The hydrodynamics of thin films is typically described using macroscopic models whose connection to the microscopic particle dynamics is a subject of ongoing research. Existing methods based on density functional theory provide a good description of static thin films but are not sufficient for understanding nonequilibrium dynamics. In this work, we present a microscopic derivation of the thin film equation using the Mori–Zwanzig projection operator formalism. This method allows to directly obtain the correct gradient dynamics structure along with microscopic expressions for mobility and free energy. Our results are verified against molecular dynamics simulations for both simple fluids and polymers.

1.
M.
Fricke
,
T.
Marić
, and
D.
Bothe
, “
Contact line advection using the geometrical volume-of-fluid method
,”
J. Comput. Phys.
407
,
109221
(
2020
).
2.
M.
Fricke
,
T.
Marić
, and
D.
Bothe
, “
Contact line advection using the level set method
,”
Proc. Appl. Math. Mech.
19
,
e201900476
(
2019
).
3.
W.
Tewes
,
M.
Wilczek
,
S. V.
Gurevich
, and
U.
Thiele
, “
Self-organized dip-coating patterns of simple, partially wetting, nonvolatile liquids
,”
Phys. Rev. Fluids
4
,
123903
(
2019
).
4.
C.
Honisch
,
T.-S.
Lin
,
A.
Heuer
,
U.
Thiele
, and
S. V.
Gurevich
, “
Instabilities of layers of deposited molecules on chemically stripe patterned substrates: Ridges versus drops
,”
Langmuir
31
,
10618
10631
(
2015
).
5.
X.
Li
,
P.
Bista
,
A. Z.
Stetten
,
H.
Bonart
,
M. T.
Schür
,
S.
Hardt
,
F.
Bodziony
,
H.
Marschall
,
A.
Saal
,
X.
Deng
,
R.
Berger
,
S. A. L.
Weber
, and
H.-J.
Butt
, “
Spontaneous charging affects the motion of sliding drops
,”
Nat. Phys.
18
,
713
719
(
2022
).
6.
W. S. Y.
Wong
,
P.
Bista
,
X.
Li
,
L.
Veith
,
A.
Sharifi-Aghili
,
S. A. L.
Weber
, and
H.-J.
Butt
, “
Tuning the charge of sliding water drops
,”
Langmuir
38
,
6224
6230
(
2022
).
7.
M.
Wilczek
,
W.
Tewes
,
S.
Engelnkemper
,
S. V.
Gurevich
, and
U.
Thiele
, “
Sliding drops: Ensemble statistics from single drop bifurcations
,”
Phys. Rev. Lett.
119
,
204501
(
2017
).
8.
S.
Engelnkemper
,
M.
Wilczek
,
S. V.
Gurevich
, and
U.
Thiele
, “
Morphological transitions of sliding drops: Dynamics and bifurcations
,”
Phys. Rev. Fluids
1
,
073901
(
2016
).
9.
W.
Han
and
Z.
Lin
, “
Learning from ‘coffee rings’: Ordered structures enabled by controlled evaporative self-assembly
,”
Angew. Chem., Int. Ed.
51
,
1534
1546
(
2012
).
10.
S. J.
Weinstein
and
K. J.
Ruschak
, “
Coating flows
,”
Annu. Rev. Fluid Mech.
36
,
29
53
(
2004
).
11.
P.-M. T.
Ly
,
K. D. J.
Mitas
,
U.
Thiele
, and
S. V.
Gurevich
, “
Two-dimensional patterns in dip coating - first steps on the continuation path
,”
Physica D
409
,
132485
(
2020
).
12.
P.-M. T.
Ly
,
U.
Thiele
,
L.
Chi
, and
S. V.
Gurevich
, “
Effects of time-periodic forcing in a Cahn-Hilliard model for Langmuir-Blodgett transfer
,”
Phys. Rev. E
99
,
062212
(
2019
).
13.
K. D. J.
Mitas
,
O.
Manor
, and
U.
Thiele
, “
Bifurcation study for a surface-acoustic-wave-driven meniscus
,”
Phys. Rev. Fluids
6
,
094002
(
2021
).
14.
M.
Kasischke
,
S.
Hartmann
,
K.
Niermann
,
M.
Smarra
,
D.
Kostyrin
,
U.
Thiele
, and
E. L.
Gurevich
, “
Pattern formation in slot-die coating
,”
Phys. Fluids
35
,
074117
(
2023
).
15.
S.
Trinschek
,
F.
Stegemerten
,
K.
John
, and
U.
Thiele
, “
Thin-film modeling of resting and moving active droplets
,”
Phys. Rev. E
101
,
062802
(
2020
).
16.
S.
Trinschek
,
K.
John
,
S.
Lecuyer
, and
U.
Thiele
, “
Continuous versus arrested spreading of biofilms at solid-gas interfaces: The role of surface forces
,”
Phys. Rev. Lett.
119
,
078003
(
2017
).
17.
S.
Trinschek
,
K.
John
, and
U.
Thiele
, “
Modelling of surfactant-driven front instabilities in spreading bacterial colonies
,”
Soft Matter
14
,
4464
4476
(
2018
).
18.
B.
Wallmeyer
,
S.
Trinschek
,
S.
Yigit
,
U.
Thiele
, and
T.
Betz
, “
Collective cell migration in embryogenesis follows the laws of wetting
,”
Biophys. J.
114
,
213
222
(
2018
).
19.
M.
Böckmann
,
T.
Schemme
,
D. H.
de Jong
,
C.
Denz
,
A.
Heuer
, and
N. L.
Doltsinis
, “
Structure of P3HT crystals, thin films, and solutions by UV/Vis spectral analysis
,”
Phys. Chem. Chem. Phys.
17
,
28616
28625
(
2015
).
20.
J. S.
Park
,
S.
Kim
,
Z.
Xie
, and
A.
Walsh
, “
Point defect engineering in thin-film solar cells
,”
Nat. Rev. Mater.
3
,
194
210
(
2018
).
21.
M.
Fricke
,
M.
Köhne
, and
D.
Bothe
, “
On the kinematics of contact line motion
,” in
Proc. Appl. Math. Mech.
18
,
e201800451
(
2018
).
22.
R. V.
Craster
and
O. K.
Matar
, “
Dynamics and stability of thin liquid films
,”
Rev. Mod. Phys.
81
,
1131
(
2009
).
23.
D.
Bonn
,
J.
Eggers
,
J.
Indekeu
,
J.
Meunier
, and
E.
Rolley
, “
Wetting and spreading
,”
Rev. Mod. Phys.
81
,
739
(
2009
).
24.
F.
Léonforte
,
J.
Servantie
,
C.
Pastorino
, and
M.
Müller
, “
Molecular transport and flow past hard and soft surfaces: Computer simulation of model systems
,”
J. Phys.: Condens. Matter
23
,
184105
(
2011
).
25.
A.
Milchev
and
K.
Binder
, “
Polymer melt droplets adsorbed on a solid wall: A Monte Carlo simulation
,”
J. Chem. Phys.
114
,
8610
8618
(
2001
).
26.
L.
Dong
,
R. W.
Smith
, and
D. J.
Srolovitz
, “
A two-dimensional molecular dynamics simulation of thin film growth by oblique deposition
,”
J. Appl. Phys.
80
,
5682
5690
(
1996
).
27.
V. S.
Mitlin
, “
Dewetting of solid surface: Analogy with spinodal decomposition
,”
J. Colloid Interface Sci.
156
,
491
497
(
1993
).
28.
U.
Thiele
, “
Recent advances in and future challenges for mesoscopic hydrodynamic modelling of complex wetting
,”
Colloids Surf., A
553
,
487
495
(
2018
).
29.
M.
Wilczek
,
W. B. H.
Tewes
,
S. V.
Gurevich
,
M. H.
Köpf
,
L.
Chi
, and
U.
Thiele
, “
Modelling pattern formation in dip-coating experiments
,”
Math. Model. Nat. Phenom.
10
,
44
60
(
2015
).
30.
U.
Thiele
, “
Patterned deposition at moving contact lines
,”
Adv. Colloid Interface Sci.
206
,
399
413
(
2014
).
31.
U.
Thiele
, “
Dewetting and decomposing films of simple and complex liquids
,” in
Multiphase Microfluidics: The Diffuse Interface Model
, edited by
R.
Mauri
(
Springer
,
Vienna
,
2012
), pp.
93
127
.
32.
U.
Thiele
and
S.
Hartmann
, “
Gradient dynamics model for drops spreading on polymer brushes
,”
Eur. Phys. J.: Spec. Top.
229
,
1819
1832
(
2020
).
33.
S.
Engelnkemper
, “
Nichtlineare Analyse Physikochemisch Getriebener Entnetzung - Statik und Dynamik
,” Ph.D. thesis,
University of Münster
,
2017
.
34.
W.
Tewes
,
O.
Buller
,
A.
Heuer
,
U.
Thiele
, and
S. V.
Gurevich
, “
Comparing kinetic Monte Carlo and thin-film modeling of transversal instabilities of ridges on patterned substrates
,”
J. Chem. Phys.
146
,
094704
(
2017
).
35.
O.
Buller
,
W.
Tewes
,
A. J.
Archer
,
A.
Heuer
,
U.
Thiele
, and
S. V.
Gurevich
, “
Nudged elastic band calculation of the binding potential for liquids at interfaces
,”
J. Chem. Phys.
147
,
024701
(
2017
).
36.
N.
Tretyakov
,
M.
Müller
,
D.
Todorova
, and
U.
Thiele
, “
Parameter passing between molecular dynamics and continuum models for droplets on solid substrates: The static case
,”
J. Chem. Phys.
138
,
064905
(
2013
).
37.
M.
Stieneker
,
L.
Topp
,
S. V.
Gurevich
, and
A.
Heuer
, “
Multiscale perspective on wetting on switchable substrates: Mapping between microscopic and mesoscopic models
,”
Phys. Rev. Fluids
8
,
013902
(
2023
).
38.
L.
Topp
,
M.
Stieneker
,
S. V.
Gurevich
, and
A.
Heuer
, “
Wetting dynamics under periodic switching on different scales: Characterization and mechanisms
,”
Soft Matter
18
,
6974
6986
(
2022
).
39.
H.
Yin
,
D. N.
Sibley
, and
A. J.
Archer
, “
Binding potentials for vapour nanobubbles on surfaces using density functional theory
,”
J. Phys.: Condens. Matter
31
,
315102
(
2019
).
40.
P.
Yatsyshin
,
M.
Durán-Olivencia
, and
S.
Kalliadasis
, “
Microscopic aspects of wetting using classical density functional theory
,”
J. Phys.: Condens. Matter
30
,
274003
(
2018
).
41.
A. P.
Hughes
,
U.
Thiele
, and
A. J.
Archer
, “
Influence of the fluid structure on the binding potential: Comparing liquid drop profiles from density functional theory with results from mesoscopic theory
,”
J. Chem. Phys.
146
,
064705
(
2017
).
42.
P.
Yatsyshin
and
S.
Kalliadasis
, “
Mean-field phenomenology of wetting in nanogrooves
,”
Mol. Phys.
114
,
2688
2699
(
2016
).
43.
P.
Yatsyshin
and
S.
Kalliadasis
, “
Classical density-functional theory studies of fluid adsorption on nanopatterned planar surfaces
,” in
Coupled Mathematical Models for Physical and Nanoscale Systems and Their Applications
, edited by
L. L.
Bonilla
,
E.
Kaxiras
, and
R.
Melnik
(
Springer
,
Cham
,
2018
), pp.
171
185
.
44.
P.
Yatsyshin
,
N.
Savva
, and
S.
Kalliadasis
, “
Wetting of prototypical one- and two-dimensional systems: Thermodynamics and density functional theory
,”
J. Chem. Phys.
142
,
034708
(
2015
).
45.
A. P.
Hughes
,
U.
Thiele
, and
A. J.
Archer
, “
An introduction to inhomogeneous liquids, density functional theory, and the wetting transition
,”
Am. J. Phys.
82
,
1119
1129
(
2014
).
46.
A. P.
Hughes
,
U.
Thiele
, and
A. J.
Archer
, “
Liquid drops on a surface: Using density functional theory to calculate the binding potential and drop profiles and comparing with results from mesoscopic modelling
,”
J. Chem. Phys.
142
,
074702
(
2015
).
47.
Z.
Li
and
J.
Wu
, “
Toward a quantitative theory of ultrasmall liquid droplets and vapor-liquid nucleation
,”
Ind. Eng. Chem. Res.
47
,
4988
4995
(
2008
).
48.
P.
Yatsyshin
,
N.
Savva
, and
S.
Kalliadasis
, “
Density functional study of condensation in capped capillaries
,”
J. Phys.: Condens. Matter
27
,
275104
(
2015
).
49.
A.
Nold
,
D. N.
Sibley
,
B. D.
Goddard
, and
S.
Kalliadasis
, “
Fluid structure in the immediate vicinity of an equilibrium three-phase contact line and assessment of disjoining pressure models using density functional theory
,”
Phys. Fluids
26
,
072001
(
2014
).
50.
M. J.
Robbins
,
A. J.
Archer
, and
U.
Thiele
, “
Modelling the evaporation of thin films of colloidal suspensions using dynamical density functional theory
,”
J. Phys.: Condens. Matter
23
,
415102
(
2011
).
51.
U.
Thiele
,
I.
Vancea
,
A. J.
Archer
,
M. J.
Robbins
,
L.
Frastia
,
A.
Stannard
,
E.
Pauliac-Vaujour
,
C. P.
Martin
,
M. O.
Blunt
, and
P. J.
Moriarty
, “
Modelling approaches to the dewetting of evaporating thin films of nanoparticle suspensions
,”
J. Phys.: Condens. Matter
21
,
264016
(
2009
).
52.
A. J.
Archer
,
M. J.
Robbins
, and
U.
Thiele
, “
Dynamical density functional theory for the dewetting of evaporating thin films of nanoparticle suspensions exhibiting pattern formation
,”
Phys. Rev. E
81
,
021602
(
2010
).
53.
C.
Chalmers
,
R.
Smith
, and
A. J.
Archer
, “
Dynamical density functional theory for the evaporation of droplets of nanoparticle suspension
,”
Langmuir
33
,
14490
14501
(
2017
).
54.
M. P.
Howard
,
A.
Nikoubashman
, and
A. Z.
Panagiotopoulos
, “
Stratification dynamics in drying colloidal mixtures
,”
Langmuir
33
,
3685
3693
(
2017
).
55.
M. P.
Howard
,
A.
Nikoubashman
, and
A. Z.
Panagiotopoulos
, “
Stratification in drying polymer-polymer and colloid-polymer mixtures
,”
Langmuir
33
,
11390
11398
(
2017
).
56.
R. P.
Sear
and
P. B.
Warren
, “
Diffusiophoresis in nonadsorbing polymer solutions: The Asakura-Oosawa model and stratification in drying films
,”
Phys. Rev. E
96
,
062602
(
2017
).
57.
U.
Thiele
,
A. J.
Archer
, and
M.
Plapp
, “
Thermodynamically consistent description of the hydrodynamics of free surfaces covered by insoluble surfactants of high concentration
,”
Phys. Fluids
24
,
102107
(
2012
).
58.
S.
Aland
and
A.
Voigt
, “
Simulation of common features and differences of surfactant-based and solid-stabilized emulsions
,”
Colloids Surf., A
413
,
298
302
(
2012
).
59.
J.
Grawitter
and
H.
Stark
, “
Feedback control of photoresponsive fluid interfaces
,”
Soft Matter
14
,
1856
1869
(
2018
).
60.
Y.
Ye
,
M.
Tian
,
C.
Zhang
,
Z.
Du
, and
J.
Mi
, “
Understanding controls on wetting at fluorinated polyhedral oligomeric silsesquioxane/polymer surfaces
,”
Langmuir
32
,
230
238
(
2016
).
61.
H. P.
Huinink
,
J. C. M.
Brokken-Zijp
,
M. A.
van Dijk
, and
G. J. A.
Sevink
, “
Asymmetric block copolymers confined in a thin film
,”
J. Chem. Phys.
112
,
2452
2462
(
2000
).
62.
A.
Horvat
,
K. S.
Lyakhova
,
G. J. A.
Sevink
,
A. V.
Zvelindovsky
, and
R.
Magerle
, “
Phase behavior in thin films of cylinder-forming ABA block copolymers: Mesoscale modeling
,”
J. Chem. Phys.
120
,
1117
1126
(
2004
).
63.
L.
Tsarkova
,
A.
Horvat
,
G.
Krausch
,
A. V.
Zvelindovsky
,
G. J. A.
Sevink
, and
R.
Magerle
, “
Defect evolution in block copolymer thin films via temporal phase transitions
,”
Langmuir
22
,
8089
8095
(
2006
).
64.
H.
Morita
,
T.
Kawakatsu
, and
M.
Doi
, “
Dynamic density functional study on the structure of thin polymer blend films with a free surface
,”
Macromolecules
34
,
8777
8783
(
2001
).
65.
S.
Paradiso
,
G. H.
Fredrickson
,
E. H.
Feng
, and
A. L.
Frischknecht
, “
Field-theoretic simulations of block copolymers: Design and solvent annealing
,” in
Office of Scientific and Technical Information Technical Report No. SAND2012-8980
,
Sandia National Laboratories
,
Albuquerque
,
2012
, https://doi.org/10.2172/1055875.
66.
R.
Evans
, “
The nature of the liquid-vapour interface and other topics in the statistical mechanics of non-uniform, classical fluids
,”
Adv. Phys.
28
,
143
200
(
1979
).
67.
U. M. B.
Marconi
and
P.
Tarazona
, “
Dynamic density functional theory of fluids
,”
J. Chem. Phys.
110
,
8032
8044
(
1999
).
68.
A. J.
Archer
and
R.
Evans
, “
Dynamical density functional theory and its application to spinodal decomposition
,”
J. Chem. Phys.
121
,
4246
4254
(
2004
).
69.
M.
te Vrugt
,
H.
Löwen
, and
R.
Wittkowski
, “
Classical dynamical density functional theory: From fundamentals to applications
,”
Adv. Phys.
69
,
121
247
(
2020
).
70.
M.
te Vrugt
,
J.
Bickmann
, and
R.
Wittkowski
, “
Effects of social distancing and isolation on epidemic spreading modeled via dynamical density functional theory
,”
Nat. Commun.
11
,
5576
(
2020
).
71.
M.
Schmidt
, “
Power functional theory for many-body dynamics
,”
Rev. Mod. Phys.
94
,
015007
(
2022
).
72.
A. J.
Archer
, “
Dynamical density functional theory for dense atomic liquids
,”
J. Phys.: Condens. Matter
18
,
5617
5628
(
2006
).
73.
A. J.
Archer
, “
Dynamical density functional theory for molecular and colloidal fluids: A microscopic approach to fluid mechanics
,”
J. Chem. Phys.
130
,
014509
(
2009
).
74.
S.
Nakajima
, “
On quantum theory of transport phenomena: Steady diffusion
,”
Prog. Theor. Phys.
20
,
948
959
(
1958
).
75.
H.
Mori
, “
Transport, collective motion, and Brownian motion
,”
Prog. Theor. Phys.
33
,
423
455
(
1965
).
76.
R.
Zwanzig
, “
Ensemble method in the theory of irreversibility
,”
J. Chem. Phys.
33
,
1338
1341
(
1960
).
77.
H.
Meyer
,
T.
Voigtmann
, and
T.
Schilling
, “
On the dynamics of reaction coordinates in classical, time-dependent, many-body processes
,”
J. Chem. Phys.
150
,
174118
(
2019
).
78.
M.
te Vrugt
and
R.
Wittkowski
, “
Mori-Zwanzig projection operator formalism for far-from-equilibrium systems with time-dependent Hamiltonians
,”
Phys. Rev. E
99
,
062118
(
2019
).
79.
M. te
Vrugt
and
R.
Wittkowski
, “
Projection operators in statistical mechanics: A pedagogical approach
,”
Eur. J. Phys.
41
,
045101
(
2020
).
80.
H.
Grabert
,
Projection Operator Techniques in Nonequilibrium Statistical Mechanics
, 1st ed., Springer Tracts in Modern Physics Vol. 95 (
Springer
,
Berlin
,
1982
).
81.
T.
Schilling
, “
Coarse-grained modelling out of equilibrium
,”
Phys. Rep.
972
,
1
45
(
2022
).
82.
V.
Klippenstein
,
M.
Tripathy
,
G.
Jung
,
F.
Schmid
, and
N. F. A.
van der Vegt
, “
Introducing memory in coarse-grained molecular simulations
,”
J. Phys. Chem. B
125
,
4931
4954
(
2021
).
83.
D.
Camargo
,
J. A.
de la Torre
,
D.
Duque-Zumajo
,
P.
Español
,
R.
Delgado-Buscalioni
, and
F.
Chejne
, “
Nanoscale hydrodynamics near solids
,”
J. Chem. Phys.
148
,
064107
(
2018
).
84.
L.
Bocquet
and
J.-L.
Barrat
, “
Hydrodynamic boundary conditions, correlation functions, and Kubo relations for confined fluids
,”
Phys. Rev. E
49
,
3079
(
1994
).
85.
D.
Camargo
,
J. A.
de la Torre
,
R.
Delgado-Buscalioni
,
F.
Chejne
, and
P.
Español
, “
Boundary conditions derived from a microscopic theory of hydrodynamics near solids
,”
J. Chem. Phys.
150
,
144104
(
2019
).
86.
M.
Baus
and
C. F.
Tejero
, “
Interfacial hydrodynamics: A microscopic approach
,”
J. Chem. Phys.
78
,
483
496
(
1983
).
87.
A.
Yoshimori
, “
Microscopic derivation of time-dependent density functional methods
,”
Phys. Rev. E
71
,
031203
(
2005
).
88.
P.
Español
and
H.
Löwen
, “
Derivation of dynamical density functional theory using the projection operator technique
,”
J. Chem. Phys.
131
,
244101
(
2009
).
89.
R.
Wittkowski
,
H.
Löwen
, and
H. R.
Brand
, “
Extended dynamical density functional theory for colloidal mixtures with temperature gradients
,”
J. Chem. Phys.
137
,
224904
(
2012
).
90.
R.
Wittkowski
,
H.
Löwen
, and
H. R.
Brand
, “
Microscopic approach to entropy production
,”
J. Phys. A: Math. Theor.
46
,
355003
(
2013
).
91.
J. G.
Anero
,
P.
Español
, and
P.
Tarazona
, “
Functional thermo-dynamics: A generalization of dynamic density functional theory to non-isothermal situations
,”
J. Chem. Phys.
139
,
034106
(
2013
).
92.
M.
te Vrugt
,
S.
Hossenfelder
, and
R.
Wittkowski
, “
Mori-Zwanzig formalism for general relativity: A new approach to the averaging problem
,”
Phys. Rev. Lett.
127
,
231101
(
2021
).
93.
M.
te Vrugt
, “
Understanding probability and irreversibility in the Mori-Zwanzig projection operator formalism
,”
Euro. Jnl. Phil. Sci.
12
,
41
(
2022
).
94.
R.
Haussmann
, “
The way from microscopic many-particle theory to macroscopic hydrodynamics
,”
J. Phys.: Condens. Matter
28
,
113001
(
2016
).
95.
D. S.
Dean
, “
Langevin equation for the density of a system of interacting Langevin processes
,”
J. Phys. A: Math. Gen.
29
,
L613
L617
(
1996
).
96.

The trace Tr includes an integral over the momenta pi. We have Tr(ρ̄J)=0 since ρ̄ is even and J is odd in the momenta. By Eq. (10), this implies PJ=0, which gives QJ=(1P)J=J.

97.

Compared to the usual definition, we add a prefactor 1/ρl in the transverse current and a prefactor 1/ρl2 in the transverse current correlation for convenience.

98.
B. J.
Palmer
, “
Transverse-current autocorrelation-function calculations of the shear viscosity for molecular liquids
,”
Phys. Rev. E
49
,
359
(
1994
).
99.
M.
Ropo
,
J.
Akola
, and
R. O.
Jones
, “
Collective excitations and viscosity in liquid Bi
,”
J. Chem. Phys.
145
,
184502
(
2016
).
100.
B.
Hess
, “
Determining the shear viscosity of model liquids from molecular dynamics simulations
,”
J. Chem. Phys.
116
,
209
217
(
2002
).
101.
N.
Jakse
and
A.
Pasturel
, “
Liquid aluminum: Atomic diffusion and viscosity from ab initio molecular dynamics
,”
Sci. Rep.
3
,
3135
(
2013
).
102.
J.-P.
Hansen
and
I. R.
McDonald
,
Theory of Simple Liquids: With Applications to Soft Matter
, 4th ed. (
Elsevier Academic Press
,
Oxford
,
2009
).
103.
D.
Forster
,
Hydrodynamic Fluctuations, Broken Symmetry, and Correlation Functions
, 1st ed., Frontiers in Physics Vol. 47 (
Addison Wesley
,
Redwood City
,
1989
).
104.

Typically, one sets z = z′ such that C depends only on one spatial coordinate, and consequently only on one wavenumber kz.

105.
L.
Onsager
, “
Reciprocal relations in irreversible processes. I
,”
Phys. Rev.
37
,
405
426
(
1931
).
106.
L.
Onsager
, “
Reciprocal relations in irreversible processes. II
,”
Phys. Rev.
38
,
2265
2279
(
1931
).
107.
A. P. S.
Selvadurai
,
Partial Differential Equations in Mechanics 1
(
Springer
,
Berlin, Heidelberg
,
2000
).
108.
D. V.
Widder
,
The Heat Equation
(
Academic Press
,
New York
,
2005
).
109.
A. J.
Archer
and
R.
Evans
, “
Nucleation of liquid droplets in a fluid with competing interactions
,”
Mol. Phys.
109
,
2711
2722
(
2011
).
110.
S.
Hartmann
,
C.
Diddens
,
M.
Jalaal
, and
U.
Thiele
, “
Sessile drop evaporation in a gap – crossover between diffusion-limited and phase transition-limited regime
,”
J. Fluid Mech.
960
,
A32
(
2023
).
111.
J. A.
Anderson
,
J.
Glaser
, and
S. C.
Glotzer
, “
HOOMD-blue: A python package for high-performance molecular dynamics and hard particle Monte Carlo simulations
,”
Comput. Mater. Sci.
173
,
109363
(
2020
).
112.
C. L.
Phillips
,
J. A.
Anderson
, and
S. C.
Glotzer
, “
Pseudo-random number generation for Brownian dynamics and dissipative particle dynamics simulations on GPU devices
,”
J. Comput. Phys.
230
,
7191
7201
(
2011
).
113.
J.
Walton
,
D.
Tildesley
,
J.
Rowlinson
, and
J.
Henderson
, “
The pressure tensor at the planar surface of a liquid
,”
Mol. Phys.
48
,
1357
1368
(
1983
).
114.

The exponential functions in Eq. (72) depend on the product νs. If we insert s=s̃t0 with the dimensionless time s̃ and the macroscopic characteristic time t0, which itself is proportional to ν, this gives a factor ν2s̃.

115.
G.
Jung
,
M.
Hanke
, and
F.
Schmid
, “
Iterative reconstruction of memory kernels
,”
J. Chem. Theory Comput.
13
,
2481
2488
(
2017
).
116.
G.
Jung
,
M.
Hanke
, and
F.
Schmid
, “
Generalized Langevin dynamics: Construction and numerical integration of non-Markovian particle-based models
,”
Soft Matter
14
,
9368
9382
(
2018
).
117.
C.
Ayaz
,
L.
Scalfi
,
B. A.
Dalton
, and
R. R.
Netz
, “
Generalized Langevin equation with a nonlinear potential of mean force and nonlinear memory friction from a hybrid projection scheme
,”
Phys. Rev. E
105
,
054138
(
2022
).
118.
H.
Meyer
,
P.
Pelagejcev
, and
T.
Schilling
, “
Non-Markovian out-of-equilibrium dynamics: A general numerical procedure to construct time-dependent memory kernels for coarse-grained observables
,”
EPL
128
,
40001
(
2020
).
119.
H.
Meyer
,
S.
Wolf
,
G.
Stock
, and
T.
Schilling
, “
A numerical procedure to evaluate memory effects in non-equilibrium coarse-grained models
,”
Adv. Theory Simul.
4
,
2000197
(
2021
).
120.
See https://doi.org/10.5281/zenodo.10839788 for the data set and Python code to recreate the figures in this article.
You do not currently have access to this content.