The liquid/liquid interfaces of room-temperature ionic liquids (RTILs) play a pivotal role in chemical reactions owing to their characteristic microscopic structure, yet the structure of hydrophobic liquid/RTIL interfaces remains unclear. We studied the structure at the liquid/liquid interfaces of carbon tetrachloride (CCl4) and 1-alkyl-3-methylimidazolium bis(trifluoromethanesulfonyl)amide ([Cnmim][TFSA]; n = 4 and 8) RTILs using infrared–visible sum frequency generation (SFG) vibrational spectroscopy. A comparison of the SFG spectra of the CCl4/RTIL and air/RTIL interfaces revealed that the solvation of the alkyl chains of the [Cnmim]+ cations by CCl4 reduces the number of gauche defects in the alkyl chain and the interface number density of the cation at the CCl4 interface. The orientational change of the [TFSA] anion and concomitant increase in the area it occupies at the CCl4 interface was observed to be greater than that at the air interface. This is accompanied by the expansion of the space among the alkyl chains of the cations to be solvated by CCl4. The structural change of the CCl4 interface from the air interface can be attributed to the solvophilic effect of CCl4 on the alkyl chains of the cations at the CCl4/[Cnmim][TFSA] interface. This is in contrast with the solvophobic effect of CCl4 on the Langmuir film at the CCl4/water interface. This phenomenon is caused by the loosely packed alkyl chains of the cations at the RTIL surface and the flexible anion–cation arrangement owing to the weak basicity and acidity of the ions in the RTILs.

1.
J. D.
Holbrey
and
K. R.
Seddon
, “
The phase behaviour of 1-alkyl-3-methylimidazolium tetrafluoroborates; ionid liquids and ionic liquid crystals
,”
J. Chem. Soc., Dalton Trans.
1999
(
13
),
2133
2139
.
2.
M.
Armand
,
F.
Endres
,
D. R.
MacFarlane
,
H.
Ohno
, and
B.
Scrosati
, “
Ionic-liquid materials for the electrochemical challenges of the future
,”
Nat. Mater.
8
(
8
),
621
629
(
2009
).
3.
R.
Sheldon
, “
Catalytic reactions in ionic liquids
,”
Chem. Commun.
1
(
23
),
2399
2407
(
2001
).
4.
J. P.
Hallett
and
T.
Welton
, “
Room-temperature ionic liquids: Solvents for synthesis and catalysis. 2
,”
Chem. Rev.
111
(
5
),
3508
3576
(
2011
).
5.
T.
Itoh
, “
Ionic liquids as tool to improve enzymatic organic synthesis
,”
Chem. Rev.
117
(
15
),
10567
10607
(
2017
).
6.
M.
He
,
P.
Huang
,
C.
Zhang
,
F.
Chen
,
C.
Wang
,
J.
Ma
,
R.
He
, and
D.
Cui
, “
A general strategy for the synthesis of upconversion rare earth fluoride nanocrystals via a novel OA/ionic liquid two-phase system
,”
Chem. Commun.
47
(
33
),
9510
9512
(
2011
).
7.
N.
Nishi
,
T.
Kakinami
, and
T.
Sakka
, “
Dendritic nanofibers of gold formed by the electron transfer at the interface between water and a highly hydrophobic ionic liquid
,”
Chem. Commun.
51
(
71
),
13638
13641
(
2015
).
8.
N.
Nishi
,
I.
Yajima
,
K. I.
Amano
, and
T.
Sakka
, “
Janus-type gold/polythiophene composites formed via redox reaction at the ionic liquid|water interface
,”
Langmuir
34
(
7
),
2441
2447
(
2018
).
9.
M. G.
Freire
,
A. F. M.
Cláudio
,
J. M. M.
Araújo
,
J. A. P.
Coutinho
,
I. M.
Marrucho
,
J. N. C.
Lopes
, and
L. P. N.
Rebelo
, “
Aqueous biphasic systems: A boost brought about by using ionic liquids
,”
Chem. Soc. Rev.
41
(
14
),
4966
4995
(
2012
).
10.
F.
Ganske
and
U. T.
Bornscheuer
, “
Optimization of lipase-catalyzed glucose fatty acid ester synthesis in a two-phase system containing ionic liquids and t-BuOH
,”
J. Mol. Catal. B: Enzym.
36
(
1–6
),
40
42
(
2005
).
11.
C.
Liu
,
J.
Yang
,
B. B.
Guo
,
S.
Agarwal
,
A.
Greiner
, and
Z. K.
Xu
, “
Interfacial polymerization at the alkane/ionic liquid interface
,”
Angew. Chem., Int. Ed.
60
(
26
),
14636
14643
(
2021
).
12.
G.
Fan
,
S.
Fujita
,
B.
Zou
,
M.
Nishiura
,
X.
Meng
, and
M.
Arai
, “
Synthesis of diphenyl carbonate from phenol and carbon dioxide in the presence of carbon tetrachloride and zinc chloride
,”
Catal. Lett.
133
(
3–4
),
280
287
(
2009
).
13.
V.
Beniwal
,
A.
Manna
, and
A.
Kumar
, “
Spectacular rate enhancement of the Diels–Alder reaction at the ionic liquid/n-hexane interface
,”
ChemPhysChem
17
,
1969
1972
(
2016
).
14.
X.
Lyu
,
W.
Wang
,
Y.
Sun
,
Q.
Zhao
, and
T.
Qiu
, “
Ionic liquids catalyzed Friedel–Crafts alkylation of substituted benzenes with CCl4 toward trichloromethylarenes
,”
Catal. Lett.
149
(
3
),
665
671
(
2019
).
15.
V.
Beniwal
and
A.
Kumar
, “
Thermodynamic and molecular origin of interfacial rate enhancements and endo-selectivities of a Diels–Alder reaction
,”
Phys. Chem. Chem. Phys.
19
(
6
),
4297
4306
(
2017
).
16.
F. O.
Laforge
,
T.
Kakiuchi
,
F.
Shigematsu
, and
M. V.
Mirkin
, “
SECM study of solute partitioning and electron transfer at the ionic liquid/water interface
,”
Langmuir
22
(
25
),
10705
10710
(
2006
).
17.
T.
Iwahashi
,
Y.
Sakai
,
K.
Kanai
,
D.
Kim
, and
Y.
Ouchi
, “
Alkyl-chain dividing layer at an alcohol/ionic liquid buried interface studied by sum-frequency generation vibrational spectroscopy
,”
Phys. Chem. Chem. Phys.
12
(
40
),
12943
12946
(
2010
).
18.
T.
Iwahashi
,
Y.
Sakai
,
D.
Kim
,
T.
Ishiyama
,
A.
Morita
, and
Y.
Ouchi
, “
Nonlinear vibrational spectroscopic studies on water/ionic liquid([Cnmim]TFSA: n = 4, 8) interfaces
,”
Faraday Discuss.
154
,
289
301
(
2012
).
19.
T.
Iwahashi
,
T.
Ishiyama
,
Y.
Sakai
,
A.
Morita
,
D.
Kim
, and
Y.
Ouchi
, “
Liquid/liquid interface layering of 1-butanol and [bmim]PF6 ionic liquid: A nonlinear vibrational spectroscopy and molecular dynamics simulation study
,”
Phys. Chem. Chem. Phys.
17
(
38
),
24587
24597
(
2015
).
20.
N.
Nishi
,
T.
Uruga
, and
H.
Tanida
, “
Potential dependent structure of an ionic liquid at ionic liquid/water interface probed by x-ray reflectivity measurements
,”
J. Electroanal. Chem.
759
,
129
136
(
2015
).
21.
S.
Katakura
,
K. I.
Amano
,
T.
Sakka
,
W.
Bu
,
B.
Lin
,
M. L.
Schlossman
, and
N.
Nishi
, “
Evolution and reversible polarity of multilayering at the ionic liquid/water interface
,”
J. Phys. Chem. B
124
(
29
),
6412
6419
(
2020
).
22.
A.
Chaumont
,
R.
Schurhammer
, and
G.
Wipff
, “
Aqueous interfaces with hydrophobic room-temperature ionic liquids: A molecular dynamics study
,”
J. Phys. Chem. B
109
(
40
),
18964
18973
(
2005
).
23.
M.
Lísal
and
P.
Izák
, “
Molecular dynamics simulations of n-hexane at 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide interface
,”
J. Chem. Phys.
139
(
1
),
014704
(
2013
).
24.
T. M.
Chang
and
L. X.
Dang
, “
Computational studies of [bmim][PF6]/n-alcohol interfaces with many-body potentials
,”
J. Phys. Chem. A
118
(
35
),
7186
7193
(
2014
).
25.
K.
Ishii
,
T.
Sakka
, and
N.
Nishi
, “
Potential dependence of the ionic structure at the ionic liquid/water interface studied using MD simulation
,”
Phys. Chem. Chem. Phys.
23
(
39
),
22367
22374
(
2021
).
26.
Y. R.
Shen
, “
Surface properties probed by second-harmonic and sum-frequency generation
,”
Nature
337
(
6207
),
519
525
(
1989
).
27.
Q.
Du
,
E.
Freysz
, and
Y. R.
Shen
, “
Surface vibrational spectroscopic studies of hydrogen bonding and hydrophobicity
,”
Science
264
(
5160
),
826
828
(
1994
).
28.
M. G.
Brown
,
D. S.
Walker
,
E. A.
Raymond
, and
G. L.
Richmond
, “
Vibrational sum-frequency spectroscopy of alkane/water interfaces: Experiment and theoretical simulation
,”
J. Phys. Chem. B
107
(
1
),
237
244
(
2003
).
29.
F. G.
Moore
and
G. L.
Richmond
, “
Integration or segregation: How do molecules behave at oil/water interfaces?
,”
Acc. Chem. Res.
41
(
6
),
739
748
(
2008
).
30.
R. A.
Walker
,
J. A.
Gruetzmacher
, and
G. L.
Richmond
, “
Phosphatidylcholine monolayer structure at a liquid–liquid interface
,”
J. Am. Chem. Soc.
120
(
28
),
6991
7003
(
1998
).
31.
P. B.
Miranda
and
Y. R.
Shen
, “
Liquid interfaces: A study by sum-frequency vibrational spectroscopy
,”
J. Phys. Chem. B
103
(
17
),
3292
3307
(
1999
).
32.
M. C.
Messmer
,
J. C.
Conboy
, and
G. L.
Richmond
, “
Observation of molecular ordering at the liquid-liquid interface by resonant sum frequency generation
,”
J. Am. Chem. Soc.
117
(
30
),
8039
8040
(
1995
).
33.
J. C.
Conboy
,
M. C.
Messmer
, and
G. L.
Richmond
, “
Effect of alkyl chain length on the conformation and order of simple ionic surfactants adsorbed at the D2O/CCl4 interface as studied by sum-frequency vibrational spectroscopy
,”
Langmuir
14
(
23
),
6722
6727
(
1998
).
34.
J. M.
Berryman
and
E. L.
Heric
, “
Some mixtures of carbon tetrachloride with several n-alkanes: Enthalpies and energies of mixing
,”
Can. J. Chem.
50
(
23
),
3799
3804
(
1972
).
35.
T.
Iwahashi
,
T.
Miyamae
,
K.
Kanai
,
K.
Seki
,
D.
Kim
, and
Y.
Ouchi
, “
Anion configuration at the air/liquid interface of ionic liquid [bmim]OTf studied by sum-frequency generation spectroscopy
,”
J. Phys. Chem. B
112
(
38
),
11936
11941
(
2008
).
36.
T.
Iwahashi
,
T.
Ishiyama
,
Y.
Sakai
,
A.
Morita
,
D.
Kim
, and
Y.
Ouchi
, “
Bi-layering at ionic liquid surfaces: A sum-frequency generation vibrational spectroscopy- and molecular dynamics simulation-based study
,”
Phys. Chem. Chem. Phys.
22
(
22
),
12565
12576
(
2020
).
37.
T.
Iwahashi
,
T.
Nishi
,
H.
Yamane
,
T.
Miyamae
,
K.
Kanai
,
K.
Seki
,
D.
Kim
, and
Y.
Ouchi
, “
Surface structural study on ionic liquids using metastable atom electron spectroscopy
,”
J. Phys. Chem. C
113
(
44
),
19237
19243
(
2009
).
38.
R. M.
Altman
and
G. L.
Richmond
, “
Coming to order: Adsorption and structure of nonionic polymer at the oil/water interface as influenced by cationic and anionic surfactants
,”
Langmuir
36
(
8
),
1975
1984
(
2020
).
39.
X.
Zhuang
,
P. B.
Miranda
,
D.
Kim
, and
Y. R.
Shen
, “
Mapping molecular orientation and conformation at interfaces by surface nonlinear optics
,”
Phys. Rev. B
59
(
19
),
12632
12640
(
1999
).
40.
T.
Iimori
,
T.
Iwahashi
,
K.
Kanal
,
K.
Seki
,
J.
Sung
,
D.
Kim
,
H. O.
Hamaguchi
, and
Y.
Ouchi
, “
Local structure at the air/liquid interface of room-temperature ionic liquids probed by infrared-visible sum frequency generation vibrational spectroscopy: 1-alkyl-3-methylimidazolium tetrafluoroborates
,”
J. Phys. Chem. B
111
(
18
),
4860
4866
(
2007
).
41.
W. T.
Liu
,
L.
Zhang
, and
Y. R.
Shen
, “
Interfacial structures of methanol:water mixtures at a hydrophobic interface probed by sum-frequency vibrational spectroscopy
,”
J. Chem. Phys.
125
(
14
),
144711
(
2006
).
42.
M. M.
Knock
,
G. R.
Bell
,
E. K.
Hill
,
H. J.
Turner
, and
C. D.
Bain
, “
Sum-frequency spectroscopy of surfactant monolayers at the oil–water interface
,”
J. Phys. Chem. B
107
(
39
),
10801
10814
(
2003
).
43.
Tables of wavenumbers for the calibration of infra-red spectrometers,
International Union of Pure and Applied Chemistry. Commission on Molecular Structure and Spectroscopy, Butterworths
,
London
,
1961
.
44.
X.
Wei
,
S. C.
Hong
,
X.
Zhuang
,
T.
Goto
, and
Y. R.
Shen
, “
Nonlinear optical studies of liquid crystal alignment on a rubbed polyvinyl alcohol surface
,”
Phys. Rev. E
62
(
4
),
5160
5172
(
2000
).
45.
C. Y.
Peñalber
,
Z.
Grenoble
,
G. A.
Baker
, and
S.
Baldelli
, “
Surface characterization of imidazolium-based ionic liquids with cyano-functionalized anions at the gas-liquid interface using sum frequency generation spectroscopy
,”
Phys. Chem. Chem. Phys.
14
(
15
),
5122
5131
(
2012
).
46.
C. D.
Stanners
,
Q.
Du
,
R. P.
Chin
,
P.
Cremer
,
G. A.
Somorjai
, and
Y. R.
Shen
, “
Polar ordering at the liquid-vapor interface of n-alcohols (C1-C8)
,”
Chem. Phys. Lett.
232
(
4
),
407
413
(
1995
).
47.
G.
Herzberg
,
Molecular Spectra and Molecular Structure II. Infrared and Raman Spectra of Polyatomic Molecules
(
D. Van Nostrand Co.
,
1966
).
48.
T.
Polat
and
G.
Yildirim
, “
Investigation of solvent polarity effect on molecular structure and vibrational spectrum of xanthine with the aid of quantum chemical computations
,”
Spectrochim. Acta, Part A
123
,
98
109
(
2014
).
49.
C.
Hirose
,
N.
Akamatsu
, and
K.
Domen
, “
Formulas for the analysis of the surface SFG spectrum and transformation coefficients of Cartesian SFG tensor components
,”
Appl. Spectrosc.
46
(
6
),
1051
1072
(
1992
).
50.
J.
Sung
,
K.
Park
, and
D.
Kim
, “
Surfaces of alcohol–water mixtures studied by sum-frequency generation vibrational spectroscopy
,”
J. Phys. Chem. B
109
(
39
),
18507
18514
(
2005
).
51.
T.
Ishihara
,
T.
Ishiyama
, and
A.
Morita
, “
Surface structure of methanol/water solutions via sum frequency orientational analysis and molecular dynamics simulation
,”
J. Phys. Chem. C
119
(
18
),
9879
9889
(
2015
).
52.
S.
Ye
,
S.
Nihonyanagi
, and
K.
Uosaki
, “
Sum frequency generation (SFG) study of the pH-dependent water structure on a fused quartz surface modified by an octadecyltrichlorosilane (OTS) monolayer
,”
Phys. Chem. Chem. Phys.
3
(
16
),
3463
3469
(
2001
).
53.
H. D.
Jayathilake
,
J. A.
Driscoll
,
A. N.
Bordenyuk
,
L.
Wu
,
S. R. P.
Da Rocha
,
C. N.
Verani
, and
A. V.
Benderskii
, “
Molecular order in Langmuir–Blodgett monolayers of metal–ligand surfactants probed by sum frequency generation
,”
Langmuir
25
(
12
),
6880
6886
(
2009
).
54.
K.
Fujii
,
T.
Fujimori
,
T.
Takamuku
,
R.
Kanzaki
,
Y.
Umebayashi
, and
S. I.
Ishiguro
, “
Conformational equilibrium of bis(trifluoromethanesulfonyl) imide anion of a room-temperature ionic liquid: Raman spectroscopic study and DFT calculations
,”
J. Phys. Chem. B
110
(
16
),
8179
8183
(
2006
).
55.
J. C.
Lassègues
,
J.
Grondin
,
R.
Holomb
, and
P.
Johansson
, “
Raman and ab initio study of the conformational isomerism in the 1-ethyl-3-methyl-imidazolium bis(trifluoromethanesulfonyl)imide ionic liquid
,”
J. Raman Spectrosc.
38
(
5
),
551
558
(
2007
).
56.
Y.
Umebayashi
,
T.
Mitsugi
,
S.
Fukuda
,
T.
Fujimori
,
K.
Fujii
,
R.
Kanzaki
,
M.
Takeuchi
, and
S. I.
Ishiguro
, “
Lithium ion solvation in room-temperature ionic liquids involving bis(trifluoromethanesulfonyl) imide anion studied by Raman spectroscopy and DFT calculations
,”
J. Phys. Chem. B
111
(
45
),
13028
13032
(
2007
).
57.
J. C.
Lassègues
,
J.
Grondin
,
C.
Aupetit
, and
P.
Johansson
, “
Spectroscopic identification of the lithium ion transporting species in LiTFSI-doped ionic liquids
,”
J. Phys. Chem. A
113
(
1
),
305
314
(
2009
).
58.
M. J.
Shultz
,
C.
Schnitzer
,
D.
Simonelli
, and
S.
Baldelli
, “
Sum frequency generation spectroscopy of the aqueous interface: Ionic and soluble molecular solutions
,”
Int. Rev. Phys. Chem.
19
(
1
),
123
153
(
2000
).
59.
S.
Baldelli
, “
Influence of water on the orientation of cations at the surface of a room-temperature ionic liquid: A sum frequency generation vibrational spectroscopic study
,”
J. Phys. Chem. B
107
(
25
),
6148
6152
(
2003
).
60.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
,
G. E.
Scuseria
,
M. A.
Robb
,
J. R.
Cheeseman
,
G.
Scalmani
,
V.
Barone
,
G. A.
Petersson
,
H.
Nakatsuji
,
X.
Li
,
M.
Caricato
,
A. V.
Marenich
,
J.
Bloino
,
B. G.
Janesko
,
R.
Gomperts
,
B.
Mennucci
,
H. P.
Hratchian
,
J. V.
Ortiz
,
A. F.
Izmaylov
,
J. L.
Sonnenberg
,
D.
Williams-Young
,
F.
Ding
,
F.
Lipparini
,
F.
Egidi
,
J.
Goings
,
B.
Peng
,
A.
Petrone
,
T.
Henderson
,
D.
Ranasinghe
,
V. G.
Zakrzewski
,
J.
Gao
,
N.
Rega
,
G.
Zheng
,
W.
Liang
,
M.
Hada
,
M.
Ehara
,
K.
Toyota
,
R.
Fukuda
,
J.
Hasegawa
,
M.
Ishida
,
T.
Nakajima
,
Y.
Honda
,
O.
Kitao
,
H.
Nakai
,
T.
Vreven
,
K.
Throssell
,
J. J. A.
Montgomery
,
J. E.
Peralta
,
F.
Ogliaro
,
M. J.
Bearpark
,
J. J.
Heyd
,
E. N.
Brothers
,
K. N.
Kudin
,
V. N.
Staroverov
,
T. A.
Keith
,
R.
Kobayashi
,
J.
Normand
,
K.
Raghavachari
,
A. P.
Rendell
,
J. C.
Burant
,
S. S.
Iyengar
,
J.
Tomasi
,
M.
Cossi
,
J. M.
Millam
,
M.
Klene
,
C.
Adamo
,
R.
Cammi
,
J. W.
Ochterski
,
R. L.
Martin
,
K.
Morokuma
,
O.
Farkas
,
J. B.
Foresman
, and
D. J.
Fox
,
Gaussian 16, Revision C.01
,
Gaussian, Inc.
,
Wallingford, CT
,
2019
.
61.
P. B.
Miranda
,
V.
Pflumio
,
H.
Saijo
, and
Y. R.
Shen
, “
Conformation of surfactant monolayers at solid/liquid interfaces
,”
Chem. Phys. Lett.
264
(
3–4
),
387
392
(
1997
).
62.
B. A.
Marekha
,
V. A.
Koverga
,
E.
Chesneau
,
O. N.
Kalugin
,
T.
Takamuku
,
P.
Jedlovszky
, and
A.
Idrissi
, “
Local structure in terms of nearest-neighbor approach in 1-butyl-3-methylimidazolium-based ionic liquids: MD simulations
,”
J. Phys. Chem. B
120
(
22
),
5029
5041
(
2016
).
63.
R. P.
Matthews
,
I. J.
Villar-Garcia
,
C. C.
Weber
,
J.
Griffith
,
F.
Cameron
,
J. P.
Hallett
,
P. A.
Hunt
, and
T.
Welton
, “
A structural investigation of ionic liquid mixtures
,”
Phys. Chem. Chem. Phys.
18
(
12
),
8608
8624
(
2016
).
You do not currently have access to this content.