Active matter systems, being in a non-equilibrium state, exhibit complex behaviors, such as self-organization, giving rise to emergent phenomena. There are many examples of active particles with biological origins, including bacteria and spermatozoa, or with artificial origins, such as self-propelled swimmers and Janus particles. The ability to manipulate active particles is vital for their effective application, e.g., separating motile spermatozoa from nonmotile and dead ones, to increase fertilization chance. In this study, we proposed a mechanism—an apparatus—to sort and demix active particles based on their motility values (Péclet number). Initially, using Brownian simulations, we demonstrated the feasibility of sorting self-propelled particles. Following this, we employed machine learning methods, supplemented with data from comprehensive simulations that we conducted for this study, to model the complex behavior of active particles. This enabled us to sort them based on their Péclet number. Finally, we evaluated the performance of the developed models and showed their effectiveness in demixing and sorting the active particles. Our findings can find applications in various fields, including physics, biology, and biomedical science, where the sorting and manipulation of active particles play a pivotal role.

1.
M.
Das
,
C. F.
Schmidt
, and
M.
Murrell
, “
Introduction to active matter
,”
Soft Matter
16
,
7185
7190
(
2020
).
2.
G.
Volpe
,
C.
Bechinger
,
F.
Cichos
,
R.
Golestanian
,
H.
Löwen
,
M.
Sperl
, and
G.
Volpe
, “
Active matter in space
,”
npj Microgravity
8
,
54
(
2022
).
3.
C. N.
Likos
, “
Effective interactions in soft condensed matter physics
,”
Phys. Rep.
348
,
267
439
(
2001
).
4.
P.
Romanczuk
,
M.
Bär
,
W.
Ebeling
,
B.
Lindner
, and
L.
Schimansky-Geier
, “
Active Brownian particles: From individual to collective stochastic dynamics
,”
Eur. Phys. J.: Spec. Top.
202
,
1
(
2012
).
5.
C.
Bechinger
,
R.
Di Leonardo
,
H.
Löwen
,
C.
Reichhardt
,
G.
Volpe
, and
G.
Volpe
, “
Active particles in complex and crowded environments
,”
Rev. Mod. Phys.
88
,
045006
(
2016
).
6.
M. F.
Hagan
and
A.
Baskaran
, “
Emergent self-organization in active materials
,”
Curr. Opin. Cell Biol.
38
,
74
80
(
2016
).
7.
M.
Ballerini
,
N.
Cabibbo
,
R.
Candelier
,
A.
Cavagna
,
E.
Cisbani
,
I.
Giardina
,
V.
Lecomte
,
A.
Orlandi
,
G.
Parisi
,
A.
Procaccini
et al, “
Interaction ruling animal collective behavior depends on topological rather than metric distance: Evidence from a field study
,”
Proc. Natl. Acad. Sci. U. S. A.
105
,
1232
1237
(
2008
).
8.
M.
Moussaid
,
S.
Garnier
,
G.
Theraulaz
, and
D.
Helbing
, “
Collective information processing and pattern formation in swarms, flocks, and crowds
,”
Top. Cognit. Sci.
1
,
469
497
(
2009
).
9.
J.
Buhl
,
D. J.
Sumpter
,
I. D.
Couzin
,
J. J.
Hale
,
E.
Despland
,
E. R.
Miller
, and
S. J.
Simpson
, “
From disorder to order in marching locusts
,”
Science
312
,
1402
1406
(
2006
).
10.
M.
Tennenbaum
,
Z.
Liu
,
D.
Hu
, and
A.
Fernandez-Nieves
, “
Mechanics of fire ant aggregations
,”
Nat. Mater.
15
,
54
59
(
2016
).
11.
T.
Vicsek
and
A.
Zafeiris
, “
Collective motion
,”
Phys. Rep.
517
,
71
140
(
2012
).
12.
D. B.
Kearns
, “
A field guide to bacterial swarming motility
,”
Nat. Rev. Microbiol.
8
,
634
644
(
2010
).
13.
H. C.
Berg
,
E. coli in Motion
(
Springer
,
New York
,
2003
).
14.
E. A.
Gaffney
,
H.
Gadêlha
,
D. J.
Smith
,
J. R.
Blake
, and
J. C.
Kirkman-Brown
, “
Mammalian sperm motility: Observation and theory
,”
Annu. Rev. Fluid Mech.
43
,
501
528
(
2011
).
15.
D.
Woolley
, “
Motility of spermatozoa at surfaces
,”
Reproduction
126
,
259
270
(
2003
).
16.
W.-J.
Rappel
,
A.
Nicol
,
A.
Sarkissian
,
H.
Levine
, and
W. F.
Loomis
, “
Self-organized vortex state in two-dimensional Dictyostelium dynamics
,”
Phys. Rev. Lett.
83
,
1247
(
1999
).
17.
D. A.
Kessler
and
H.
Levine
, “
Pattern formation in Dictyostelium via the dynamics of cooperative biological entities
,”
Phys. Rev. E
48
,
4801
(
1993
).
18.
S.
Nagano
, “
Diffusion-assisted aggregation and synchronization in Dictyostelium discoideum
,”
Phys. Rev. Lett.
80
,
4826
(
1998
).
19.
K.
Drescher
,
J.
Dunkel
,
C. D.
Nadell
,
S.
Van Teeffelen
,
I.
Grnja
,
N. S.
Wingreen
,
H. A.
Stone
, and
B. L.
Bassler
, “
Architectural transitions in vibrio cholerae biofilms at single-cell resolution
,”
Proc. Natl. Acad. Sci. U. S. A.
113
,
E2066
E2072
(
2016
).
20.
R. E.
Goldstein
, “
Green algae as model organisms for biological fluid dynamics
,”
Annu. Rev. Fluid. Mech.
47
,
343
375
(
2015
).
21.
G.
Jékely
,
J.
Colombelli
,
H.
Hausen
,
K.
Guy
,
E.
Stelzer
,
F.
Nédélec
, and
D.
Arendt
, “
Mechanism of phototaxis in marine zooplankton
,”
Nature
456
,
395
399
(
2008
).
22.
W. F.
Paxton
,
K. C.
Kistler
,
C. C.
Olmeda
,
A.
Sen
,
S. K.
St Angelo
,
Y.
Cao
,
T. E.
Mallouk
,
P. E.
Lammert
, and
V. H.
Crespi
, “
Catalytic nanomotors: Autonomous movement of striped nanorods
,”
J. Am. Chem. Soc.
126
,
13424
13431
(
2004
).
23.
R.
Kumar
,
M.
Kiristi
,
F.
Soto
,
J.
Li
,
V. V.
Singh
, and
J.
Wang
, “
Self-propelled screen-printable catalytic swimmers
,”
RSC Adv.
5
,
78986
78993
(
2015
).
24.
S. C.
Takatori
,
R.
De Dier
,
J.
Vermant
, and
J. F.
Brady
, “
Acoustic trapping of active matter
,”
Nat. Commun.
7
,
10694
(
2016
).
25.
V.
Narayan
,
S.
Ramaswamy
, and
N.
Menon
, “
Long-lived giant number fluctuations in a swarming granular nematic
,”
Science
317
,
105
108
(
2007
).
26.
G.
Kokot
,
G. V.
Kolmakov
,
I. S.
Aranson
, and
A.
Snezhko
, “
Dynamic self-assembly and self-organized transport of magnetic micro-swimmers
,”
Sci. Rep.
7
,
14726
(
2017
).
27.
L.
Zhang
,
J. J.
Abbott
,
L.
Dong
,
B. E.
Kratochvil
,
D.
Bell
, and
B. J.
Nelson
, “
Artificial bacterial flagella: Fabrication and magnetic control
,”
Appl. Phys. Lett.
94
,
064107
(
2009
).
28.
S.
Sánchez
,
L.
Soler
, and
J.
Katuri
, “
Chemically powered micro‐ and nanomotors
,”
Angew. Chem., Int. Ed.
54
,
1414
1444
(
2015
).
29.
K. J.
Rao
,
F.
Li
,
L.
Meng
,
H.
Zheng
,
F.
Cai
, and
W.
Wang
, “
A force to be reckoned with: A review of synthetic microswimmers powered by ultrasound
,”
Small
11
,
2836
2846
(
2015
).
30.
S.
Mohanty
,
I. S.
Khalil
, and
S.
Misra
, “
Contactless acoustic micro/nano manipulation: A paradigm for next generation applications in life sciences
,”
Proc. R. Soc. A
476
,
20200621
(
2020
).
31.
H.
Zhou
,
C. C.
Mayorga-Martinez
,
S.
Pané
,
L.
Zhang
, and
M.
Pumera
, “
Magnetically driven micro and nanorobots
,”
Chem. Rev.
121
,
4999
5041
(
2021
).
32.
M.
Sitti
,
H.
Ceylan
,
W.
Hu
,
J.
Giltinan
,
M.
Turan
,
S.
Yim
, and
E.
Diller
, “
Biomedical applications of untethered mobile milli/microrobots
,”
Proc. IEEE
103
,
205
224
(
2015
).
33.
A.
Walther
and
A. H.
Muller
, “
Janus particles: Synthesis, self-assembly, physical properties, and applications
,”
Chem. Rev.
113
,
5194
5261
(
2013
).
34.
S.
Jiang
,
Q.
Chen
,
M.
Tripathy
,
E.
Luijten
,
K. S.
Schweizer
, and
S.
Granick
, “
Janus particle synthesis and assembly
,”
Adv. Mater.
22
,
1060
1071
(
2010
).
35.
J.
Zhang
,
B. A.
Grzybowski
, and
S.
Granick
, “
Janus particle synthesis, assembly, and application
,”
Langmuir
33
,
6964
6977
(
2017
).
36.
E.
Poggi
and
J.-F.
Gohy
, “
Janus particles: From synthesis to application
,”
Colloid Polym. Sci.
295
,
2083
2108
(
2017
).
37.
M.
Zaeifi Yamchi
and
A.
Naji
, “
Effective interactions between inclusions in an active bath
,”
J. Chem. Phys.
147
,
194901
(
2017
).
38.
A. E.
Turgut
,
H.
Çelikkanat
,
F.
Gökçe
, and
E.
Şahin
, “
Self-organized flocking in mobile robot swarms
,”
Swarm Intell.
2
,
97
120
(
2008
).
39.
M. B.
Wan
,
C. J.
Olson Reichhardt
,
Z.
Nussinov
, and
C.
Reichhardt
, “
Rectification of swimming bacteria and self-driven particle systems by arrays of asymmetric barriers
,”
Phys. Rev. Lett.
101
,
018102
(
2008
).
40.
J.
Tailleur
and
M.
Cates
, “
Sedimentation, trapping, and rectification of dilute bacteria
,”
Europhys. Lett.
86
,
60002
(
2009
).
41.
C.
Maggi
,
A.
Lepore
,
J.
Solari
,
A.
Rizzo
, and
R.
Di Leonardo
, “
Motility fractionation of bacteria by centrifugation
,”
Soft Matter
9
,
10885
10890
(
2013
).
42.
W.
Yang
,
V.
Misko
,
K.
Nelissen
,
M.
Kong
, and
F.
Peeters
, “
Using self-driven microswimmers for particle separation
,”
Soft Matter
8
,
5175
5179
(
2012
).
43.
S. R.
McCandlish
,
A.
Baskaran
, and
M. F.
Hagan
, “
Spontaneous segregation of self-propelled particles with different motilities
,”
Soft Matter
8
,
2527
2534
(
2012
).
44.
X.
Yang
,
M. L.
Manning
, and
M. C.
Marchetti
, “
Aggregation and segregation of confined active particles
,”
Soft Matter
10
,
6477
6484
(
2014
).
45.
Y.
Fily
,
A.
Baskaran
, and
M. F.
Hagan
, “
Dynamics of self-propelled particles under strong confinement
,”
Soft Matter
10
,
5609
5617
(
2014
).
46.
I.
Berdakin
,
Y.
Jeyaram
,
V.
Moshchalkov
,
L.
Venken
,
S.
Dierckx
,
S.
Vanderleyden
,
A.
Silhanek
,
C.
Condat
, and
V. I.
Marconi
, “
Influence of swimming strategy on microorganism separation by asymmetric obstacles
,”
Phys. Rev. E
87
,
052702
(
2013
).
47.
C.
Reichhardt
and
C. J. O.
Reichhardt
, “
Dynamics and separation of circularly moving particles in asymmetrically patterned arrays
,”
Phys. Rev. E
88
,
042306
(
2013
).
48.
G.
Volpe
,
S.
Gigan
, and
G.
Volpe
, “
Simulation of the active Brownian motion of a microswimmer
,”
Am. J. Phys.
82
,
659
664
(
2014
).
49.
M.
Zarif
and
A.
Naji
, “
Confinement-induced alternating interactions between inclusions in an active fluid
,”
Phys. Rev. E
102
,
032613
(
2020
).
50.
A.
Torrik
,
A.
Naji
, and
M.
Zarif
, “
Dimeric colloidal inclusion in a chiral active bath: Effective interactions and chirality-induced torque
,”
Phys. Rev. E
104
,
064610
(
2021
).
51.
B.-Q.
Ai
,
Y.-F.
He
, and
W.-R.
Zhong
, “
Chirality separation of mixed chiral microswimmers in a periodic channel
,”
Soft Matter
11
,
3852
3859
(
2015
).
52.
Q.
Chen
and
B.-Q.
Ai
, “
Sorting of chiral active particles driven by rotary obstacles
,”
J. Chem. Phys.
143
,
104113
(
2015
).
53.
M.
Mijalkov
and
G.
Volpe
, “
Sorting of chiral microswimmers
,”
Soft Matter
9
,
6376
6381
(
2013
).
54.
A.
Costanzo
,
J.
Elgeti
,
T.
Auth
,
G.
Gompper
, and
M.
Ripoll
, “
Motility-sorting of self-propelled particles in microchannels
,”
Europhys. Lett.
107
,
36003
(
2014
).
55.
D. S.
Guzick
,
J. W.
Overstreet
,
P.
Factor-Litvak
,
C. K.
Brazil
,
S. T.
Nakajima
,
C.
Coutifaris
,
S. A.
Carson
,
P.
Cisneros
,
M. P.
Steinkampf
,
J. A.
Hill
et al, “
Sperm morphology, motility, and concentration in fertile and infertile men
,”
N. Engl. J. Med.
345
,
1388
1393
(
2001
).
56.
T.
Chinnasamy
,
J. L.
Kingsley
,
F.
Inci
,
P. J.
Turek
,
M. P.
Rosen
,
B.
Behr
,
E.
Tüzel
, and
U.
Demirci
, “
Guidance and self-sorting of active swimmers: 3D periodic arrays increase persistence length of human sperm selecting for the fittest
,”
Adv. Sci.
5
,
1700531
(
2018
).
57.
P.
Mehta
,
M.
Bukov
,
C.-H.
Wang
,
A. G.
Day
,
C.
Richardson
,
C. K.
Fisher
, and
D. J.
Schwab
, “
A high-bias, low-variance introduction to machine learning for physicists
,”
Phys. Rep.
810
,
1
124
(
2019
).
58.
A.
Glielmo
,
B. E.
Husic
,
A.
Rodriguez
,
C.
Clementi
,
F.
Noé
, and
A.
Laio
, “
Unsupervised learning methods for molecular simulation data
,”
Chem. Rev.
121
,
9722
9758
(
2021
).
59.
M. I.
Jordan
and
T. M.
Mitchell
, “
Machine learning: Trends, perspectives, and prospects
,”
Science
349
,
255
260
(
2015
).
60.
C. M.
Bishop
, “
Pattern recognition and machine learning
,” in
Information Science and Statistics
, 1st ed. (
Springer
,
New York, NY
,
2006
) hardcover edition published on 17 August 2006.
61.
J. E.
Van Engelen
and
H. H.
Hoos
, “
A survey on semi-supervised learning
,”
Mach. Learn.
109
,
373
440
(
2020
).
62.
S.
Dara
,
S.
Dhamercherla
,
S. S.
Jadav
,
C. M.
Babu
, and
M. J.
Ahsan
, “
Machine learning in drug discovery: A review
,”
Artif. Intell. Rev.
55
,
1947
1999
(
2022
).
63.
J.
Vamathevan
,
D.
Clark
,
P.
Czodrowski
,
I.
Dunham
,
E.
Ferran
,
G.
Lee
,
B.
Li
,
A.
Madabhushi
,
P.
Shah
,
M.
Spitzer
, and
S.
Zhao
, “
Applications of machine learning in drug discovery and development
,”
Nat. Rev. Drug Discovery
18
,
463
477
(
2019
).
64.
P.
Carracedo-Reboredo
,
J.
Liñares-Blanco
,
N.
Rodríguez-Fernández
,
F.
Cedrón
,
F. J.
Novoa
,
A.
Carballal
,
V.
Maojo
,
A.
Pazos
, and
C.
Fernandez-Lozano
, “
A review on machine learning approaches and trends in drug discovery
,”
Comput. Struct. Biotechnol. J.
19
,
4538
4558
(
2021
).
65.
L.
Patel
,
T.
Shukla
,
X.
Huang
,
D. W.
Ussery
, and
S.
Wang
, “
Machine learning methods in drug discovery
,”
Molecules
25
,
5277
(
2020
).
66.
J.
Jiménez-Luna
,
F.
Grisoni
, and
G.
Schneider
, “
Drug discovery with explainable artificial intelligence
,”
Nat. Mach. Intell.
2
,
573
584
(
2020
).
67.
S.
Kolluri
,
J.
Lin
,
R.
Liu
,
Y.
Zhang
, and
W.
Zhang
, “
Machine learning and artificial intelligence in pharmaceutical research and development: A review
,”
AAPS J.
24
,
19
(
2022
).
68.
K. P.
Kording
,
A.
Benjamin
,
R.
Farhoodi
, and
J. I.
Glaser
, “
The roles of machine learning in biomedical science
,” in
Frontiers of Engineering: Reports on Leading-Edge Engineering from the 2017 Symposium
(
National Academies Press
,
2018
).
69.
P.
Rajpurkar
,
E.
Chen
,
O.
Banerjee
, and
E. J.
Topol
, “
AI in health and medicine
,”
Nat. Med.
28
,
31
38
(
2022
).
70.
J.
Goecks
,
V.
Jalili
,
L. M.
Heiser
, and
J. W.
Gray
, “
How machine learning will transform biomedicine
,”
Cell
181
,
92
101
(
2020
).
71.
A. Z.
Woldaregay
,
E.
Årsand
,
T.
Botsis
,
D.
Albers
,
L.
Mamykina
, and
G.
Hartvigsen
, “
Data-driven blood glucose pattern classification and anomalies detection: Machine-learning applications in type 1 diabetes
,”
J. Med. Internet Res.
21
,
e11030
(
2019
).
72.
N. S.
Artzi
,
S.
Shilo
,
E.
Hadar
,
H.
Rossman
,
S.
Barbash-Hazan
,
A.
Ben-Haroush
,
R. D.
Balicer
,
B.
Feldman
,
A.
Wiznitzer
, and
E.
Segal
, “
Prediction of gestational diabetes based on nationwide electronic health records
,”
Nat. Med.
26
,
71
76
(
2020
).
73.
D.-M.
Koh
,
N.
Papanikolaou
,
U.
Bick
,
R.
Illing
,
C. E.
Kahn
, Jr.
,
J.
Kalpathi-Cramer
,
C.
Matos
,
L.
Martí-Bonmatí
,
A.
Miles
,
S. K.
Mun
et al, “
Artificial intelligence and machine learning in cancer imaging
,”
Commun. Med.
2
,
133
(
2022
).
74.
C.
Curtis
,
S. P.
Shah
,
S.-F.
Chin
,
G.
Turashvili
,
O. M.
Rueda
,
M. J.
Dunning
,
D.
Speed
,
A. G.
Lynch
,
S.
Samarajiwa
,
Y.
Yuan
et al, “
The genomic and transcriptomic architecture of 2000 breast tumours reveals novel subgroups
,”
Nature
486
,
346
352
(
2012
).
75.
F.
Gao
,
W.
Wang
,
M.
Tan
,
L.
Zhu
,
Y.
Zhang
,
E.
Fessler
,
L.
Vermeulen
, and
X.
Wang
, “
DeepCC: A novel deep learning-based framework for cancer molecular subtype classification
,”
Oncogenesis
8
,
44
(
2019
).
76.
Y.-C.
Chiu
,
H.-I. H.
Chen
,
T.
Zhang
,
S.
Zhang
,
A.
Gorthi
,
L.-J.
Wang
,
Y.
Huang
, and
Y.
Chen
, “
Predicting drug response of tumors from integrated genomic profiles by deep neural networks
,”
BMC Med. Genomics
12
,
18
155
(
2019
).
77.
S. M.
McKinney
,
M.
Sieniek
,
V.
Godbole
,
J.
Godwin
,
N.
Antropova
,
H.
Ashrafian
,
T.
Back
,
M.
Chesus
,
G. S.
Corrado
,
A.
Darzi
et al, “
International evaluation of an AI system for breast cancer screening
,”
Nature
577
,
89
94
(
2020
).
78.
X.
Liu
,
L.
Faes
,
A. U.
Kale
,
S. K.
Wagner
,
D. J.
Fu
,
A.
Bruynseels
,
T.
Mahendiran
,
G.
Moraes
,
M.
Shamdas
,
C.
Kern
et al, “
A comparison of deep learning performance against health-care professionals in detecting diseases from medical imaging: A systematic review and meta-analysis
,”
Lancet Digital Health
1
,
e271
e297
(
2019
).
79.
M. K.
Siddiqui
,
R.
Morales-Menendez
,
X.
Huang
, and
N.
Hussain
, “
A review of epileptic seizure detection using machine learning classifiers
,”
Brain Inf.
7
,
5
18
(
2020
).
80.
A.
Esteva
,
B.
Kuprel
,
R. A.
Novoa
,
J.
Ko
,
S. M.
Swetter
,
H. M.
Blau
, and
S.
Thrun
, “
Dermatologist-level classification of skin cancer with deep neural networks
,”
Nature
542
,
115
118
(
2017
).
81.
T.
Ozturk
,
M.
Talo
,
E. A.
Yildirim
,
U. B.
Baloglu
,
O.
Yildirim
, and
U.
Rajendra Acharya
, “
Automated detection of Covid-19 cases using deep neural networks with X-ray images
,”
Comput. Biol. Med.
121
,
103792
(
2020
).
82.
A.
Esteva
,
K.
Chou
,
S.
Yeung
,
N.
Naik
,
A.
Madani
,
A.
Mottaghi
,
Y.
Liu
,
E.
Topol
,
J.
Dean
, and
R.
Socher
, “
Deep learning-enabled medical computer vision
,”
npj Digital Med.
4
(
1
),
5
(
2021
).
83.
X.
Xu
,
X.
Jiang
,
C.
Ma
,
P.
Du
,
X.
Li
,
S.
Lv
,
L.
Yu
,
Q.
Ni
,
Y.
Chen
,
J.
Su
et al, “
A deep learning system to screen novel coronavirus disease 2019 pneumonia
,”
Engineering
6
,
1122
1129
(
2020
).
84.
F.
Shi
,
J.
Wang
,
J.
Shi
,
Z.
Wu
,
Q.
Wang
,
Z.
Tang
,
K.
He
,
Y.
Shi
, and
D.
Shen
, “
Review of artificial intelligence techniques in imaging data acquisition, segmentation, and diagnosis for COVID-19
,”
IEEE Rev. Biomed. Eng.
14
,
4
15
(
2021
).
85.
A.
Narin
,
C.
Kaya
, and
Z.
Pamuk
, “
Automatic detection of coronavirus disease (COVID-19) using X-ray images and deep convolutional neural networks
,”
Pattern Anal. Appl.
24
,
1207
1220
(
2021
).
86.
L.
Wang
,
Z. Q.
Lin
, and
A.
Wong
, “
COVID-Net: A tailored deep convolutional neural network design for detection of COVID-19 cases from chest X-ray images
,”
Sci. Rep.
10
,
19549
(
2020
).
87.
J.
Schmidt
,
M. R.
Marques
,
S.
Botti
, and
M. A.
Marques
, “
Recent advances and applications of machine learning in solid-state materials science
,”
npj Comput. Mater.
5
,
83
(
2019
).
88.
K.
Choudhary
,
B.
DeCost
,
C.
Chen
,
A.
Jain
,
F.
Tavazza
,
R.
Cohn
,
C. W.
Park
,
A.
Choudhary
,
A.
Agrawal
,
S. J.
Billinge
et al, “
Recent advances and applications of deep learning methods in materials science
,”
npj Comput. Mater.
8
,
59
(
2022
).
89.
R.
Batra
,
L.
Song
, and
R.
Ramprasad
, “
Emerging materials intelligence ecosystems propelled by machine learning
,”
Nat. Rev. Mater.
6
,
655
678
(
2020
).
90.
H.
Tao
,
T.
Wu
,
M.
Aldeghi
,
T. C.
Wu
,
A.
Aspuru-Guzik
, and
E.
Kumacheva
, “
Nanoparticle synthesis assisted by machine learning
,”
Nat. Rev. Mater.
6
,
701
716
(
2021
).
91.
G. L.
Hart
,
T.
Mueller
,
C.
Toher
, and
S.
Curtarolo
, “
Machine learning for alloys
,”
Nat. Rev. Mater.
6
,
730
755
(
2021
).
92.
M.
Aykol
,
P.
Herring
, and
A.
Anapolsky
, “
Machine learning for continuous innovation in battery technologies
,”
Nat. Rev. Mater.
5
,
725
727
(
2020
).
93.
T.
DebRoy
,
T.
Mukherjee
,
H.
Wei
,
J.
Elmer
, and
J.
Milewski
, “
Metallurgy, mechanistic models and machine learning in metal printing
,”
Nat. Rev. Mater.
6
,
48
68
(
2020
).
94.
Z.
Zhu
,
D. W. H.
Ng
,
H. S.
Park
, and
M. C.
McAlpine
, “
3D-printed multifunctional materials enabled by artificial-intelligence-assisted fabrication technologies
,”
Nat. Rev. Mater.
6
,
27
47
(
2020
).
95.
P.
Gorai
,
V.
Stevanović
, and
E. S.
Toberer
, “
Computationally guided discovery of thermoelectric materials
,”
Nat. Rev. Mater.
2
,
17053
(
2017
).
96.
P. G.
Boyd
,
Y.
Lee
, and
B.
Smit
, “
Computational development of the nanoporous materials genome
,”
Nat. Rev. Mater.
2
,
17037
17115
(
2017
).
97.
W.
Sha
,
Y.
Li
,
S.
Tang
,
J.
Tian
,
Y.
Zhao
,
Y.
Guo
,
W.
Zhang
,
X.
Zhang
,
S.
Lu
,
Y.-C.
Cao
, and
S.
Cheng
, “
Machine learning in polymer informatics
,”
InfoMat
3
,
353
361
(
2021
).
98.
M.
Reis
,
F.
Gusev
,
N. G.
Taylor
,
S. H.
Chung
,
M. D.
Verber
,
Y. Z.
Lee
,
O.
Isayev
, and
F. A.
Leibfarth
, “
Machine-learning-guided discovery of 19F MRI agents enabled by automated copolymer synthesis
,”
J. Am. Chem. Soc.
143
,
17677
17689
(
2021
).
99.
T. K.
Patra
, “
Data-driven methods for accelerating polymer design
,”
ACS Polym. Au
2
,
8
26
(
2021
).
100.
L.
Tao
,
V.
Varshney
, and
Y.
Li
, “
Benchmarking machine learning models for polymer informatics: An example of glass transition temperature
,”
J. Chem. Inf. Model.
61
,
5395
5413
(
2021
).
101.
M. M.
Cencer
,
J. S.
Moore
, and
R. S.
Assary
, “
Machine learning for polymeric materials: An introduction
,”
Polym. Int.
71
,
537
542
(
2022
).
102.
A. J.
Gormley
and
M. A.
Webb
, “
Machine learning in combinatorial polymer chemistry
,”
Nat. Rev. Mater.
6
,
642
644
(
2021
).
103.
C.
Kim
,
R.
Batra
,
L.
Chen
,
H.
Tran
, and
R.
Ramprasad
, “
Polymer design using genetic algorithm and machine learning
,”
Comput. Mater. Sci.
186
,
110067
(
2021
).
104.
P. M.
Maffettone
,
L.
Banko
,
P.
Cui
,
Y.
Lysogorskiy
,
M. A.
Little
,
D.
Olds
,
A.
Ludwig
, and
A. I.
Cooper
, “
Crystallography companion agent for high-throughput materials discovery
,”
Nat. Comput. Sci.
1
,
290
297
(
2021
).
105.
L.
Banko
,
P. M.
Maffettone
,
D.
Naujoks
,
D.
Olds
, and
A.
Ludwig
, “
Deep learning for visualization and novelty detection in large X-ray diffraction datasets
,”
npj Comput. Mater.
7
,
104
(
2021
).
106.
B. D.
Lee
,
J.-W.
Lee
,
W. B.
Park
,
J.
Park
,
M.-Y.
Cho
,
S.
Pal Singh
,
M.
Pyo
, and
K.-S.
Sohn
, “
Powder x-ray diffraction pattern is all you need for machine-learning-based symmetry identification and property prediction
,”
Adv. Intell. Syst.
4
,
2200042
(
2022
).
107.
J.
Zimmermann
,
F.
Beguet
,
D.
Guthruf
,
B.
Langbehn
, and
D.
Rupp
, “
Finding the semantic similarity in single-particle diffraction images using self-supervised contrastive projection learning
,”
npj Comput. Mater.
9
,
24
(
2023
).
108.
R.
Vinuesa
and
S. L.
Brunton
, “
Enhancing computational fluid dynamics with machine learning
,”
Nat. Comput. Sci.
2
,
358
366
(
2022
).
109.
R.
Vinuesa
,
S. L.
Brunton
, and
B. J.
McKeon
, “
The transformative potential of machine learning for experiments in fluid mechanics
,”
Nat. Rev. Phys.
5
,
536
545
(
2023
).
110.
M. Z.
Yousif
,
L.
Yu
,
S.
Hoyas
,
R.
Vinuesa
, and
H.
Lim
, “
A deep-learning approach for reconstructing 3D turbulent flows from 2D observation data
,”
Sci. Rep.
13
,
2529
(
2023
).
111.
L.
Guastoni
,
J.
Rabault
,
P.
Schlatter
,
H.
Azizpour
, and
R.
Vinuesa
, “
Deep reinforcement learning for turbulent drag reduction in channel flows
,”
Eur. Phys. J. E
46
,
27
(
2023
).
112.
C.
Vignon
,
J.
Rabault
, and
R.
Vinuesa
, “
Recent advances in applying deep reinforcement learning for flow control: Perspectives and future directions
,”
Phys. Fluids
35
,
031301
(
2023
).
113.
L.
Yu
,
M. Z.
Yousif
,
M.
Zhang
,
S.
Hoyas
,
R.
Vinuesa
, and
H.-C.
Lim
, “
Three-dimensional ESRGAN for super-resolution reconstruction of turbulent flows with tricubic interpolation-based transfer learning
,”
Phys. Fluids
34
,
125126
(
2022
).
114.
D.
Kochkov
,
J. A.
Smith
,
A.
Alieva
,
Q.
Wang
,
M. P.
Brenner
, and
S.
Hoyer
, “
Machine learning–accelerated computational fluid dynamics
,”
Proc. Natl. Acad. Sci. U. S. A.
118
,
e2101784118
(
2021
).
115.
S. L.
Brunton
,
B. R.
Noack
, and
P.
Koumoutsakos
, “
Machine learning for fluid mechanics
,”
Annu. Rev. Fluid. Mech.
52
,
477
508
(
2020
).
116.
J. N.
Kutz
, “
Deep learning in fluid dynamics
,”
J. Fluid Mech.
814
,
1
4
(
2017
).
117.
S. L.
Brunton
, “
Applying machine learning to study fluid mechanics
,”
Acta Mech. Sin.
37
,
1718
1726
(
2021
).
118.
K.
Fukami
,
K.
Fukagata
, and
K.
Taira
, “
Assessment of supervised machine learning methods for fluid flows
,”
Theor. Comput. Fluid Dyn.
34
,
497
519
(
2020
).
119.
E.
Bedolla
,
L. C.
Padierna
, and
R.
Castaneda-Priego
, “
Machine learning for condensed matter physics
,”
J. Phys.: Condens. Matter
33
,
053001
(
2020
).
120.
J.
Carrasquilla
and
R. G.
Melko
, “
Machine learning phases of matter
,”
Nat. Phys.
13
,
431
434
(
2017
).
121.
A. L.
Ferguson
, “
Machine learning and data science in soft materials engineering
,”
J. Phys.: Condens. Matter
30
,
043002
(
2017
).
122.
F.
Cichos
,
K.
Gustavsson
,
B.
Mehlig
, and
G.
Volpe
, “
Machine learning for active matter
,”
Nat. Mach. Intell.
2
,
94
103
(
2020
).
123.
F.
Cichos
,
S. M.
Landin
, and
R.
Pradip
, “
Artificial intelligence (AI) enhanced nanomotors and active matter
,”
Intelligent Nanotechnology
(
Elsevier
,
2023
), pp.
113
144
.
124.
I.
Essafri
,
B.
Ghosh
,
C.
Desgranges
, and
J.
Delhommelle
, “
Designing, synthesizing, and modeling active fluids
,”
Phys. Fluids
34
,
071301
(
2022
).
125.
R.
Jadrich
,
B.
Lindquist
, and
T.
Truskett
, “
Unsupervised machine learning for detection of phase transitions in off-lattice systems. I. Foundations
,”
J. Chem. Phys.
149
,
194109
(
2018
).
126.
R.
Jadrich
,
B.
Lindquist
,
W.
Piñeros
,
D.
Banerjee
, and
T.
Truskett
, “
Unsupervised machine learning for detection of phase transitions in off-lattice systems. II. Applications
,”
J. Chem. Phys.
149
,
194110
(
2018
).
127.
M.
Fränzl
and
F.
Cichos
, “
Active particle feedback control with a single-shot detection convolutional neural network
,”
Sci. Rep.
10
,
12571
(
2020
).
128.
M. J.
Falk
,
V.
Alizadehyazdi
,
H.
Jaeger
, and
A.
Murugan
, “
Learning to control active matter
,”
Phys. Rev. Res.
3
,
033291
(
2021
).
129.
A.
Argun
,
G.
Volpe
, and
S.
Bo
, “
Classification, inference and segmentation of anomalous diffusion with recurrent neural networks
,”
J. Phys. A: Math. Theor.
54
,
294003
(
2021
).
130.
J.
Colen
,
M.
Han
,
R.
Zhang
,
S. A.
Redford
,
L. M.
Lemma
,
L.
Morgan
,
P. V.
Ruijgrok
,
R.
Adkins
,
Z.
Bryant
,
Z.
Dogic
et al, “
Machine learning active-nematic hydrodynamics
C
118
,
e2016708118
(
2021
).
131.
Z.
Zhou
,
C.
Joshi
,
R.
Liu
,
M. M.
Norton
,
L.
Lemma
,
Z.
Dogic
,
M. F.
Hagan
,
S.
Fraden
, and
P.
Hong
, “
Machine learning forecasting of active nematics
,”
Soft Matter
17
,
738
747
(
2021
).
132.
A.
Frishman
and
K.
Keren
, “
Learning active nematics one step at a time
,”
Proc. Natl. Acad. Sci. U. S. A.
118
,
e2102169118
(
2021
).
133.
S.
Bag
and
R.
Mandal
, “
Interaction from structure using machine learning: In and out of equilibrium
,”
Soft Matter
17
,
8322
8330
(
2021
).
134.
M.
Nasiri
,
H.
Löwen
, and
B.
Liebchen
, “
Optimal active particle navigation meets machine learning(a)
,”
Europhys. Lett.
142
,
17001
(
2023
).
135.
Z.
Zou
,
Y.
Liu
,
Y.-N.
Young
,
O. S.
Pak
, and
A. C.
Tsang
, “
Gait switching and targeted navigation of microswimmers via deep reinforcement learning
,”
Commun. Phys.
5
,
158
(
2022
).
136.
Y.
Liu
,
Z.
Zou
,
O. S.
Pak
, and
A. C.
Tsang
, “
Learning to cooperate for low-Reynolds-number swimming: A model problem for gait coordination
,”
Sci. Rep.
13
,
9397
(
2023
).
137.
B.
Hartl
,
M.
Hübl
,
G.
Kahl
, and
A.
Zöttl
, “
Microswimmers learning chemotaxis with genetic algorithms
,”
Proc. Natl. Acad. Sci. U. S. A.
118
,
e2019683118
(
2021
).
138.
Z.
El Khiyati
,
R.
Chesneaux
,
L.
Giraldi
, and
J.
Bec
, “
Steering undulatory micro-swimmers in a fluid flow through reinforcement learning
,”
Eur. Phys. J. E
46
,
43
(
2023
).
139.
M.
Caraglio
,
H.
Kaur
,
L. J.
Fiderer
,
A.
López-Incera
,
H. J.
Briegel
,
T.
Franosch
, and
G.
Muñoz Gil
, “
Learning how to find targets in the micro-world: The case of intermittent active brownian particles
,”
Soft Matter
20
(
9
),
2008
2016
(
2024
).
140.
F.
Borra
,
L.
Biferale
,
M.
Cencini
, and
A.
Celani
, “
Reinforcement learning for pursuit and evasion of microswimmers at low Reynolds number
,”
Phys. Rev. Fluids
7
,
023103
(
2022
).
141.
L.
Yang
,
J.
Jiang
,
X.
Gao
,
Q.
Wang
,
Q.
Dou
, and
L.
Zhang
, “
Autonomous environment-adaptive microrobot swarm navigation enabled by deep learning-based real-time distribution planning
,”
Nat. Mach. Intell.
4
,
480
493
(
2022
).
142.
M. A.
Larchenko
,
P.
Osinenko
,
G.
Yaremenko
, and
V. V.
Palyulin
, “
A study of first-passage time minimization via Q-learning in heated gridworlds
,”
IEEE Access
9
,
159349
159363
(
2021
).
143.
D.
McDermott
,
C.
Reichhardt
, and
C. J. O.
Reichhardt
, “
Characterizing different motility induced regimes in active matter with machine learning and noise
,”
Phys. Rev. E
108
(
6
),
064613
(
2023
).
144.
A. R.
Dulaney
and
J. F.
Brady
, “
Machine learning for phase behavior in active matter systems
,”
Soft Matter
17
,
6808
6816
(
2021
).
145.
M. R.
Bailey
,
F.
Grillo
, and
L.
Isa
, “
Tracking janus microswimmers in 3D with machine learning
,”
Soft Matter
18
,
7291
7300
(
2022
).
146.
H.
Bachimanchi
,
M. I. M.
Pinder
,
C.
Robert
,
P.
De Wit
,
J.
Havenhand
,
A.
Kinnby
,
D.
Midtvedt
,
E.
Selander
, and
G.
Volpe
, “
Deep-learning-powered data analysis in plankton ecology
,”
Limnol. Oceanogr. Lett.
9
(
4
),
324
339
(
2024
).
147.
M. P.
MacDonald
,
G. C.
Spalding
, and
K.
Dholakia
, “
Microfluidic sorting in an optical lattice
,”
Nature
426
,
421
424
(
2003
).
148.
K.
Xiao
and
D. G.
Grier
, “
Multidimensional optical fractionation of colloidal particles with holographic verification
,”
Phys. Rev. Lett.
104
,
028302
(
2010
).
149.
L. R.
Huang
,
E. C.
Cox
,
R. H.
Austin
, and
J. C.
Sturm
, “
Continuous particle separation through deterministic lateral displacement
,”
Science
304
,
987
990
(
2004
).
150.
C. O.
Reichhardt
and
C.
Reichhardt
, “
Ratchet effects in active matter systems
,”
Annu. Rev. Condens. Matter Phys.
8
,
51
75
(
2017
).
151.
P.
Galajda
,
J.
Keymer
,
P.
Chaikin
, and
R.
Austin
, “
A wall of funnels concentrates swimming bacteria
,”
J. Bacteriol.
189
,
8704
8707
(
2007
).
152.
N.
Kumar
,
R. K.
Gupta
,
H.
Soni
,
S.
Ramaswamy
, and
A. K.
Sood
, “
Trapping and sorting active particles: Motility-induced condensation and smectic defects
,”
Phys. Rev. E
99
,
032605
(
2019
).
153.
H. E.
Ribeiro
,
W. P.
Ferreira
, and
F. Q.
Potiguar
, “
Trapping and sorting of active matter in a periodic background potential
,”
Phys. Rev. E
101
,
032126
(
2020
).
154.
B.-Q.
Ai
,
Z.-G.
Shao
, and
W.-R.
Zhong
, “
Mixing and demixing of binary mixtures of polar chiral active particles
,”
Soft Matter
14
,
4388
4395
(
2018
).
155.
V. R.
Misko
,
L.
Baraban
,
D.
Makarov
,
T.
Huang
,
P.
Gelin
,
I.
Mateizel
,
K.
Wouters
,
N.
De Munck
,
F.
Nori
, and
W.
De Malsche
, “
Selecting active matter according to motility in an acoustofluidic setup: Self-propelled particles and sperm cells
,”
Soft Matter
19
,
8635
8648
(
2023
).
156.
M.
Paoluzzi
,
L.
Angelani
, and
A.
Puglisi
, “
Narrow-escape time and sorting of active particles in circular domains
,”
Phys. Rev. E
102
,
042617
(
2020
).
157.
J.
Happel
and
H.
Brenner
,
Low Reynolds Number Hydrodynamics: With Special Applications to Particulate Media
(
Springer Netherlands & Martinus Nijhoff Publishers
,
The Hague, The Netherlands
,
1983
).
158.
F.
Pedregosa
,
G.
Varoquaux
,
A.
Gramfort
,
V.
Michel
,
B.
Thirion
,
O.
Grisel
,
M.
Blondel
,
P.
Prettenhofer
,
R.
Weiss
,
V.
Dubourg
et al, “
Scikit-learn: Machine learning in python
,”
J. Mach. Learn. Res.
12
,
2825
2830
(
2011
).
159.
S. M.
Lundberg
and
S.-I.
Lee
, “
A unified approach to interpreting model predictions
,” in
Proceedings of the 31st International Conference on Neural Information Processing Systems, NIPS’17
(
Curran Associates Inc.
,
Red Hook, NY
,
2017
) pp.
4768
4777
.
160.
A.
Kaiser
,
H. H.
Wensink
, and
H.
Löwen
, “
How to capture active particles
,”
Phys. Rev. Lett.
108
,
268307
(
2012
).
161.
B.-Q.
Ai
,
S.
Quan
, and
F. G.
Li
, “
Spontaneous demixing of chiral active mixtures in motility-induced phase separation
,”
New J. Phys.
25
,
063025
(
2023
).
162.
D.
Levis
,
I.
Pagonabarraga
, and
B.
Liebchen
, “
Activity induced synchronization: Mutual flocking and chiral self-sorting
,”
Phys. Rev. Res.
1
,
023026
(
2019
).
163.
T.
Barois
,
J.-F.
Boudet
,
J. S.
Lintuvuori
, and
H.
Kellay
, “
Sorting and extraction of self-propelled chiral particles by polarized wall currents
,”
Phys. Rev. Lett.
125
,
238003
(
2020
).
164.
A.-G.
Niculescu
,
C.
Chircov
,
A. C.
Bîrcă
, and
A. M.
Grumezescu
, “
Fabrication and applications of microfluidic devices: A review
,”
Int. J. Mol. Sci.
22
,
2011
(
2021
).
165.
S. M.
Scott
and
Z.
Ali
, “
Fabrication methods for microfluidic devices: An overview
,”
Micromachines
12
,
319
(
2021
).
166.
L. H.
Duong
and
P.-C.
Chen
, “
Simple and low-cost production of hybrid 3D-printed microfluidic devices
,”
Biomicrofluidics
13
,
024108
(
2019
).
167.
S.
Waheed
,
J. M.
Cabot
,
N. P.
Macdonald
,
T.
Lewis
,
R. M.
Guijt
,
B.
Paull
, and
M. C.
Breadmore
, “
3D printed microfluidic devices: Enablers and barriers
,”
Lab Chip
16
,
1993
2013
(
2016
).
168.
R.
Amin
,
S.
Knowlton
,
A.
Hart
,
B.
Yenilmez
,
F.
Ghaderinezhad
,
S.
Katebifar
,
M.
Messina
,
A.
Khademhosseini
, and
S.
Tasoglu
, “
3D-printed microfluidic devices
,”
Biofabrication
8
,
022001
(
2016
).
You do not currently have access to this content.