We recently introduced the Alchemical Integral Transform (AIT), enabling the prediction of energy differences, and guessed an ansatz to parameterize space r in some alchemical change λ. Here, we present a rigorous derivation of AIT’s kernel K and discuss the parameterization r(λ) in n dimensions, i.e., necessary conditions, mathematical freedoms, and additional constraints when obtaining it. Analytical expressions for changes in energy spectra and densities are given for a number of systems. Examples include homogeneous potentials such as the quantum harmonic oscillator, hydrogen-like atom, and Dirac well, both for one- and multiparticle cases, and a multiparticle system beyond coordinate scaling for harmonic potentials.

1.
E.
Hückel
, “
Quantentheoretische beiträge zum benzolproblem
,”
Z. Phys.
72
(
5
),
310
337
(
1931
).
2.
E. A.
Hylleraas
and
J.
Midtdal
, “
Ground state energy of two-electron atoms
,”
Phys. Rev.
103
,
829
830
(
1956
).
3.
E. B.
Wilson
, Jr.
, “
Four-dimensional electron density function
,”
J. Chem. Phys.
36
(
8
),
2232
2233
(
1962
).
4.
P.
Politzer
and
R. G.
Parr
, “
Some new energy formulas for atoms and molecules
,”
J. Chem. Phys.
61
(
10
),
4258
4262
(
1974
).
5.
M.
Levy
, “
An energy-density equation for isoelectronic changes in atoms
,”
J. Chem. Phys.
68
,
5298
5299
(
1978
).
6.
M.
Levy
, “
On approximate energy differences from average electron densities
,”
J. Chem. Phys.
70
(
3
),
1573
1574
(
1979
).
7.
T. E.
Baker
,
E. M.
Stoudenmire
,
L. O.
Wagner
,
K.
Burke
, and
S. R.
White
, “
One-dimensional mimicking of electronic structure: The case for exponentials
,”
Phys. Rev. B
91
,
235141
(
2015
).
8.
M.
Takahashi
,
Thermodynamics of One-Dimensional Solvable Models
(
Cambridge University Press
,
2005
).
9.
D. C.
Mattis
,
The Many-Body Problem: An Encyclopedia of Exactly Solved Models in One Dimension (3rd Printing with Revisions and Corrections)
(
World Scientific
,
1993
).
10.
P.
Schlottmann
, “
Exact results for highly correlated electron systems in one dimension
,”
Int. J. Mod. Phys. B
11
(
04n05
),
355
667
(
1997
).
11.
T.
Busch
and
G.
Huyet
, “
Low-density, one-dimensional quantum gases in a split trap
,”
J. Phys. B: At., Mol. Opt. Phys.
36
(
12
),
2553
(
2003
).
12.
R. J.
Magyar
, “
Ground and excited-state fermions in a 1D double-well, exact and time-dependent density-functional solutions
,” arXiv:0708.3265 (
2007
).
13.
P.
Geerlings
,
F.
De Proft
, and
W.
Langenaeker
, “
Conceptual density functional theory
,”
Chem. Rev.
103
(
5
),
1793
1874
(
2003
).
14.
R. A.
Miranda-Quintana
,
P. W.
Ayers
, and
F.
Heidar-Zadeh
, “
Reactivity and charge transfer beyond the parabolic model: The ‘|Δμ| big is good’ principle
,”
ChemistrySelect
6
(
1
),
96
100
(
2021
).
15.
P.
Fuentealba
and
C.
Cárdenas
, “
Chapter 14 - On the analysis of the Fukui function
,” in
Chemical Reactivity
, edited by
S.
Kaya
,
L.
von Szentpály
,
G.
Serdaroğlu
, and
L.
Guo
(
Elsevier
,
2023
), pp.
421
432
.
16.
R. A.
Miranda-Quintana
,
F.
Heidar-Zadeh
,
S.
Fias
,
A. E. A.
Chapman
,
S.
Liu
,
C.
Morell
,
T.
Gómez
,
C.
Cárdenas
, and
P. W.
Ayers
, “
Molecular interactions from the density functional theory for chemical reactivity: Interaction chemical potential, hardness, and reactivity principles
,”
Front. Chem.
10
,
929464
(
2022
).
17.
J. L.
Gázquez
,
M.
Franco-Pérez
,
P. W.
Ayers
, and
A.
Vela
,
Conceptual Density Functional Theory in the Grand Canonical Ensemble
(
John Wiley & Sons, Ltd.
,
2021
), Chap. 11, pp.
191
211
.
18.
R.
Balawender
,
M.
Lesiuk
,
F.
De Proft
,
C.
Van Alsenoy
, and
P.
Geerlings
, “
Exploring chemical space with alchemical derivatives: Alchemical transformations of H through Ar and their ions as a proof of concept
,”
Phys. Chem. Chem. Phys.
21
(
43
),
23865
23879
(
2019
).
19.
T.
Shiraogawa
and
J.-Y.
Hasegawa
, “
Exploration of chemical space for designing functional molecules accounting for geometric stability
,”
J. Phys. Chem. Lett.
13
(
36
),
8620
8627
(
2022
).
20.
K.-Y. S.
Chang
and
O. A.
von Lilienfeld
, “
AlxGa1−xAs crystals with direct 2 eV band gaps from computational alchemy
,”
Phys. Rev. Mater.
2
(
7
),
073802
(
2018
).
21.
G. F.
von Rudorff
and
O. A.
von Lilienfeld
, “
Alchemical perturbation density functional theory
,”
Phys. Rev. Res.
2
(
2
),
023220
(
2020
).
22.
G. F.
von Rudorff
and
O. A.
von Lilienfeld
, “
Simplifying inverse materials design problems for fixed lattices with alchemical chirality
,”
Sci. Adv.
7
(
21
),
eabf1173
(
2021
).
23.
O.
Anatole von Lilienfeld
and
G.
Domenichini
, “
Even order contributions to relative energies vanish for antisymmetric perturbations
,” arXiv:2306.16409 (
2023
).
24.
G. F.
von Rudorff
and
O. A.
von Lilienfeld
, “
Rapid and accurate molecular deprotonation energies from quantum alchemy
,”
Phys. Chem. Chem. Phys.
22
,
10519
10525
(
2020
).
25.
M.
Muñoz
,
A.
Robles-Navarro
,
P.
Fuentealba
, and
C.
Cárdenas
, “
Predicting deprotonation sites using alchemical derivatives
,”
J. Phys. Chem. A
124
(
19
),
3754
3760
(
2020
).
26.
K. Y. S.
Chang
,
S.
Fias
,
R.
Ramakrishnan
, and
O. A.
von Lilienfeld
, “
Fast and accurate predictions of covalent bonds in chemical space
,”
J. Chem. Phys.
144
(
17
),
174110
(
2016
).
27.
E. A.
Eikey
,
A. M.
Maldonado
,
C. D.
Griego
,
G. F.
von Rudorff
, and
J. A.
Keith
, “
Quantum alchemy beyond singlets: Bonding in diatomic molecules with hydrogen
,”
J. Chem. Phys.
156
(
20
),
204111
(
2022
).
28.
E. A.
Eikey
,
A. M.
Maldonado
,
C. D.
Griego
,
G. F.
von Rudorff
, and
J. A.
Keith
, “
Evaluating quantum alchemy of atoms with thermodynamic cycles: Beyond ground electronic states
,”
J. Chem. Phys.
156
(
6
),
064106
(
2022
).
29.
S. L.
Krug
,
G. F.
von Rudorff
, and
O. A.
von Lilienfeld
, “
Relative energies without electronic perturbations via alchemical integral transform
,”
J. Chem. Phys.
157
(
16
),
164109
(
2022
).
30.
C.
Cohen-Tannoudji
,
B.
Diu
, and
F.
Laloë
,
Quantenmechanik, Band 1 & 2
(
Walter de Gruyter GmbH & Co KG
,
2008
).
31.
A.
Szabo
and
N. S.
Ostlund
,
Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory
(
Dover Books on Chemistry. Dover Publications
,
1989
).
32.
S. L.
Krug
and
O. A.
von Lilienfeld
, “
Alchemical insights into approximately quadratic energies of iso-electronic atoms
,”
J. Chem. Phys.
161
,
164308
(
2024
).
33.
T.
Gould
,
D. P.
Kooi
et al, “
Electronic excited states in extreme limits via ensemble density functionals
,”
Phys. Rev. Lett.
130
,
106401
(
2023
).
34.
M.
Levy
, “
Density-functional exchange correlation through coordinate scaling in adiabatic connection and correlation hole
,”
Phys. Rev. A
43
,
4637
4646
(
1991
).
35.
Á.
Nagy
, “
Coordinate scaling and adiabatic connection formula for ensembles of fractionally occupied excited states
,”
Int. J. Quantum Chem.
56
(
4
),
225
228
(
1995
).
36.
S.
Kümmel
and
L.
Kronik
, “
Orbital-dependent density functionals: Theory and applications
,”
Rev. Mod. Phys.
80
,
3
60
(
2008
).
37.
G.
Ceder
, “
Predicting properties from scratch
,”
Science
280
(
5366
),
1099
1100
(
1998
).
38.
G. F.
von Rudorff
, “
Arbitrarily accurate quantum alchemy
,”
J. Chem. Phys.
155
(
22
),
224103
(
2021
).
You do not currently have access to this content.