We recently introduced the Alchemical Integral Transform (AIT), enabling the prediction of energy differences, and guessed an ansatz to parameterize space r in some alchemical change λ. Here, we present a rigorous derivation of AIT’s kernel and discuss the parameterization r(λ) in n dimensions, i.e., necessary conditions, mathematical freedoms, and additional constraints when obtaining it. Analytical expressions for changes in energy spectra and densities are given for a number of systems. Examples include homogeneous potentials such as the quantum harmonic oscillator, hydrogen-like atom, and Dirac well, both for one- and multiparticle cases, and a multiparticle system beyond coordinate scaling for harmonic potentials.
REFERENCES
1.
E.
Hückel
, “Quantentheoretische beiträge zum benzolproblem
,” Z. Phys.
72
(5
), 310
–337
(1931
).2.
E. A.
Hylleraas
and J.
Midtdal
, “Ground state energy of two-electron atoms
,” Phys. Rev.
103
, 829
–830
(1956
).3.
E. B.
Wilson
, Jr., “Four-dimensional electron density function
,” J. Chem. Phys.
36
(8
), 2232
–2233
(1962
).4.
P.
Politzer
and R. G.
Parr
, “Some new energy formulas for atoms and molecules
,” J. Chem. Phys.
61
(10
), 4258
–4262
(1974
).5.
M.
Levy
, “An energy-density equation for isoelectronic changes in atoms
,” J. Chem. Phys.
68
, 5298
–5299
(1978
).6.
M.
Levy
, “On approximate energy differences from average electron densities
,” J. Chem. Phys.
70
(3
), 1573
–1574
(1979
).7.
T. E.
Baker
, E. M.
Stoudenmire
, L. O.
Wagner
, K.
Burke
, and S. R.
White
, “One-dimensional mimicking of electronic structure: The case for exponentials
,” Phys. Rev. B
91
, 235141
(2015
).8.
M.
Takahashi
, Thermodynamics of One-Dimensional Solvable Models
(Cambridge University Press
, 2005
).9.
D. C.
Mattis
, The Many-Body Problem: An Encyclopedia of Exactly Solved Models in One Dimension (3rd Printing with Revisions and Corrections)
(World Scientific
, 1993
).10.
P.
Schlottmann
, “Exact results for highly correlated electron systems in one dimension
,” Int. J. Mod. Phys. B
11
(04n05
), 355
–667
(1997
).11.
T.
Busch
and G.
Huyet
, “Low-density, one-dimensional quantum gases in a split trap
,” J. Phys. B: At., Mol. Opt. Phys.
36
(12
), 2553
(2003
).12.
R. J.
Magyar
, “Ground and excited-state fermions in a 1D double-well, exact and time-dependent density-functional solutions
,” arXiv:0708.3265 (2007
).13.
P.
Geerlings
, F.
De Proft
, and W.
Langenaeker
, “Conceptual density functional theory
,” Chem. Rev.
103
(5
), 1793
–1874
(2003
).14.
R. A.
Miranda-Quintana
, P. W.
Ayers
, and F.
Heidar-Zadeh
, “Reactivity and charge transfer beyond the parabolic model: The ‘|Δμ| big is good’ principle
,” ChemistrySelect
6
(1
), 96
–100
(2021
).15.
P.
Fuentealba
and C.
Cárdenas
, “Chapter 14 - On the analysis of the Fukui function
,” in Chemical Reactivity
, edited by S.
Kaya
, L.
von Szentpály
, G.
Serdaroğlu
, and L.
Guo
(Elsevier
, 2023
), pp. 421
–432
.16.
R. A.
Miranda-Quintana
, F.
Heidar-Zadeh
, S.
Fias
, A. E. A.
Chapman
, S.
Liu
, C.
Morell
, T.
Gómez
, C.
Cárdenas
, and P. W.
Ayers
, “Molecular interactions from the density functional theory for chemical reactivity: Interaction chemical potential, hardness, and reactivity principles
,” Front. Chem.
10
, 929464
(2022
).17.
J. L.
Gázquez
, M.
Franco-Pérez
, P. W.
Ayers
, and A.
Vela
, Conceptual Density Functional Theory in the Grand Canonical Ensemble
(John Wiley & Sons, Ltd.
, 2021
), Chap. 11, pp. 191
–211
.18.
R.
Balawender
, M.
Lesiuk
, F.
De Proft
, C.
Van Alsenoy
, and P.
Geerlings
, “Exploring chemical space with alchemical derivatives: Alchemical transformations of H through Ar and their ions as a proof of concept
,” Phys. Chem. Chem. Phys.
21
(43
), 23865
–23879
(2019
).19.
T.
Shiraogawa
and J.-Y.
Hasegawa
, “Exploration of chemical space for designing functional molecules accounting for geometric stability
,” J. Phys. Chem. Lett.
13
(36
), 8620
–8627
(2022
).20.
K.-Y. S.
Chang
and O. A.
von Lilienfeld
, “AlxGa1−xAs crystals with direct 2 eV band gaps from computational alchemy
,” Phys. Rev. Mater.
2
(7
), 073802
(2018
).21.
G. F.
von Rudorff
and O. A.
von Lilienfeld
, “Alchemical perturbation density functional theory
,” Phys. Rev. Res.
2
(2
), 023220
(2020
).22.
G. F.
von Rudorff
and O. A.
von Lilienfeld
, “Simplifying inverse materials design problems for fixed lattices with alchemical chirality
,” Sci. Adv.
7
(21
), eabf1173
(2021
).23.
O.
Anatole von Lilienfeld
and G.
Domenichini
, “Even order contributions to relative energies vanish for antisymmetric perturbations
,” arXiv:2306.16409 (2023
).24.
G. F.
von Rudorff
and O. A.
von Lilienfeld
, “Rapid and accurate molecular deprotonation energies from quantum alchemy
,” Phys. Chem. Chem. Phys.
22
, 10519
–10525
(2020
).25.
M.
Muñoz
, A.
Robles-Navarro
, P.
Fuentealba
, and C.
Cárdenas
, “Predicting deprotonation sites using alchemical derivatives
,” J. Phys. Chem. A
124
(19
), 3754
–3760
(2020
).26.
K. Y. S.
Chang
, S.
Fias
, R.
Ramakrishnan
, and O. A.
von Lilienfeld
, “Fast and accurate predictions of covalent bonds in chemical space
,” J. Chem. Phys.
144
(17
), 174110
(2016
).27.
E. A.
Eikey
, A. M.
Maldonado
, C. D.
Griego
, G. F.
von Rudorff
, and J. A.
Keith
, “Quantum alchemy beyond singlets: Bonding in diatomic molecules with hydrogen
,” J. Chem. Phys.
156
(20
), 204111
(2022
).28.
E. A.
Eikey
, A. M.
Maldonado
, C. D.
Griego
, G. F.
von Rudorff
, and J. A.
Keith
, “Evaluating quantum alchemy of atoms with thermodynamic cycles: Beyond ground electronic states
,” J. Chem. Phys.
156
(6
), 064106
(2022
).29.
S. L.
Krug
, G. F.
von Rudorff
, and O. A.
von Lilienfeld
, “Relative energies without electronic perturbations via alchemical integral transform
,” J. Chem. Phys.
157
(16
), 164109
(2022
).30.
C.
Cohen-Tannoudji
, B.
Diu
, and F.
Laloë
, Quantenmechanik, Band 1 & 2
(Walter de Gruyter GmbH & Co KG
, 2008
).31.
A.
Szabo
and N. S.
Ostlund
, Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory
(Dover Books on Chemistry. Dover Publications
, 1989
).32.
S. L.
Krug
and O. A.
von Lilienfeld
, “Alchemical insights into approximately quadratic energies of iso-electronic atoms
,” J. Chem. Phys.
161
, 164308
(2024
).33.
T.
Gould
, D. P.
Kooi
et al, “Electronic excited states in extreme limits via ensemble density functionals
,” Phys. Rev. Lett.
130
, 106401
(2023
).34.
M.
Levy
, “Density-functional exchange correlation through coordinate scaling in adiabatic connection and correlation hole
,” Phys. Rev. A
43
, 4637
–4646
(1991
).35.
Á.
Nagy
, “Coordinate scaling and adiabatic connection formula for ensembles of fractionally occupied excited states
,” Int. J. Quantum Chem.
56
(4
), 225
–228
(1995
).36.
S.
Kümmel
and L.
Kronik
, “Orbital-dependent density functionals: Theory and applications
,” Rev. Mod. Phys.
80
, 3
–60
(2008
).37.
G.
Ceder
, “Predicting properties from scratch
,” Science
280
(5366
), 1099
–1100
(1998
).38.
G. F.
von Rudorff
, “Arbitrarily accurate quantum alchemy
,” J. Chem. Phys.
155
(22
), 224103
(2021
).© 2025 Author(s). Published under an exclusive license by AIP Publishing.
2025
Author(s)
You do not currently have access to this content.