Experimental methods capable of selectively probing water at the DNA minor groove, major groove, and phosphate backbone are crucial for understanding how hydration influences DNA structure and function. Chiral-selective sum frequency generation spectroscopy (chiral SFG) is unique among vibrational spectroscopies because it can selectively probe water molecules that form chiral hydration structures around biomolecules. However, interpreting chiral SFG spectra is challenging since both water and the biomolecule can produce chiral SFG signals. Here, we combine experiment and computation to establish a theoretical framework for the rigorous interpretation of chiral SFG spectra of DNA. We demonstrate that chiral SFG detects the N–H stretch of DNA base pairs and the O–H stretch of water, exclusively probing water molecules in the DNA first hydration shell. Our analysis reveals that DNA transfers chirality to water molecules only within the first hydration shell, so they can be probed by chiral SFG spectroscopy. Beyond the first hydration shell, the electric field-induced water structure is symmetric and, therefore, precludes chiral SFG response. Furthermore, we find that chiral SFG can differentiate chiral subpopulations of first hydration shell water molecules at the minor groove, major groove, and phosphate backbone. Our findings challenge the scientific perspective dominant for more than 40 years that the minor groove “spine of hydration” is the only chiral water structure surrounding the DNA double helix. By identifying the molecular origins of the DNA chiral SFG spectrum, we lay a robust experimental and theoretical foundation for applying chiral SFG to explore the chemical and biological physics of DNA hydration.

1.
J. D.
Watson
and
F. H.
Crick
, “
Molecular structure of nucleic acids: A structure for deoxyribose nucleic acid
,”
Nature
171
(
4356
),
737
738
(
1953
).
2.
R.
Dickerson
,
H.
Drew
, and
B.
Conner
,
Biomolecular Stereodynamics
(
Adenine Press
,
1981
).
3.
M. L.
Kopka
,
A. V.
Fratini
,
H. R.
Drew
, and
R. E.
Dickerson
, “
Ordered water structure around a B-DNA dodecamer: A quantitative study
,”
J. Mol. Biol.
163
(
1
),
129
146
(
1983
).
4.
V. P.
Chuprina
, “
Anomalous structure and properties of poly (dA)·poly(dT). Computer simulation of the polynucleotide structure with the spine of hydration in the minor groove
,”
Nucleic Acids Res.
15
(
1
),
293
311
(
1987
).
5.
E.
Liepinsh
,
G.
Otting
, and
K.
Wüthrich
, “
NMR observation of individual molecules of hydration water bound to DNA duplexes: Direct evidence for a spine of hydration water present in aqueous solution
,”
Nucleic Acids Res.
20
(
24
),
6549
6553
(
1992
).
6.
M. L.
McDermott
,
H.
Vanselous
,
S. A.
Corcelli
, and
P. B.
Petersen
, “
DNA’s chiral spine of hydration
,”
ACS Cent. Sci.
3
(
7
),
708
714
(
2017
).
7.
E.
Duboué-Dijon
,
A. C.
Fogarty
,
J. T.
Hynes
, and
D.
Laage
, “
Dynamical disorder in the DNA hydration shell
,”
J. Am. Chem. Soc.
138
(
24
),
7610
7620
(
2016
).
8.
N. J.
Tao
,
S. M.
Lindsay
, and
A.
Rupprecht
, “
Structure of DNA hydration shells studied by Raman spectroscopy
,”
Biopolymers
28
(
5
),
1019
1030
(
1989
).
9.
P.
Perera
,
M.
Wyche
,
Y.
Loethen
, and
D.
Ben-Amotz
, “
Solute-induced perturbations of solvent-shell molecules observed using multivariate Raman curve resolution
,”
J. Am. Chem. Soc.
130
(
14
),
4576
4577
(
2008
).
10.
T.
Elsaesser
,
J.
Schauss
,
A.
Kundu
, and
B. P.
Fingerhut
, “
Phosphate vibrations probe electric fields in hydrated biomolecules: Spectroscopy, dynamics, and interactions
,”
J. Phys. Chem. B
125
(
15
),
3899
3908
(
2021
).
11.
A. K.
Singh
,
C.
Wen
,
S.
Cheng
, and
N. Q.
Vinh
, “
Long-range DNA-water interactions
,”
Biophys. J.
120
(
22
),
4966
4979
(
2021
).
12.
S. K.
Pal
,
L.
Zhao
, and
A. H.
Zewail
, “
Water at DNA surfaces: Ultrafast dynamics in minor groove recognition
,”
Proc. Natl. Acad. Sci. U. S. A.
100
(
14
),
8113
(
2003
).
13.
M.
Yang
,
Ł.
Szyc
, and
T.
Elsaesser
, “
Decelerated water dynamics and vibrational couplings of hydrated DNA mapped by two-dimensional infrared spectroscopy
,”
J. Phys. Chem. B
115
(
44
),
13093
13100
(
2011
).
14.
D.
Laage
,
T.
Elsaesser
, and
J. T.
Hynes
, “
Water dynamics in the hydration shells of biomolecules
,”
Chem. Rev.
117
(
16
),
10694
10725
(
2017
).
15.
G. W. H.
Wurpel
,
M.
Sovago
, and
M.
Bonn
, “
Sensitive probing of DNA binding to a cationic lipid monolayer
,”
J. Am. Chem. Soc.
129
(
27
),
8420
8421
(
2007
).
16.
P. C.
Singh
,
M.
Ahmed
,
S.
Nihonyanagi
,
S.
Yamaguchi
, and
T.
Tahara
, “
DNA-induced reorganization of water at model membrane interfaces investigated by heterodyne-detected vibrational sum frequency generation spectroscopy
,”
J. Phys. Chem. B
126
(
4
),
840
846
(
2022
).
17.
N. M.
Levinson
,
E. E.
Bolte
,
C. S.
Miller
,
S. A.
Corcelli
, and
S. G.
Boxer
, “
Phosphate vibrations probe local electric fields and hydration in biomolecules
,”
J. Am. Chem. Soc.
133
(
34
),
13236
13239
(
2011
).
18.
E. A.
Perets
and
E. C. Y.
Yan
, “
The H2O helix: The chiral water superstructure surrounding DNA
,”
ACS Cent. Sci.
3
(
7
),
683
685
(
2017
).
19.
E. A.
Perets
and
E. C. Y.
Yan
, “
Chiral water superstructures around antiparallel β-sheets observed by chiral vibrational sum frequency generation spectroscopy
,”
J. Phys. Chem. Lett.
10
(
12
),
3395
3401
(
2019
).
20.
E. A.
Perets
,
D.
Konstantinovsky
,
L.
Fu
,
J.
Chen
,
H.-F.
Wang
,
S.
Hammes-Schiffer
, and
E. C. Y.
Yan
, “
Mirror-image antiparallel β-sheets organize water molecules into superstructures of opposite chirality
,”
Proc. Natl. Acad. Sci. U. S. A.
117
(
52
),
32902
(
2020
).
21.
D.
Konstantinovsky
,
E. A.
Perets
,
E. C. Y.
Yan
, and
S.
Hammes-Schiffer
, “
Simulation of the chiral sum frequency generation response of supramolecular structures requires vibrational couplings
,”
J. Phys. Chem. B
125
(
43
),
12072
12081
(
2021
).
22.
E. C. Y.
Yan
,
E. A.
Perets
,
D.
Konstantinovsky
, and
S.
Hammes-Schiffer
, “
Detecting interplay of chirality, water, and interfaces for elucidating biological functions
,”
Acc. Chem. Res.
56
(
12
),
1494
1504
(
2023
).
23.
J.
Wang
,
X.
Chen
,
M. L.
Clarke
, and
Z.
Chen
, “
Detection of chiral sum frequency generation vibrational spectra of proteins and peptides at interfaces in situ
,”
Proc. Natl. Acad. Sci. U. S. A.
102
(
14
),
4978
(
2005
).
24.
Z.
Wang
,
L.
Fu
, and
E. C. Y.
Yan
, “
C–H stretch for probing kinetics of self-assembly into macromolecular chiral structures at interfaces by chiral sum frequency generation spectroscopy
,”
Langmuir
29
(
12
),
4077
4083
(
2013
).
25.
E. C. Y.
Yan
,
L.
Fu
,
Z.
Wang
, and
W.
Liu
, “
Biological macromolecules at interfaces probed by chiral vibrational sum frequency generation spectroscopy
,”
Chem. Rev.
114
(
17
),
8471
8498
(
2014
).
26.
E. A.
Perets
,
P. E.
Videla
,
E. C. Y.
Yan
, and
V. S.
Batista
, “
Chiral inversion of amino acids in antiparallel β-sheets at interfaces probed by vibrational sum frequency generation spectroscopy
,”
J. Phys. Chem. B
123
(
27
),
5769
5781
(
2019
).
27.
G. Y.
Stokes
,
J. M.
Gibbs-Davis
,
F. C.
Boman
,
B. R.
Stepp
,
A. G.
Condie
,
S. T.
Nguyen
, and
F. M.
Geiger
, “
Making ‘sense’ of DNA
,”
J. Am. Chem. Soc.
129
(
24
),
7492
7493
(
2007
).
28.
E. A.
Perets
,
K. B.
Olesen
, and
E. C. Y.
Yan
, “
Chiral sum frequency generation spectroscopy detects double-helix DNA at interfaces
,”
Langmuir
38
(
18
),
5765
5778
(
2022
).
29.
G. J.
Simpson
, “
Molecular origins of the remarkable chiral sensitivity of second-order nonlinear optics
,”
ChemPhysChem
5
(
9
),
1301
1310
(
2004
).
30.
A. J.
Moad
and
G. J.
Simpson
, “
A unified treatment of selection rules and symmetry relations for sum-frequency and second harmonic spectroscopies
,”
J. Phys. Chem. B
108
(
11
),
3548
3562
(
2004
).
31.
G. J.
Simpson
,
Nonlinear Optical Polarization Analysis in Chemistry and Biology
(
Cambridge University Press
,
2017
).
32.
D.
Konstantinovsky
,
E. A.
Perets
,
T.
Santiago
,
L.
Velarde
,
S.
Hammes-Schiffer
, and
E. C. Y.
Yan
, “
Detecting the first hydration shell structure around biomolecules at interfaces
,”
ACS Cent. Sci.
8
(
10
),
1404
1414
(
2022
).
33.
D.
Konstantinovsky
,
T.
Santiago
,
M.
Tremblay
,
G. J.
Simpson
,
S.
Hammes-Schiffer
, and
E. C. Y.
Yan
, “
Theoretical basis for interpreting heterodyne chirality-selective sum frequency generation spectra of water
,”
J. Chem. Phys.
160
(
5
),
055102
(
2024
).
34.
Z.
Li
,
C. N.
Weeraman
,
M. S.
Azam
,
E.
Osman
, and
J. M.
Gibbs-Davis
, “
The thermal reorganization of DNA immobilized at the silica/buffer interface: A vibrational sum frequency generation investigation
,”
Phys. Chem. Chem. Phys.
17
(
19
),
12452
12457
(
2015
).
35.
S.-Y.
Jung
,
S.-M.
Lim
,
F.
Albertorio
,
G.
Kim
,
M. C.
Gurau
,
R. D.
Yang
,
M. A.
Holden
, and
P. S.
Cremer
, “
The Vroman effect: A molecular level description of fibrinogen displacement
,”
J. Am. Chem. Soc.
125
(
42
),
12782
12786
(
2003
).
36.
M.
Yang
,
Ł.
Szyc
, and
T.
Elsaesser
, “
Femtosecond two-dimensional infrared spectroscopy of adenine-thymine base pairs in DNA oligomers
,”
J. Phys. Chem. B
115
(
5
),
1262
1267
(
2011
).
37.
A.
Morita
and
J. T.
Hynes
, “
A theoretical analysis of the sum frequency generation spectrum of the water surface. II. Time-dependent approach
,”
J. Phys. Chem. B
106
(
3
),
673
685
(
2002
).
38.
B. M.
Auer
and
J. L.
Skinner
, “
Dynamical effects in line shapes for coupled chromophores: Time-averaging approximation
,”
J. Chem. Phys.
127
(
10
),
104105
(
2007
).
39.
B. M.
Auer
and
J. L.
Skinner
, “
IR and Raman spectra of liquid water: Theory and interpretation
,”
J. Chem. Phys.
128
(
22
),
224511
(
2008
).
40.
B. M.
Auer
and
J. L.
Skinner
, “
Vibrational sum-frequency spectroscopy of the water liquid/vapor interface
,”
J. Phys. Chem. B
113
(
13
),
4125
4130
(
2009
).
41.
P. A.
Pieniazek
,
C. J.
Tainter
, and
J. L.
Skinner
, “
Interpretation of the water surface vibrational sum-frequency spectrum
,”
J. Chem. Phys.
135
(
4
),
044701
(
2011
).
42.
D.
Konstantinovsky
,
E. C. Y.
Yan
, and
S.
Hammes-Schiffer
, “
Characterizing interfaces by Voronoi tessellation
,”
J. Phys. Chem. Lett.
14
(
23
),
5260
5266
(
2023
).
43.
A.
Rosu-Finsen
, “
Interfacial interpretation
,”
Nat. Rev. Chem
7
(
7
),
461
(
2023
).
44.
Y.-C.
Wen
,
S.
Zha
,
X.
Liu
,
S.
Yang
,
P.
Guo
,
G.
Shi
,
H.
Fang
,
Y. R.
Shen
, and
C.
Tian
, “
Unveiling microscopic structures of charged water interfaces by surface-specific vibrational spectroscopy
,”
Phys. Rev. Lett.
116
(
1
),
016101
(
2016
).
45.
S.
Pezzotti
,
D. R.
Galimberti
,
Y. R.
Shen
, and
M.-P.
Gaigeot
, “
Structural definition of the BIL and DL: A new universal methodology to rationalize non-linear χ(2)(ω) SFG signals at charged interfaces, including χ(3)(ω) contributions
,”
Phys. Chem. Chem. Phys.
20
(
7
),
5190
5199
(
2018
).
46.
T.
Joutsuka
,
T.
Hirano
,
M.
Sprik
, and
A.
Morita
, “
Effects of third-order susceptibility in sum frequency generation spectra: A molecular dynamics study in liquid water
,”
Phys. Chem. Chem. Phys.
20
(
5
),
3040
3053
(
2018
).
47.
P. E.
Ohno
,
H.-f.
Wang
, and
F. M.
Geiger
, “
Second-order spectral lineshapes from charged interfaces
,”
Nat. Commun.
8
(
1
),
1032
(
2017
).
48.
A. M.
Darlington
,
T. A.
Jarisz
,
E. L.
DeWalt-Kerian
,
S.
Roy
,
S.
Kim
,
M. S.
Azam
,
D. K.
Hore
, and
J. M.
Gibbs
, “
Separating the pH-dependent behavior of water in the stern and diffuse layers with varying salt concentration
,”
J. Phys. Chem. C
121
(
37
),
20229
20241
(
2017
).
49.
K. E.
Furse
and
S. A.
Corcelli
, “
Effects of an unnatural base pair replacement on the structure and dynamics of DNA and neighboring water and ions
,”
J. Phys. Chem. B
114
(
30
),
9934
9945
(
2010
).
50.
Y. R.
Shen
, “
Surface properties probed by second-harmonic and sum-frequency generation
,”
Nature
337
(
6207
),
519
525
(
1989
).
51.
N.
Ji
,
V.
Ostroverkhov
,
C.-Y.
Chen
, and
Y.-R.
Shen
, “
Phase-sensitive sum-frequency vibrational spectroscopy and its application to studies of interfacial alkyl chains
,”
J. Am. Chem. Soc.
129
(
33
),
10056
10057
(
2007
).
52.
Y. R.
Shen
, “
Phase-sensitive sum-frequency spectroscopy
,”
Annu. Rev. Phys. Chem.
64
(
1
),
129
150
(
2013
).
53.
L.
Fu
,
S.-L.
Chen
, and
H.-F.
Wang
, “
Validation of spectra and phase in sub-1 cm−1 resolution sum-frequency generation vibrational spectroscopy through internal heterodyne phase-resolved measurement
,”
J. Phys. Chem. B
120
(
8
),
1579
1589
(
2016
).
54.
S.-L.
Chen
,
L.
Fu
,
W.
Gan
, and
H.-F.
Wang
, “
Homogeneous and inhomogeneous broadenings and the Voigt line shapes in the phase-resolved and intensity sum-frequency generation vibrational spectroscopy
,”
J. Chem. Phys.
144
(
3
),
034704
(
2016
).
55.
A. T.
Krummel
and
M. T.
Zanni
, “
Interpreting DNA vibrational circular dichroism spectra using a coupling model from two-dimensional infrared spectroscopy
,”
J. Phys. Chem. B
110
(
48
),
24720
24727
(
2006
).
56.
C.
Greve
,
N. K.
Preketes
,
H.
Fidder
,
R.
Costard
,
B.
Koeppe
,
I. A.
Heisler
,
S.
Mukamel
,
F.
Temps
,
E. T. J.
Nibbering
, and
T.
Elsaesser
, “
N–H stretching excitations in adenosine-thymidine base pairs in solution: Pair geometries, infrared line shapes, and ultrafast vibrational dynamics
,”
J. Phys. Chem. A
117
(
3
),
594
606
(
2013
).
57.
J.-D.
Chai
and
M.
Head-Gordon
, “
Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections
,”
Phys. Chem. Chem. Phys.
10
(
44
),
6615
6620
(
2008
).
58.
T. H.
Dunning
, Jr.
, “
Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen
,”
J. Chem. Phys.
90
(
2
),
1007
1023
(
1989
).
59.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
,
G. E.
Scuseria
,
M. A.
Robb
,
J. R.
Cheeseman
,
G.
Scalmani
,
V.
Barone
,
G. A.
Petersson
,
H.
Nakatsuji
,
X.
Li
,
M.
Caricato
,
A.
Marenich
,
J.
Bloino
,
B. G.
Janesko
,
R.
Gomperts
,
B.
Mennucci
,
H. P.
Hratchian
,
J. V.
Ortiz
,
A. F.
Izmaylov
,
J. L.
Sonnenberg
,
D.
Williams-Young
,
F.
Ding
,
F.
Lipparini
,
F.
Egidi
,
J.
Goings
,
B.
Peng
,
A.
Petrone
,
T.
Henderson
,
D.
Ranasinghe
,
V. G.
Zakrzewski
,
J.
Gao
,
N.
Rega
,
G.
Zheng
,
W.
Liang
,
M.
Hada
,
M.
Ehara
,
K.
Toyota
,
R.
Fukuda
,
J.
Hasegawa
,
M.
Ishida
,
T.
Nakajima
,
Y.
Honda
,
O.
Kitao
,
H.
Nakai
,
T.
Vreven
,
K.
Throssell
,
J. A.
Montgomery
, Jr.
,
J. E.
Peralta
,
F.
Ogliaro
,
M.
Bearpark
,
J. J.
Heyd
,
E.
Brothers
,
K. N.
Kudin
,
V. N.
Staroverov
,
T.
Keith
,
R.
Kobayashi
,
J.
Normand
,
K.
Raghavachari
,
A.
Rendell
,
J. C.
Burant
,
S. S.
Iyengar
,
J.
Tomasi
,
M.
Cossi
,
J. M.
Millam
,
M.
Klene
,
C.
Adamo
,
R.
Cammi
,
J. W.
Ochterski
,
R. L.
Martin
,
K.
Morokuma
,
O.
Farkas
,
J. B.
Foresman
, and
D. J.
Fox
, Gaussian 16, Revision C.02,
Gaussian, Inc.
,
Wallingford, CT
,
2016
.
60.
C. S.
Peng
,
K. C.
Jones
, and
A.
Tokmakoff
, “
Anharmonic vibrational modes of nucleic acid bases revealed by 2D IR spectroscopy
,”
J. Am. Chem. Soc.
133
(
39
),
15650
15660
(
2011
).
61.
J. J.
Ho
,
D. R.
Skoff
,
A.
Ghosh
, and
M. T.
Zanni
, “
Structural characterization of single-stranded DNA monolayers using two-dimensional sum frequency generation spectroscopy
,”
J. Phys. Chem. B
119
(
33
),
10586
10596
(
2015
).
62.
P.
Hamm
and
M.
Zanni
,
Concepts and Methods of 2D Infrared Spectroscopy
(
Cambridge University Press
,
2011
).
63.
A. T.
Krummel
and
M. T.
Zanni
, “
DNA vibrational coupling revealed with two-dimensional infrared spectroscopy: Insight into why vibrational spectroscopy is sensitive to DNA structure
,”
J. Phys. Chem. B
110
(
28
),
13991
14000
(
2006
).
64.
C.
Lee
,
K.-H.
Park
, and
M.
Cho
, “
Vibrational dynamics of DNA. I. Vibrational basis modes and couplings
,”
J. Chem. Phys.
125
(
11
),
114508
(
2006
).
65.
J.-H.
Choi
and
M.
Cho
, “
Computational IR spectroscopy of water: OH stretch frequencies, transition dipoles, and intermolecular vibrational coupling constants
,”
J. Chem. Phys.
138
(
17
),
174108
(
2013
).
66.
J.-H.
Choi
,
S.
Ham
, and
M.
Cho
, “
Local amide I mode frequencies and coupling constants in polypeptides
,”
J. Phys. Chem. B
107
(
34
),
9132
9138
(
2003
).
67.
M. L.
Clark
,
A.
Ge
,
P. E.
Videla
,
B.
Rudshteyn
,
C. J.
Miller
,
J.
Song
,
V. S.
Batista
,
T.
Lian
, and
C. P.
Kubiak
, “
CO2 reduction catalysts on gold electrode surfaces influenced by large electric fields
,”
J. Am. Chem. Soc.
140
(
50
),
17643
17655
(
2018
).
68.
A.
Ge
,
B.
Rudshteyn
,
P. E.
Videla
,
C. J.
Miller
,
C. P.
Kubiak
,
V. S.
Batista
, and
T.
Lian
, “
Heterogenized molecular catalysts: Vibrational sum-frequency spectroscopic, electrochemical, and theoretical investigations
,”
Acc. Chem. Res.
52
(
5
),
1289
1300
(
2019
).
69.
L.
Bromley
,
P. E.
Videla
,
J. L.
Cartagena-Brigantty
,
V. S.
Batista
, and
L.
Velarde
, “
Binding and orientation of carbamate pesticides on silica surfaces
,”
J. Phys. Chem. C
127
(
17
),
8399
8410
(
2023
).
70.
H. F.
Wang
,
L.
Velarde
,
W.
Gan
, and
L.
Fu
, “
Quantitative sum-frequency generation vibrational spectroscopy of molecular surfaces and interfaces: Lineshape, polarization, and orientation
,”
Annu. Rev. Phys. Chem.
66
,
189
216
(
2015
).
71.
X.
Zhuang
,
P. B.
Miranda
,
D.
Kim
, and
Y. R.
Shen
, “
Mapping molecular orientation and conformation at interfaces by surface nonlinear optics
,”
Phys. Rev. B
59
(
19
),
12632
12640
(
1999
).
72.
D. A.
Case
,
H. M.
Aktulga
,
K.
Belfon
,
I.
Ben-Shalom
,
S. R.
Brozell
,
D.
Cerutti
,
T.
Cheatham
III
,
G.
Cisneros
,
V.
Cruzeiro
, and
T.
Darden
, Amber 2021,
University of California Press
,
2021
.
73.
H. W.
Horn
,
W. C.
Swope
,
J. W.
Pitera
,
J. D.
Madura
,
T. J.
Dick
,
G. L.
Hura
, and
T.
Head-Gordon
, “
Development of an improved four-site water model for biomolecular simulations: TIP4P-Ew
,”
J. Chem. Phys.
120
(
20
),
9665
9678
(
2004
).
74.
M.
Zgarbová
,
J.
Sponer
,
M.
Otyepka
,
T. E.
Cheatham
III
,
R.
Galindo-Murillo
, and
P. J.
Jurecka
, “
Refinement of the sugar–phosphate backbone torsion beta for AMBER force fields improves the description of Z- and B-DNA
,”
J. Chem. Theory Comput.
11
(
12
),
5723
5736
(
2015
).
75.
T.
Darden
,
D.
York
, and
L.
Pedersen
, “
Particle mesh Ewald: An N ⋅ log(N) method for Ewald sums in large systems
,”
J. Chem. Phys.
98
(
12
),
10089
10092
(
1993
).
76.
J.-P.
Ryckaert
,
G.
Ciccotti
, and
H. J.
Berendsen
, “
Numerical integration of the cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes
,”
J. Comput. Phys.
23
(
3
),
327
341
(
1977
).
77.
S.
Miyamoto
and
P. A.
Kollman
, “
Settle: An analytical version of the SHAKE and RATTLE algorithm for rigid water models
,”
J. Comput. Chem.
13
(
8
),
952
962
(
1992
).
78.
E. F.
Pettersen
,
T. D.
Goddard
,
C. C.
Huang
,
G. S.
Couch
,
D. M.
Greenblatt
,
E. C.
Meng
, and
T. E.
Ferrin
, “
UCSF Chimera—A visualization system for exploratory research and analysis
,”
J. Comput. Chem.
25
(
13
),
1605
1612
(
2004
).
79.
N.
Michaud-Agrawal
,
E. J.
Denning
,
T. B.
Woolf
, and
O.
Beckstein
, “
MDAnalysis: A toolkit for the analysis of molecular dynamics simulations
,”
J. Comput. Chem.
32
(
10
),
2319
2327
(
2011
).
80.
V.
Ramasubramani
,
B. D.
Dice
,
E. S.
Harper
,
M. P.
Spellings
,
J. A.
Anderson
, and
S. C.
Glotzer
, “
freud: A software suite for high throughput analysis of particle simulation data
,”
Comput. Phys. Commun.
254
,
107275
(
2020
).
81.
C.
Rycroft
, “
VORO++: A three-dimensional Voronoi cell library in C++
,”
Chaos
19
,
041111
(
2009
).
You do not currently have access to this content.