Rubrene is one of the leading organic semiconductors in scientific and industrial research, showing good conductivities and utilities in devices such as organic field-effect transistors. In these applications, the rubrene crystals often contact ionic liquids and other materials. Consequently, their surface properties and interfacial interactions influence the device’s performance. Although rubrene has been extensively studied with multiple structure characterization techniques, a complete description of the structure of rubrene single-crystal surfaces at the molecular level remains elusive. This study elucidates the molecular orientation and arrangement on the surface of rubrene single crystals with sum frequency generation (SFG) spectroscopy and reflection high-energy electron diffraction, respectively. The results confirm the near-surface unit cells with in-plane lattice parameters of a = 7.24 Å and b = 14.3 Å and an out-of-plane constant of c = 26.9 Å. Furthermore, the SFG analysis yields the tilt and rotation angles of θ = 15° and φ = 43° with respect to the crystalline c and a axes, respectively, and an in-plane twist of ψ = 3° for the surface phenyl rings.

1.
B. C.
Krummacher
,
V.-E.
Choong
,
M. K.
Mathai
,
S. A.
Choulis
,
F.
So
,
F.
Jermann
,
T.
Fiedler
, and
M.
Zachau
, “
Highly efficient white organic light-emitting diode
,”
Appl. Phys. Lett.
88
(
11
),
113506
(
2006
).
2.
B.
Geffroy
,
P.
Le Roy
, and
C.
Prat
, “
Organic light‐emitting diode (OLED) technology: Materials, devices and display technologies
,”
Polym. Int.
55
(
6
),
572
582
(
2006
).
3.
Y.
Kijima
,
N.
Asai
, and
S.-i.
Tamura
, “
A blue organic light emitting diode
,”
Jpn. J. Appl. Phys.
38
(
9R
),
5274
(
1999
).
4.
H.-W.
Chen
,
J.-H.
Lee
,
B.-Y.
Lin
,
S.
Chen
, and
S.-T.
Wu
, “
Liquid crystal display and organic light-emitting diode display: Present status and future perspectives
,”
Light: Sci. Appl.
7
(
3
),
17168
(
2018
).
5.
T.
Sekitani
,
H.
Nakajima
,
H.
Maeda
,
T.
Fukushima
,
T.
Aida
,
K.
Hata
, and
T.
Someya
, “
Stretchable active-matrix organic light-emitting diode display using printable elastic conductors
,”
Nat. Mater.
8
(
6
),
494
499
(
2009
).
6.
P.
Cheng
and
X.
Zhan
, “
Stability of organic solar cells: Challenges and strategies
,”
Chem. Soc. Rev.
45
(
9
),
2544
2582
(
2016
).
7.
H.
Hoppe
and
N. S.
Sariciftci
, “
Organic solar cells: An overview
,”
J. Mater. Res.
19
(
7
),
1924
1945
(
2004
).
8.
D.
Wöhrle
and
D.
Meissner
, “
Organic solar cells
,”
Adv. Mater.
3
(
3
),
129
138
(
1991
).
9.
J.
Wu
,
H. A.
Becerril
,
Z.
Bao
,
Z.
Liu
,
Y.
Chen
, and
P.
Peumans
, “
Organic solar cells with solution-processed graphene transparent electrodes
,”
Appl. Phys. Lett.
92
(
26
),
237
(
2008
).
10.
M.
Kaltenbrunner
,
M. S.
White
,
E. D.
Głowacki
,
T.
Sekitani
,
T.
Someya
,
N. S.
Sariciftci
, and
S.
Bauer
, “
Ultrathin and lightweight organic solar cells with high flexibility
,”
Nat. Commun.
3
(
1
),
770
777
(
2012
).
11.
H.
Aziz
and
Z. D.
Popovic
, “
Study of organic light emitting devices with a 5,6,11,12-tetraphenylnaphthacene (rubrene)-doped hole transport layer
,”
Appl. Phys. Lett.
80
(
12
),
2180
2182
(
2002
).
12.
A. K.
Pandey
and
J.-M.
Nunzi
, “
Upconversion injection in rubrene/perylene-diimide-heterostructure electroluminescent diodes
,”
Appl. Phys. Lett.
90
(
26
),
263508
(
2007
).
13.
A. K.
Pandey
and
J.-M.
Nunzi
, “
Rubrene/Fullerene heterostructures with a half-gap electroluminescence threshold and large photovoltage
,”
Adv. Mater.
19
(
21
),
3613
3617
(
2007
).
14.
W.
Xie
,
M.
Meng
,
C.
Li
,
Y.
Zhao
, and
S.
Liu
, “
High-efficiency simple structure white organic light-emitting devices based on rubrene ultrathin layer
,”
Opt. Quantum Electron.
37
(
10
),
943
948
(
2005
).
15.
H.
Murata
,
C. D.
Merritt
, and
Z. H.
Kafafi
, “
Emission mechanism in rubrene-doped molecular organic light-emitting diodes: Direct carrier recombination at luminescent centers
,”
IEEE J. Sel. Top. Quantum Electron.
4
(
1
),
119
124
(
1998
).
16.
R. W. I.
de Boer
,
M.
Gershenson
,
A.
Morpurgo
, and
V.
Podzorov
, “
Organic single‐crystal field‐effect transistors
,”
Phys. Status Solidi A
201
(
6
),
1302
1331
(
2004
).
17.
V.
Podzorov
,
V.
Pudalov
, and
M.
Gershenson
, “
Field-effect transistors on rubrene single crystals with parylene gate insulator
,”
Appl. Phys. Lett.
82
(
11
),
1739
1741
(
2003
).
18.
J.
Takeya
,
M.
Yamagishi
,
Y.
Tominari
,
R.
Hirahara
,
Y.
Nakazawa
,
T.
Nishikawa
,
T.
Kawase
,
T.
Shimoda
, and
S.
Ogawa
, “
Very high-mobility organic single-crystal transistors with in-crystal conduction channels
,”
Appl. Phys. Lett.
90
(
10
),
102120
(
2007
).
19.
W.
Xie
,
K. A.
McGarry
,
F.
Liu
,
Y.
Wu
,
P. P.
Ruden
,
C. J.
Douglas
, and
C. D.
Frisbie
, “
High-mobility transistors based on single crystals of isotopically substituted rubrene-d28
,”
J. Phys. Chem. C
117
(
22
),
11522
11529
(
2013
).
20.
J.
Nitta
,
K.
Miwa
,
N.
Komiya
,
E.
Annese
,
J.
Fujii
,
S.
Ono
, and
K.
Sakamoto
, “
The actual electronic band structure of a rubrene single crystal
,”
Sci. Rep.
9
(
1
),
9645
(
2019
).
21.
T.
Iimori
,
R.
Ito
, and
N.
Ohta
, “
Stark spectroscopy of rubrene. II. Stark fluorescence spectroscopy and fluorescence quenching induced by an external electric field
,”
J. Phys. Chem. A
120
(
28
),
5497
5503
(
2016
).
22.
T.
Iimori
,
R.
Ito
,
N.
Ohta
, and
H.
Nakano
, “
Stark spectroscopy of rubrene. I. electroabsorption spectroscopy and molecular parameters
,”
J. Phys. Chem. A
120
(
25
),
4307
4313
(
2016
).
23.
J. J.
Kim
,
S.
Bachevillier
,
D. L. G.
Arellano
,
B. P.
Cherniawski
,
E. K.
Burnett
,
N.
Stingelin
,
C.
Ayela
,
O.
Usluer
,
S. C. B.
Mannsfeld
,
G.
Wantz
, and
A. L.
Briseno
, “
Correlating crystal thickness, surface morphology, and charge transport in pristine and doped rubrene single crystals
,”
ACS Appl. Mater. Interfaces
10
(
31
),
26745
26751
(
2018
).
24.
W.
Li
,
M.
Fronk
,
H.
Kupfer
,
S.
Schulze
,
M.
Hietschold
,
D. R.
Zahn
, and
G.
Salvan
, “
Aging of rubrene layers in Ni/rubrene heterostructures studied by magneto-optical Kerr effect spectroscopy
,”
J. Am. Chem. Soc.
132
(
16
),
5687
5692
(
2010
).
25.
S. W.
Park
,
J. M.
Choi
,
K. H.
Lee
,
H. W.
Yeom
,
S.
Im
, and
Y. K.
Lee
, “
Amorphous-to-crystalline phase transformation of thin film rubrene
,”
J. Phys. Chem. B
114
(
27
),
9084
9085
(
2010
).
26.
X.
Ren
,
C. D.
Frisbie
, and
C.
Leighton
, “
Anomalous cooling-rate-dependent charge transport in electrolyte-gated rubrene crystals
,”
J. Phys. Chem. Lett.
9
(
17
),
4828
4833
(
2018
).
27.
K.
Sun
,
M.
Lan
, and
J. Z.
Wang
, “
Absolute configuration and chiral self-assembly of rubrene on Bi(111)
,”
Phys. Chem. Chem. Phys.
17
(
39
),
26220
26224
(
2015
).
28.
S.
Tao
,
N.
Ohtani
,
R.
Uchida
,
T.
Miyamoto
,
Y.
Matsui
,
H.
Yada
,
H.
Uemura
,
H.
Matsuzaki
,
T.
Uemura
,
J.
Takeya
, and
H.
Okamoto
, “
Relaxation dynamics of photoexcited excitons in rubrene single crystals using femtosecond absorption spectroscopy
,”
Phys. Rev. Lett.
109
(
9
),
097403
(
2012
).
29.
T.
Ueba
,
T.
Yamada
, and
T.
Munakata
, “
Electronic excitation and relaxation dynamics of the LUMO-derived level in rubrene thin films on graphite
,”
J. Chem. Phys.
145
(
21
),
214703
(
2016
).
30.
D.
Okaue
,
I.
Tanabe
,
S.
Ono
,
K.
Sakamoto
,
T.
Sato
,
A.
Imanishi
,
Y.
Morikawa
,
J.
Takeya
, and
K.-i.
Fukui
, “
Ionic-Liquid-originated carrier trapping dynamics at the interface in electric double-layer organic FET revealed by operando interfacial analyses
,”
J. Phys. Chem. C
124
(
4
),
2543
2552
(
2020
).
31.
T. S.
Volek
,
Z. T.
Armstrong
,
J. K.
Sowa
,
K. S.
Wilson
,
M.
Bohlmann Kunz
,
K.
Bera
,
M.
Koble
,
R. R.
Frontiera
,
P. J.
Rossky
,
M. T.
Zanni
, and
S. T.
Roberts
, “
Structural disorder at the edges of rubrene crystals enhances singlet fission
,”
J. Phys. Chem. Lett.
14
,
11497
11505
(
2023
).
32.
S.
Tavazzi
,
L.
Silvestri
,
M.
Campione
,
A.
Borghesi
,
A.
Papagni
,
P.
Spearman
,
A.
Yassar
,
A.
Camposeo
, and
D.
Pisignano
, “
Generalized ellipsometry and dielectric tensor of rubrene single crystals
,”
J. Appl. Phys.
102
(
2
),
023107
(
2007
).
33.
S.
Tavazzi
,
A.
Borghesi
,
A.
Papagni
,
P.
Spearman
,
L.
Silvestri
,
A.
Yassar
,
A.
Camposeo
,
M.
Polo
, and
D.
Pisignano
, “
Optical response and emission waveguiding in rubrene crystals
,”
Phys. Rev. B
75
(
24
),
245416
(
2007
).
34.
J.-Z.
Wang
,
M.
Lan
,
T.-N.
Shao
,
G.-Q.
Li
,
Y.
Zhang
,
C.-Z.
Huang
,
Z.-H.
Xiong
,
X.-C.
Ma
,
J.-F.
Jia
, and
Q.-K.
Xue
, “
STM study of a rubrene monolayer on Bi(001): Structural modulations
,”
Phys. Rev. B
83
(
23
),
235433
(
2011
).
35.
M.-C.
BLüM
,
Supramolecular Assembly, Chirality, and Electronic Properties of Rubrene Studied by STM and STS
(
EPFL
,
2006
).
36.
J.
Miwa
,
F.
Cicoira
,
J.
Lipton-Duffin
,
D.
Perepichka
,
C.
Santato
, and
F.
Rosei
, “
Self-assembly of rubrene on Cu(111)
,”
Nanotechnology
19
(
42
),
424021
(
2008
).
37.
T.
Minato
,
H.
Aoki
,
H.
Fukidome
,
T.
Wagner
, and
K.
Itaya
, “
High-resolution molecular images of rubrene single crystals obtained by frequency modulation atomic force microscopy
,”
Appl. Phys. Lett.
95
(
9
),
221
(
2009
).
38.
Y.
Yokota
,
H.
Hara
,
T.
Harada
,
A.
Imanishi
,
T.
Uemura
,
J.
Takeya
, and
K.-i.
Fukui
, “
Structural investigation of ionic liquid/rubrene single crystal interfaces by using frequency-modulation atomic force microscopy
,”
Chem. Commun.
49
(
90
),
10596
10598
(
2013
).
39.
S.
Sinha
,
C.-H.
Wang
,
M.
Mukherjee
,
T.
Mukherjee
, and
Y.-W.
Yang
, “
Oxidation of rubrene thin films: An electronic structure study
,”
Langmuir
30
(
51
),
15433
15441
(
2014
).
40.
C.-Q.
Leng
,
H.-R.
Li
,
Y.
Li
, and
P.-J.
Gao
, “
Surface and interface analysis of Rubrene/TPD using AFM and XPS
,”
J. Funct. Mater.
41
,
349
(
2010
).
41.
G.
Ji
,
G.
Zheng
,
B.
Zhao
,
F.
Song
,
X.
Zhang
,
K.
Shen
,
Y.
Yang
,
Y.
Xiong
,
X.
Gao
,
L.
Cao
, and
D. C.
Qi
, “
Interfacial electronic structures revealed at the rubrene/CH3NH3PbI3 interface
,”
Phys. Chem. Chem. Phys.
19
(
9
),
6546
6553
(
2017
).
42.
H. H.
Choi
,
H. T.
Yi
,
J.
Tsurumi
,
J. J.
Kim
,
A. L.
Briseno
,
S.
Watanabe
,
J.
Takeya
,
K.
Cho
, and
V.
Podzorov
, “
A large anisotropic enhancement of the charge carrier mobility of flexible organic transistors with strain: A hall effect and Raman study
,”
Adv. Sci.
7
(
1
),
1901824
(
2020
).
43.
K.
Bera
,
C. J.
Douglas
, and
R. R.
Frontiera
, “
Femtosecond Raman microscopy reveals structural dynamics leading to triplet separation in rubrene singlet fission
,”
J. Phys. Chem. Lett.
8
(
23
),
5929
5934
(
2017
).
44.
S. A.
Shah
and
S.
Baldelli
, “
Chemical imaging of surfaces with sum frequency generation vibrational spectroscopy
,”
Acc. Chem. Res.
53
(
6
),
1139
1150
(
2020
).
45.
S. A.
Shah
and
S.
Baldelli
, “
Vibrational Ground-State depletion for enhanced resolution sum frequency generation microscopy
,”
Chem. Phys. Lett.
787
,
139252
(
2022
).
46.
S. A.
Shah
,
A. A.
Pikalov
, and
S.
Baldelli
, “
ChemSpecNet: A neural network for chemical analysis of sum frequency generation spectroscopic imaging
,”
Opt. Commun.
507
,
127691
(
2022
).
47.
X.
He
and
D. S.
Yang
, “
Ethanol on graphite: Ordered structures and delicate balance of interfacial and intermolecular forces
,”
J. Phys. Chem. C
125
(
43
),
24145
24154
(
2021
).
48.
H.
Jiang
and
C.
Kloc
, “
Single-crystal growth of organic semiconductors
,”
MRS Bull.
38
(
1
),
28
33
(
2013
).
49.
O. D.
Jurchescu
,
A.
Meetsma
, and
T. T.
Palstra
, “
Low-temperature structure of rubrene single crystals grown by vapor transport
,”
Acta Crystallogr., Sect. B:Struct. Sci.
62
(
2
),
330
334
(
2006
).
50.
D.
Käfer
,
L.
Ruppel
,
G.
Witte
, and
C.
Wöll
, “
Role of molecular conformations in rubrene thin film growth
,”
Phys. Rev. Lett.
95
(
16
),
166602
(
2005
).
51.
P.
Irkhin
and
I.
Biaggio
, “
Two-photon absorption spectroscopy of rubrene single crystals
,”
Phys. Rev. B
89
(
20
),
201202
(
2014
).
52.
Y. R.
Shen
, “
Surfaces probed by nonlinear optics
,”
Surf. Sci.
299–300
,
551
562
(
1994
).
53.
H.-F.
Wang
,
L.
Velarde
,
W.
Gan
, and
L.
Fu
, “
Quantitative sum-frequency generation vibrational spectroscopy of molecular surfaces and interfaces: Lineshape, polarization, and orientation
,”
Annu. Rev. Phys. Chem.
66
(
1
),
189
216
(
2015
).
54.
H.-F.
Wang
, “
Sum frequency generation vibrational spectroscopy (SFG-VS) for complex molecular surfaces and interfaces: Spectral lineshape measurement and analysis plus some controversial issues
,”
Prog. Surf. Sci.
91
(
4
),
155
182
(
2016
).
55.
A.
Morita
,
Theory of Sum Frequency Generation Spectroscopy
,
Lecture Notes in Chemistry
(
Springer Singapore
,
2018
).
56.
J. D. C.
Jacob
,
T. R.
Lee
, and
S.
Baldelli
, “
In situ vibrational study of the reductive desorption of alkanethiol monolayers on gold by sum frequency generation spectroscopy
,”
J. Phys. Chem. C
118
(
50
),
29126
29134
(
2014
).
57.
L.
Raimondo
,
S.
Trabattoni
,
M.
Moret
,
N.
Masciocchi
,
M.
Masino
, and
A.
Sassella
, “
Oxidation of crystalline rubrene films: Evidence of an epitaxial native oxide layer
,”
Adv. Mater. Interfaces
4
(
23
),
1700670
(
2017
).
58.
J. T.
Ly
,
S. A.
Lopez
,
J. B.
Lin
,
J. J.
Kim
,
H.
Lee
,
E. K.
Burnett
,
L.
Zhang
,
A.
Aspuru-Guzik
,
K.
Houk
, and
A. L.
Briseno
, “
Oxidation of rubrene, and implications for device stability
,”
J. Mater. Chem. C
6
(
14
),
3757
3761
(
2018
).
59.
M.
Oh-e
,
S.-C.
Hong
, and
Y. R.
Shen
, “
Orientations of phenyl sidegroups and liquid crystal molecules on a rubbed polystyrene surface
,”
Appl. Phys. Lett.
80
(
5
),
784
786
(
2002
).
60.
W.
Braun
,
Applied RHEED: Reflection High-Energy Electron Diffraction During Crystal Growth
(
Springer Science & Business Media
,
1999
), Vol.
154
.
61.
A.
Ichimiya
,
P. I.
Cohen
, and
P. I.
Cohen
,
Reflection High-Energy Electron Diffraction
(
Cambridge University Press
,
2004
).
62.
D.
Henn
,
W.
Williams
, and
D.
Gibbons
, “
Crystallographic data for an orthorhombic form of rubrene
,”
J. Appl. Crystallogr.
4
(
3
),
256
(
1971
).
63.
M.
El Helou
,
O.
Medenbach
, and
G.
Witte
, “
Rubrene microcrystals: A route to investigate surface morphology and bulk anisotropies of organic semiconductors
,”
Cryst. Growth Des.
10
(
8
),
3496
3501
(
2010
).
64.
D. C.
Duffy
,
P. B.
Davies
, and
C. D.
Bain
, “
Surface vibrational spectroscopy of organic counterions bound to a surfactant monolayer
,”
J. Phys. Chem.
99
(
41
),
15241
15246
(
1995
).
65.
R.
Ward
et al, “
Orientation of benzoate ions bound to a monolayer of a cationic surfactant at the surface of water
,”
Mol. Phys.
88
(
1
),
269
280
(
1996
).
66.
C.
Hirose
,
N.
Akamatsu
, and
K.
Domen
, “
Formulas for the analysis of the surface SFG spectrum and transformation coefficients of cartesian SFG tensor components
,”
Appl. Spectrosc.
46
(
6
),
1051
1072
(
1992
).
67.
X.
Zhuang
,
P.
Miranda
,
D.
Kim
, and
Y.
Shen
, “
Mapping molecular orientation and conformation at interfaces by surface nonlinear optics
,”
Phys. Rev. B
59
(
19
),
12632
(
1999
).
68.
P.
Irkhin
,
A.
Ryasnyanskiy
,
M.
Koehler
, and
I.
Biaggio
, “
Absorption and photoluminescence spectroscopy of rubrene single crystals
,”
Phys. Rev. B
86
(
8
),
085143
(
2012
).
69.
M.
Raab
,
J. C.
Becca
,
J.
Heo
,
C.-K.
Lim
,
A.
Baev
,
L.
Jensen
,
P. N.
Prasad
, and
L.
Velarde
, “
Doubly resonant sum frequency spectroscopy of mixed photochromic isomers on surfaces reveals conformation-specific vibronic effects
,”
J. Chem. Phys.
150
(
11
),
114704
(
2019
).
You do not currently have access to this content.