties within the algebraic-diagrammatic construction scheme for the polarization propagator
,”
J. Chem. Phys.
159
(
1
),
014104
(
2023
).
51.
A. S. P.
Gomes
,
T.
Saue
,
L.
Visscher
,
H. J. A.
Jensen
,
R.
Bast
,
I. A.
Aucar
,
V.
Bakken
,
K. G.
Dyall
,
S.
Dubillard
,
U.
Ekström
,
E.
Eliav
,
T.
Enevoldsen
,
E.
Faßhauer
,
T.
Fleig
,
O.
Fossgaard
,
L.
Halbert
,
E. D.
Hedegård
,
T.
Helgaker
,
B.
Helmich-Paris
,
J.
Henriksson
,
M.
Iliaš
,
C. R.
Jacob
,
S.
Knecht
,
S.
Komorovský
,
O.
Kullie
,
J. K.
Lærdahl
,
C. V.
Larsen
,
Y. S.
Lee
,
H. S.
Nataraj
,
M. K.
Nayak
,
P.
Norman
,
G.
Olejniczak
,
J.
Olsen
,
J. M. H.
Olsen
,
Y. C.
Park
,
J. K.
Pedersen
,
M.
Pernpointner
,
R.
Di Remigio
,
K.
Ruud
,
P.
Sałek
,
B.
Schimmelpfennig
,
B.
Senjean
,
A.
Shee
,
J.
Sikkema
,
A. J.
Thorvaldsen
,
J.
Thyssen
,
J.
van Stralen
,
M. L.
Vidal
,
S.
Villaume
,
O.
Visser
,
T.
Winther
, and
S.
Yamamoto
, “
DIRAC19
” (
2019
).
52.
T.
Saue
,
R.
Bast
,
A. S. P.
Gomes
,
H. J. A.
Jensen
,
L.
Visscher
,
I. A.
Aucar
,
R.
Di Remigio
,
K. G.
Dyall
,
E.
Eliav
,
E.
Fasshauer
,
T.
Fleig
,
L.
Halbert
,
E. D.
Hedegård
,
B.
Helmich-Paris
,
M.
Iliaš
,
C. R.
Jacob
,
S.
Knecht
,
J. K.
Laerdahl
,
M. L.
Vidal
,
M. K.
Nayak
,
M.
Olejniczak
,
J. M. H.
Olsen
,
M.
Pernpointner
,
B.
Senjean
,
A.
Shee
,
A.
Sunaga
, and
J. N. P.
van Stralen
, “
The DIRAC code for relativistic molecular calculations
,”
J. Chem. Phys.
152
(
20
),
204104
(
2020
).
53.
A. K.
Dutta
,
A.
Manna
,
B.
Jangid
,
K.
Majee
,
K.
Surjuse
,
M.
Mukherjee
,
M.
Thapa
,
S.
Arora
,
S.
Chamoli
,
S.
Haldar
,
S.
Chakraborty
, and
T.
Mukhopadhyay
, BAGH: A quantum chemistry software package,
2023
, https://sites.google.com/iitb.ac.in/bagh.
54.
Q.
Sun
,
X.
Zhang
,
S.
Banerjee
,
P.
Bao
,
M.
Barbry
,
N. S.
Blunt
,
N. A.
Bogdanov
,
G. H.
Booth
,
J.
Chen
,
Z.-H.
Cui
,
J. J.
Eriksen
,
Y.
Gao
,
S.
Guo
,
J.
Hermann
,
M. R.
Hermes
,
K.
Koh
,
P.
Koval
,
S.
Lehtola
,
Z.
Li
,
J.
Liu
,
N.
Mardirossian
,
J. D.
McClain
,
M.
Motta
,
B.
Mussard
,
H. Q.
Pham
,
A.
Pulkin
,
W.
Purwanto
,
P. J.
Robinson
,
E.
Ronca
,
E. R.
Sayfutyarova
,
M.
Scheurer
,
H. F.
Schurkus
,
J. E. T.
Smith
,
C.
Sun
,
S.-N.
Sun
,
S.
Upadhyay
,
L. K.
Wagner
,
X.
Wang
,
A.
White
,
J. D.
Whitfield
,
M. J.
Williamson
,
S.
Wouters
,
J.
Yang
,
J. M.
Yu
,
T.
Zhu
,
T. C.
Berkelbach
,
S.
Sharma
,
A. Y.
Sokolov
, and
G. K.-L.
Chan
, “
Recent developments in the PySCF program package
,”
J. Chem. Phys.
153
(
2
),
024109
(
2020
).
55.
Q.
Sun
, “
Libcint: An efficient general integral library for Gaussian basis functions
,”
J. Comput. Chem.
36
(
22
),
1664
1671
(
2015
).
56.
Q.
Sun
,
T. C.
Berkelbach
,
N. S.
Blunt
,
G. H.
Booth
,
S.
Guo
,
Z.
Li
,
J.
Liu
,
J. D.
McClain
,
E. R.
Sayfutyarova
,
S.
Sharma
,
S.
Wouters
, and
G. K.-L.
Chan
, “
PySCF: The Python-based simulations of chemistry framework
,”
Wiley Interdiscip. Rev.:Comput. Mol. Sci.
8
(
1
),
e1340
(
2018
).
57.
G. M. J.
Barca
,
C.
Bertoni
,
L.
Carrington
,
D.
Datta
,
N.
De Silva
,
J. E.
Deustua
,
D. G.
Fedorov
,
J. R.
Gour
,
A. O.
Gunina
,
E.
Guidez
,
T.
Harville
,
S.
Irle
,
J.
Ivanic
,
K.
Kowalski
,
S. S.
Leang
,
H.
Li
,
W.
Li
,
J. J.
Lutz
,
I.
Magoulas
,
J.
Mato
,
V.
Mironov
,
H.
Nakata
,
B. Q.
Pham
,
P.
Piecuch
,
D.
Poole
,
S. R.
Pruitt
,
A. P.
Rendell
,
L. B.
Roskop
,
K.
Ruedenberg
,
T.
Sattasathuchana
,
M. W.
Schmidt
,
J.
Shen
,
L.
Slipchenko
,
M.
Sosonkina
,
V.
Sundriyal
,
A.
Tiwari
,
J. L.
Galvez Vallejo
,
B.
Westheimer
,
M.
Włoch
,
P.
Xu
,
F.
Zahariev
, and
M. S.
Gordon
, “
Recent developments in the general atomic and molecular electronic structure system
,”
J. Chem. Phys.
152
(
15
),
154102
(
2020
).
58.
Y.
Shao
,
Z.
Gan
,
E.
Epifanovsky
,
A. T. B.
Gilbert
,
M.
Wormit
,
J.
Kussmann
,
A. W.
Lange
,
A.
Behn
,
J.
Deng
,
X.
Feng
,
D.
Ghosh
,
M.
Goldey
,
P. R.
Horn
,
L. D.
Jacobson
,
I.
Kaliman
,
R. Z.
Khaliullin
,
T.
Kuś
,
A.
Landau
,
J.
Liu
,
E. I.
Proynov
,
Y. M.
Rhee
,
R. M.
Richard
,
M. A.
Rohrdanz
,
R. P.
Steele
,
E. J.
Sundstrom
,
H. L.
Woodcock
III
,
P. M.
Zimmerman
,
D.
Zuev
,
B.
Albrecht
,
E.
Alguire
,
B.
Austin
,
G. J. O.
Beran
,
Y. A.
Bernard
,
E.
Berquist
,
K.
Brandhorst
,
K. B.
Bravaya
,
S. T.
Brown
,
D.
Casanova
,
C.-M.
Chang
,
Y.
Chen
,
S. H.
Chien
,
K. D.
Closser
,
D. L.
Crittenden
,
M.
Diedenhofen
,
R. A.
DiStasio
, Jr.
,
H.
Do
,
A. D.
Dutoi
,
R. G.
Edgar
,
S.
Fatehi
,
L.
Fusti-Molnar
,
A.
Ghysels
,
A.
Golubeva-Zadorozhnaya
,
J.
Gomes
,
M. W. D.
Hanson-Heine
,
P. H. P.
Harbach
,
A. W.
Hauser
,
E. G.
Hohenstein
,
Z. C.
Holden
,
T.-C.
Jagau
,
H.
Ji
,
B.
Kaduk
,
K.
Khistyaev
,
J.
Kim
,
J.
Kim
,
R. A.
King
,
P.
Klunzinger
,
D.
Kosenkov
,
T.
Kowalczyk
,
C. M.
Krauter
,
K. U.
Lao
,
A. D.
Laurent
,
K. V.
Lawler
,
S. V.
Levchenko
,
C. Y.
Lin
,
F.
Liu
,
E.
Livshits
,
R. C.
Lochan
,
A.
Luenser
,
P.
Manohar
,
S. F.
Manzer
,
S.-P.
Mao
,
N.
Mardirossian
,
A. V.
Marenich
,
S. A.
Maurer
,
N. J.
Mayhall
,
E.
Neuscamman
,
C. M.
Oana
,
R.
Olivares-Amaya
,
D. P.
O’Neill
,
J. A.
Parkhill
,
T. M.
Perrine
,
R.
Peverati
,
A.
Prociuk
,
D. R.
Rehn
,
E.
Rosta
,
N. J.
Russ
,
S. M.
Sharada
,
S.
Sharma
,
D. W.
Small
,
A.
Sodt
,
T.
Stein
,
D.
Stück
,
Y.-C.
Su
,
A. J. W.
Thom
,
T.
Tsuchimochi
,
V.
Vanovschi
,
L.
Vogt
,
O.
Vydrov
,
T.
Wang
,
M. A.
Watson
,
J.
Wenzel
,
A.
White
,
C. F.
Williams
,
J.
Yang
,
S.
Yeganeh
,
S. R.
Yost
,
Z.-Q.
You
,
I. Y.
Zhang
,
X.
Zhang
,
Y.
Zhao
,
B. R.
Brooks
,
G. K. L.
Chan
,
D. M.
Chipman
,
C. J.
Cramer
,
W. A.
Goddard
III
,
M. S.
Gordon
,
W. J.
Hehre
,
A.
Klamt
,
H. F.
Schaefer
III
,
M. W.
Schmidt
,
C. D.
Sherrill
,
D. G.
Truhlar
,
A.
Warshel
,
X.
Xu
,
A.
Aspuru-Guzik
,
R.
Baer
,
A. T.
Bell
,
N. A.
Besley
,
J.-D.
Chai
,
A.
Dreuw
,
B. D.
Dunietz
,
T. R.
Furlani
,
S. R.
Gwaltney
,
C.-P.
Hsu
,
Y.
Jung
,
J.
Kong
,
D. S.
Lambrecht
,
W.
Liang
,
C.
Ochsenfeld
,
V. A.
Rassolov
,
L. V.
Slipchenko
,
J. E.
Subotnik
,
T.
Van Voorhis
,
J. M.
Herbert
,
A. I.
Krylov
,
P. M. W.
Gill
, and
M.
Head-Gordon
, “
Advances in molecular quantum chemistry contained in the Q-Chem 4 program package
,”
Mol. Phys.
113
(
2
),
184
215
(
2015
).
59.
E.
Epifanovsky
,
A. T. B.
Gilbert
,
X.
Feng
,
J.
Lee
,
Y.
Mao
,
N.
Mardirossian
,
P.
Pokhilko
,
A. F.
White
,
M. P.
Coons
,
A. L.
Dempwolff
,
Z.
Gan
,
D.
Hait
,
P. R.
Horn
,
L. D.
Jacobson
,
I.
Kaliman
,
J.
Kussmann
,
A. W.
Lange
,
K. U.
Lao
,
D. S.
Levine
,
J.
Liu
,
S. C.
McKenzie
,
A. F.
Morrison
,
K. D.
Nanda
,
F.
Plasser
,
D. R.
Rehn
,
M. L.
Vidal
,
Z.-Q.
You
,
Y.
Zhu
,
B.
Alam
,
B. J.
Albrecht
,
A.
Aldossary
,
E.
Alguire
,
J. H.
Andersen
,
V.
Athavale
,
D.
Barton
,
K.
Begam
,
A.
Behn
,
N.
Bellonzi
,
Y. A.
Bernard
,
E. J.
Berquist
,
H. G. A.
Burton
,
A.
Carreras
,
K.
Carter-Fenk
,
R.
Chakraborty
,
A. D.
Chien
,
K. D.
Closser
,
V.
Cofer-Shabica
,
S.
Dasgupta
,
M.
de Wergifosse
,
J.
Deng
,
M.
Diedenhofen
,
H.
Do
,
S.
Ehlert
,
P.-T.
Fang
,
S.
Fatehi
,
Q.
Feng
,
T.
Friedhoff
,
J.
Gayvert
,
Q.
Ge
,
G.
Gidofalvi
,
M.
Goldey
,
J.
Gomes
,
C. E.
González-Espinoza
,
S.
Gulania
,
A. O.
Gunina
,
M. W. D.
Hanson-Heine
,
P. H. P.
Harbach
,
A.
Hauser
,
M. F.
Herbst
,
M.
Hernández Vera
,
M.
Hodecker
,
Z. C.
Holden
,
S.
Houck
,
X.
Huang
,
K.
Hui
,
B. C.
Huynh
,
M.
Ivanov
,
Á.
Jász
,
H.
Ji
,
H.
Jiang
,
B.
Kaduk
,
S.
Kähler
,
K.
Khistyaev
,
J.
Kim
,
G.
Kis
,
P.
Klunzinger
,
Z.
Koczor-Benda
,
J. H.
Koh
,
D.
Kosenkov
,
L.
Koulias
,
T.
Kowalczyk
,
C. M.
Krauter
,
K.
Kue
,
A.
Kunitsa
,
T.
Kus
,
I.
Ladjánszki
,
A.
Landau
,
K. V.
Lawler
,
D.
Lefrancois
,
S.
Lehtola
,
R. R.
Li
,
Y.-P.
Li
,
J.
Liang
,
M.
Liebenthal
,
H.-H.
Lin
,
Y.-S.
Lin
,
F.
Liu
,
K.-Y.
Liu
,
M.
Loipersberger
,
A.
Luenser
,
A.
Manjanath
,
P.
Manohar
,
E.
Mansoor
,
S. F.
Manzer
,
S.-P.
Mao
,
A. V.
Marenich
,
T.
Markovich
,
S.
Mason
,
S. A.
Maurer
,
P. F.
McLaughlin
,
M. F. S. J.
Menger
,
J.-M.
Mewes
,
S. A.
Mewes
,
P.
Morgante
,
J. W.
Mullinax
,
K. J.
Oosterbaan
,
G.
Paran
,
A. C.
Paul
,
S. K.
Paul
,
F.
Pavošević
,
Z.
Pei
,
S.
Prager
,
E. I.
Proynov
,
Á.
Rák
,
E.
Ramos-Cordoba
,
B.
Rana
,
A. E.
Rask
,
A.
Rettig
,
R. M.
Richard
,
F.
Rob
,
E.
Rossomme
,
T.
Scheele
,
M.
Scheurer
,
M.
Schneider
,
N.
Sergueev
,
S. M.
Sharada
,
W.
Skomorowski
,
D. W.
Small
,
C. J.
Stein
,
Y.-C.
Su
,
E. J.
Sundstrom
,
Z.
Tao
,
J.
Thirman
,
G. J.
Tornai
,
T.
Tsuchimochi
,
N. M.
Tubman
,
S. P.
Veccham
,
O.
Vydrov
,
J.
Wenzel
,
J.
Witte
,
A.
Yamada
,
K.
Yao
,
S.
Yeganeh
,
S. R.
Yost
,
A.
Zech
,
I. Y.
Zhang
,
X.
Zhang
,
Y.
Zhang
,
D.
Zuev
,
A.
Aspuru-Guzik
,
A. T.
Bell
,
N. A.
Besley
,
K. B.
Bravaya
,
B. R.
Brooks
,
D.
Casanova
,
J.-D.
Chai
,
S.
Coriani
,
C. J.
Cramer
,
G.
Cserey
,
A. E.
DePrince
III
,
R. A.
DiStasio
, Jr.
,
A.
Dreuw
,
B. D.
Dunietz
,
T. R.
Furlani
,
W. A.
Goddard
III
,
S.
Hammes-Schiffer
,
T.
Head-Gordon
,
W. J.
Hehre
,
C.-P.
Hsu
,
T.-C.
Jagau
,
Y.
Jung
,
A.
Klamt
,
J.
Kong
,
D. S.
Lambrecht
,
W.
Liang
,
N. J.
Mayhall
,
C. W.
McCurdy
,
J. B.
Neaton
,
C.
Ochsenfeld
,
J. A.
Parkhill
,
R.
Peverati
,
V. A.
Rassolov
,
Y.
Shao
,
L. V.
Slipchenko
,
T.
Stauch
,
R. P.
Steele
,
J. E.
Subotnik
,
A. J. W.
Thom
,
A.
Tkatchenko
,
D. G.
Truhlar
,
T.
Van Voorhis
,
T. A.
Wesolowski
,
K. B.
Whaley
,
H. L.
Woodcock
III
,
P. M.
Zimmerman
,
S.
Faraji
,
P. M. W.
Gill
,
M.
Head-Gordon
,
J. M.
Herbert
, and
A. I.
Krylov
, “
Software for the frontiers of quantum chemistry: An overview of developments in the Q-Chem 5 package
,”
J. Chem. Phys.
155
(
8
),
084801
(
2021
).
60.
A. I.
Krylov
and
P. M. W.
Gill
, “
Q-Chem: An engine for innovation
,”
Wiley Interdiscip. Rev.:Comput. Mol. Sci.
3
(
3
),
317
326
(
2013
).
61.
B. J.
Finlayson-Pitts
and
J. N.
Pitts
Jr.
,
Chemistry of the Upper and Lower Atmosphere: Theory, Experiments, and Applications
(
Elsevier
,
1999
).
62.
N.
Vaval
,
P.
Manohar
, and
S.
Pal
, “
Electronic spectra and ionization potentials of halogen oxides using the Fock space coupled-cluster method
,”
Collect. Czech. Chem. Commun.
70
(
7
),
851
863
(
2005
).
63.
M. K.
Gilles
,
M. L.
Polak
, and
W. C.
Lineberger
, “
Photoelectron spectroscopy of the halogen oxide anions FO, ClO, BrO, IO, OClO, and OIO
,”
J. Chem. Phys.
96
(
11
),
8012
8020
(
1992
).
64.
M.
Bauer
,
A. L.
Dempwolff
,
D. R.
Rehn
, and
A.
Dreuw
, “
Exploring the accuracy and usefulness of semi-empirically scaled ADC schemes by blending second and third order terms
,”
J. Chem. Phys.
156
(
14
),
144101
(
2022
).
65.
C.
Blondel
,
C.
Delsart
, and
F.
Goldfarb
, “
Electron spectrometry at the µeV level and the electron affinities of Si and F
,”
J. Phys. B: At., Mol. Opt. Phys.
34
(
19
),
L281
(
2001
).
66.
J. D. D.
Martin
and
J. W.
Hepburn
, “
Determination of bond dissociation energies by threshold ion-pair production spectroscopy: An improved D(HCl)
,”
J. Chem. Phys.
109
(
19
),
8139
8142
(
1998
).
67.
C.
Blondel
,
P.
Cacciani
,
C.
Delsart
, and
R.
Trainham
, “
High-resolution determination of the electron affinity of fluorine and bromine using crossed ion and laser beams
,”
Phys. Rev. A
40
(
7
),
3698
3701
(
1989
).
68.
D.
Hanstorp
and
M.
Gustafsson
, “
Determination of the electron affinity of iodine
,”
J. Phys. B: At., Mol. Opt. Phys.
25
(
8
),
1773
(
1992
).
69.
D.
Leimbach
,
J.
Karls
,
Y.
Guo
,
R.
Ahmed
,
J.
Ballof
,
L.
Bengtsson
,
F.
Boix Pamies
,
A.
Borschevsky
,
K.
Chrysalidis
,
E.
Eliav
,
D.
Fedorov
,
V.
Fedosseev
,
O.
Forstner
,
N.
Galland
,
R. F.
Garcia Ruiz
,
C.
Granados
,
R.
Heinke
,
K.
Johnston
,
A.
Koszorus
,
U.
Köster
,
M. K.
Kristiansson
,
Y.
Liu
,
B.
Marsh
,
P.
Molkanov
,
L. F.
Pašteka
,
J. P.
Ramos
,
E.
Renault
,
M.
Reponen
,
A.
Ringvall-Moberg
,
R. E.
Rossel
,
D.
Studer
,
A.
Vernon
,
J.
Warbinek
,
J.
Welander
,
K.
Wendt
,
S.
Wilkins
,
D.
Hanstorp
, and
S.
Rothe
, “
The electron affinity of astatine
,”
Nat. Commun.
11
(
1
),
3824
(
2020
).
70.
K.
Do
,
T. P.
Klein
,
C. A.
Pommerening
, and
L. S.
Sunderlin
, “
A new flowing afterglow-guided ion beam tandem mass spectrometer. Applications to the thermochemistry of polyiodide ions
,”
J. Am. Soc. Mass Spectrom.
8
(
7
),
688
696
(
1997
).
71.
T. R.
Taylor
,
K. R.
Asmis
,
M. T.
Zanni
, and
D. M.
Neumark
, “
Characterization of the I3 radical by anion photoelectron spectroscopy
,”
J. Chem. Phys.
110
(
16
),
7607
7609
(
1999
).
72.
M. T.
Zanni
,
B. J.
Greenblatt
,
A. V.
Davis
, and
D. M.
Neumark
, “
Photodissociation dynamics of I3 using femtosecond photoelectron spectroscopy
,”
Proc. SPIE
3271
,
196
207
(
1998
).
73.
M. T.
Zanni
,
B. J.
Greenblatt
,
A. V.
Davis
, and
D. M.
Neumark
, “
Photodissociation of gas phase I3 using femtosecond photoelectron spectroscopy
,”
J. Chem. Phys.
111
(
7
),
2991
3003
(
1999
).
74.
H.
Choi
,
R. T.
Bise
,
A. A.
Hoops
, and
D. M.
Neumark
, “
Photodissociation dynamics of the triiodide anion (I3)
,”
J. Chem. Phys.
113
(
6
),
2255
2262
(
2000
).
75.
J.
Roy
,
W.
Hamill
, and
R.
Williams
Jr.
, “
Diffusion kinetics of the photochemical and thermal dissociation-recombination of trihalide ions
,”
J. Am. Chem. Soc.
77
(
11
),
2953
2957
(
1955
).
76.
L.
Grossweiner
and
M.
Matheson
, “
The kinetics of the dihalide ions from the flash photolysis of aqueous alkali halide solutions
,”
J. Phys. Chem.
61
(
8
),
1089
1095
(
1957
).
77.
U.
Banin
and
S.
Ruhman
, “
Ultrafast photodissociation of I3. Coherent photochemistry in solution
,”
J. Chem. Phys.
98
(
6
),
4391
4403
(
1993
).
78.
K.
Kaya
,
N.
Mikami
,
Y.
Udagawa
, and
M.
Ito
, “
Resonance Raman effect of I3 ion by ultraviolet laser excitation
,”
Chem. Phys. Lett.
16
(
1
),
151
153
(
1972
).
79.
T.
Okada
and
J.
Hata
, “
Optical absorption spectra of I3 molecular ions in KI crystals and aqueous solutions
,”
Mol. Phys.
43
(
5
),
1151
1161
(
1981
).
80.
A. S. P.
Gomes
,
L.
Visscher
,
H.
Bolvin
,
T.
Saue
,
S.
Knecht
,
T.
Fleig
, and
E.
Eliav
, “
The electronic structure of the triiodide ion from relativistic correlated calculations: A comparison of different methodologies
,”
J. Chem. Phys.
133
(
6
),
064305
(
2010
).
81.
L.
Visscher
,
E.
Eliav
, and
U.
Kaldor
, “
Formulation and implementation of the relativistic Fock-space coupled cluster method for molecules
,”
J. Chem. Phys.
115
(
21
),
9720
9726
(
2001
).
82.
A.
Landau
,
E.
Eliav
,
Y.
Ishikawa
, and
U.
Kaldor
, “
Mixed-sector intermediate Hamiltonian Fock-space coupled cluster approach
,”
J. Chem. Phys.
121
(
14
),
6634
6639
(
2004
).
83.
A.
Shee
,
T.
Saue
,
L.
Visscher
, and
A.
Severo Pereira Gomes
, “
Equation-of-motion coupled-cluster theory based on the 4-component Dirac–Coulomb(–Gaunt) Hamiltonian. Energies for single electron detachment, attachment, and electronically excited states
,”
J. Chem. Phys.
149
(
17
),
174113
(
2018
).
84.
K.
Andersson
,
P. A.
Malmqvist
,
B. O.
Roos
,
A. J.
Sadlej
, and
K.
Wolinski
, “
Second-order perturbation theory with a CASSCF reference function
,”
J. Phys. Chem.
94
(
14
),
5483
5488
(
1990
).
85.
B. O.
Roos
,
P. R.
Taylor
, and
P. E. M.
Sigbahn
, “
A complete active space SCF method (CASSCF) using a density matrix formulated super-CI approach
,”
Chem. Phys.
48
(
2
),
157
173
(
1980
).
86.
J.
Vala
,
R.
Kosloff
, and
J. N.
Harvey
, “
Ab initio and diatomics in molecule potentials for I2, I2, I3, and I3
,”
J. Chem. Phys.
114
(
17
),
7413
7423
(
2001
).
87.
T.
Fleig
,
J.
Olsen
, and
L.
Visscher
, “
The generalized active space concept for the relativistic treatment of electron correlation. II. Large-scale configuration interaction implementation based on relativistic 2- and 4-spinors and its application
,”
J. Chem. Phys.
119
(
6
),
2963
2971
(
2003
).
88.
T.
Fleig
,
H. J. A.
Jensen
,
J.
Olsen
, and
L.
Visscher
, “
The generalized active space concept for the relativistic treatment of electron correlation. III. Large-scale configuration interaction and multiconfiguration self-consistent-field four-component methods with application to UO2
,”
J. Chem. Phys.
124
(
10
),
104106
(
2006
).
89.
E. K. U.
Gross
and
W.
Kohn
, “
Time-dependent density-functional theory
,” in
Advances in Quantum Chemistry
, edited by
P.-O.
Löwdin
(
Academic Press
,
1990
), pp.
255
291
.
90.
Z.
Wang
,
Z.
Tu
, and
F.
Wang
, “
Equation-of-motion coupled-cluster theory for excitation energies of closed-shell systems with spin–orbit coupling
,”
J. Chem. Theory Comput.
10
(
12
),
5567
5576
(
2014
).
91.
T.
Mukhopadhyay
,
S.
Chakraborty
,
S.
Chamoli
,
M. K.
Nayak
, and
A. K.
Dutta
, “
Analytic calculation of transition dipole moment using four-component relativistic equation-of-motion coupled-cluster expectation value approach
,”
J. Chem. Phys.
162
,
054115
(
2025
).
92.
A.
Zaitsevskii
,
A. V.
Oleynichenko
, and
E.
Eliav
, “
Finite-field calculations of transition properties by the Fock space relativistic coupled cluster method: Transitions between different Fock space sectors
,”
Symmetry
12
(
11
),
1845
(
2020
).
93.
J. E.
Sansonetti
and
W. C.
Martin
, “
Handbook of basic atomic spectroscopic data
,”
J. Phys. Chem. Ref. Data
34
(
4
),
1559
2259
(
2005
).
94.
S.
Manzhos
,
H.-P.
Loock
,
B. L. G.
Bakker
, and
D. H.
Parker
, “
Photodissociation of hydrogen iodide in the A-band region 273–288 nm
,”
J. Chem. Phys.
117
(
20
),
9347
9352
(
2002
).
95.
R. D.
Clear
,
S. J.
Riley
, and
K. R.
Wilson
, “
Energy partitioning and assignment of excited states in the ultraviolet photolysis of HI and DI
,”
J. Chem. Phys.
63
(
4
),
1340
1347
(
1975
).
96.
R.
Schmiedl
,
H.
Dugan
,
W.
Meier
, and
K. H.
Welge
, “
Laser Doppler spectroscopy of atomic hydrogen in the photodissociation of HI
,”
Z. Phys. A
304
(
2
),
137
142
(
1982
).
97.
G. N. A.
Van Veen
,
K. A.
Mohamed
,
T.
Baller
, and
A. E.
De Vries
, “
Photofragmentation of HI in the first continuum
,”
Chem. Phys.
80
(
1–2
),
113
120
(
1983
).
98.
P.
Brewer
,
P.
Das
,
G. S.
Ondrey
, and
R.
Bersohn
, “
Measurement of the relative populations of I(2P01/2) and I(2P03/2) by laser induced vacuum ultraviolet fluorescence
,”
J. Chem. Phys.
79
(
2
),
720
723
(
1983
).
99.
R. S.
Mulliken
, “
Low electronic states of simple heteropolar diatomic molecules: III. Hydrogen and univalent metal halides
,”
Phys. Rev.
51
(
5
),
310
332
(
1937
).
100.
A. B.
Alekseyev
,
H.-P.
Liebermann
,
D. B.
Kokh
, and
R. J.
Buenker
, “
On the ultraviolet photofragmentation of hydrogen iodide
,”
J. Chem. Phys.
113
(
15
),
6174
6185
(
2000
).
101.
D. A.
Chapman
,
K.
Balasubramanian
, and
S. H.
Lin
, “
Relativistic configuration interaction calculations on the low-lying electronic states of Hl
,”
Chem. Phys. Lett.
118
(
2
),
192
196
(
1985
).
102.
D. A.
Chapman
,
K.
Balasubramanian
, and
S. H.
Lin
, “
Electronic dipole and transition moments from the relativistic CI wave function: Application to HI
,”
J. Chem. Phys.
87
(
9
),
5325
5328
(
1987
).
103.
D. A.
Chapman
,
K.
Balasubramanian
, and
S. H.
Lin
, “
Theoretical study of the negative ions of HBr and HI
,”
Phys. Rev. A
38
(
12
),
6098
6106
(
1988
).
104.
D. N.
Jodoin
and
A.
Brown
, “
Photodissociation of HI and DI: Testing models for electronic structure via polarization of atomic photofragments
,”
J. Chem. Phys.
123
(
5
),
054301
(
2005
).
You do not currently have access to this content.