Antimonene, a promising conductor for next-generation 2D-based devices, has its contact resistance significantly influenced by the van der Waals (vdW) interaction within its heterostructure. In this study, we report the quantification of the vdW coupling between multilayer antimonene and bilayer MoS2 by ultrafast coherent vibration spectroscopy. By utilizing a femtosecond laser, we excited coherent acoustic vibrations in the multilayer-antimonene on substrate-supported bilayer MoS2, and the relative displacement at the vdW heterojunction was detected with the aid of bilayer MoS2. The photoexcited strain pulse generated in the multilayer-antimonene was observed as it transported to the bilayer MoS2, explaining the distortion at the beginning of the oscillation. By analyzing the thickness-dependent oscillation frequencies, we determine the effective vdW elastic constant between multilayer-antimonene and MoS2 to be (1.9 ± 0.2) × 1018 N/m3. This non-destructive optical technique offers a significant advance in the evaluation of vdW interactions at 2D metal-semiconductor interfaces.

1.
J.
Ji
,
X.
Song
,
J.
Liu
,
Z.
Yan
,
C.
Huo
,
S.
Zhang
,
M.
Su
,
L.
Liao
,
W.
Wang
,
Z.
Ni
,
Y.
Hao
, and
H.
Zeng
,
Nat. Commun.
7
,
13352
(
2016
).
2.
W.
Li
,
X.
Gong
,
Z.
Yu
,
L.
Ma
,
W.
Sun
,
S.
Gao
,
C.
Koroglu
,
W.
Wang
,
L.
Liu
,
T.
Li
,
H.
Ning
,
D.
Fan
,
Y.
Xu
,
X.
Tu
,
T.
Xu
,
L.
Sun
,
W.
Wang
,
J.
Lu
,
Z.
Ni
,
J.
Li
,
X.
Duan
,
P.
Wang
,
Y.
Nie
,
H.
Qiu
,
Y.
Shi
,
E.
Pop
,
J.
Wang
, and
X.
Wang
,
Nature
613
(
7943
),
274
279
(
2023
).
3.
A.-S.
Chou
et al, “
Antimony semimetal contact with enhanced thermal stability for high performance 2D electronics
,” in
2021 IEEE International Electron Devices Meeting (IEDM)
(IEEE, San Francisco, CA,
2021
), pp.
7.2.1
7.2.4
4.
H. A.
Chen
,
H.
Sun
,
C. R.
Wu
,
Y. X.
Wang
,
P. H.
Lee
,
C. W.
Pao
, and
S. Y.
Lin
,
ACS Appl. Mater. Interfaces
10
(
17
),
15058
15064
(
2018
).
5.
H.
Li
,
Q.
Zhang
,
C. C. R.
Yap
,
B. K.
Tay
,
T. H. T.
Edwin
,
A.
Olivier
, and
D.
Baillargeat
,
Adv. Funct. Mater.
22
(
7
),
1385
1390
(
2012
).
6.
S.
Najmaei
,
Z.
Liu
,
P. M.
Ajayan
, and
J.
Lou
,
Appl. Phys. Lett.
100
,
013106
(
2012
).
7.
C. R.
Wu
,
X. R.
Chang
,
C. H.
Wu
, and
S. Y.
Lin
,
Sci. Rep.
7
,
42146
(
2017
).
8.
P.-J.
Wang
,
P.-C.
Tsai
,
Z.-S.
Yang
,
S.-Y.
Lin
, and
C.-K.
Sun
,
Photoacoustics
28
,
100412
(
2022
).
9.
A.
Kostyukov
,
M.
Baronskiy
,
A.
Rastorguev
,
V.
Snytnikov
,
V.
Snytnikov
,
A.
Zhuzhgov
, and
A.
Ishchenko
,
RSC Adv.
6
(
3
),
2072
2078
(
2016
).
10.
P.-C.
Tsai
,
C.-R.
Yan
,
S.-J.
Chang
, and
S.-Y.
Lin
,
Nanotechnology
33
(
50
),
505205
(
2022
).
11.
C.-K.
Sun
,
Y.-K.
Huang
,
J.-C.
Liang
,
A.
Abare
, and
S. P.
DenBaars
,
Appl. Phys. Lett.
78
(
9
),
1201
1203
(
2001
).
12.
Y.-K.
Huang
,
G.-W.
Chern
,
C.-K.
Sun
,
Y.
Smorchkova
,
S.
Keller
,
U.
Mishra
, and
S. P.
DenBaars
,
Appl. Phys. Lett.
79
(
20
),
3361
3363
(
2001
).
13.
K.-H.
Lin
,
C.-T.
Yu
,
Y.-C.
Wen
, and
C.-K.
Sun
,
Appl. Phys. Lett.
86
(
9
),
093110
(
2005
).
14.
M.
Fickert
,
M.
Assebban
,
J.
Canet-Ferrer
, and
G.
Abellán
,
2D Mater.
8
(
1
),
015018
(
2020
).
15.
F.
Zhang
,
X.
Jiang
,
Z.
He
,
W.
Liang
,
S.
Xu
, and
H.
Zhang
,
Opt. Mater.
95
,
109209
(
2019
).
16.
L.
Zhang
,
S.
Fahad
,
H. R.
Wu
,
T. T.
Dong
,
Z. Z.
Chen
,
Z. Q.
Zhang
,
R. T.
Liu
,
X. P.
Zhai
,
X. Y.
Li
,
X.
Fei
,
Q. W.
Song
,
Z. J.
Wang
,
L. C.
Chen
,
C. L.
Sun
,
Y.
Peng
,
Q.
Wang
, and
H. L.
Zhang
,
Nanoscale Horiz.
5
(
10
),
1420
1429
(
2020
).
17.
Y.-C.
Huang
,
J.-C.
Liang
,
C.-K.
Sun
,
A.
Abare
, and
S. P.
DenBaars
,
Appl. Phys. Lett.
78
(
7
),
928
930
(
2001
).
18.
H.
Wang
,
Y.
Mao
,
C.
Chen
,
X.
Chen
, and
J.
Wang
,
J. Phys. Chem. C
125
(
36
),
19866
19873
(
2021
).
19.
T. G.
Park
,
H. R.
Na
,
S. H.
Chun
,
W. B.
Cho
,
S.
Lee
, and
F.
Rotermund
,
Nanoscale
13
(
45
),
19264
19273
(
2021
).
20.
A.
de Bretteville
,
E. R.
Cohen
,
A. D.
Ballato
,
I. N.
Greenberg
, and
S.
Epstein
,
Phys. Rev.
148
(
2
),
575
579
(
1966
).
21.
E.
Wiberg
and
N.
Wiberg
,
Inorganic Chemistry
(
Academic Press
,
2001
).
22.
R. C.
Ng
,
A.
El Sachat
,
F.
Cespedes
,
M.
Poblet
,
G.
Madiot
,
J.
Jaramillo-Fernandez
,
O.
Florez
,
P.
Xiao
,
M.
Sledzinska
,
C. M.
Sotomayor-Torres
, and
E.
Chavez-Angel
,
Nanoscale
14
(
37
),
13428
13451
(
2022
).
23.
Y.
Yoon
,
Z.
Lu
,
C.
Uzundal
,
R.
Qi
,
W.
Zhao
,
S.
Chen
,
Q.
Feng
,
W.
Kim
,
M. H.
Naik
,
K.
Watanabe
,
T.
Taniguchi
,
S. G.
Louie
,
M. F.
Crommie
, and
F.
Wang
,
Nature
631
(
8022
),
771
776
(
2024
).
24.
I. J.
Chen
,
P. A.
Mante
,
C. K.
Chang
,
S. C.
Yang
,
H. Y.
Chen
,
Y. R.
Huang
,
L. C.
Chen
,
K. H.
Chen
,
V.
Gusev
, and
C. K.
Sun
,
Nano Lett.
14
(
3
),
1317
1323
(
2014
).
25.
P.-J.
Wang
,
C.-J.
Chang
,
S.-Y.
Lin
,
J.-K.
Sheu
, and
C.-K.
Sun
,
Photoacoustics
30
,
100477
(
2023
).
26.
S.
Wang
,
W.
Wang
, and
G.
Zhao
,
Phys. Chem. Chem. Phys.
18
(
45
),
31217
31222
(
2016
).
27.
M.
O’Brien
,
N.
Scheuschner
,
J.
Maultzsch
,
G. S.
Duesberg
, and
N.
McEvoy
,
Phys. Status Solidi B
254
(
11
),
1700218
(
2017
).
28.
X.
Zhang
,
W. P.
Han
,
J. B.
Wu
,
S.
Milana
,
Y.
Lu
,
Q. Q.
Li
,
A. C.
Ferrari
, and
P. H.
Tan
,
Phys. Rev. B
87
(
11
),
115413
(
2013
).
29.
A. Y.
Klokov
,
N. Y.
Frolov
,
A. I.
Sharkov
,
S. N.
Nikolaev
,
M. A.
Chernopitssky
,
S. I.
Chentsov
,
M. V.
Pugachev
,
A. I.
Duleba
,
A. V.
Shupletsov
,
V. S.
Krivobok
, and
A. Y.
Kuntsevich
,
Nano Lett.
22
(
5
),
2070
2076
(
2022
).
30.
M.
Li
,
P.
Zhang
, and
J.
Leng
,
Physica A
445
,
189
199
(
2016
).
31.
J. D. G.
Greener
,
A. V.
Akimov
,
V. E.
Gusev
,
Z. R.
Kudrynskyi
,
P. H.
Beton
,
Z. D.
Kovalyuk
,
T.
Taniguchi
,
K.
Watanabe
,
A. J.
Kent
, and
A.
Patanè
,
Phys. Rev. B
98
,
075408
(
2018
).
32.
Y.
Huang
,
Y.-H.
Pan
,
R.
Yang
,
L.-H.
Bao
,
L.
Meng
,
H.-L.
Luo
,
Y.-Q.
Cai
,
G.-D.
Liu
,
W.-J.
Zhao
,
Z.
Zhou
,
L.-M.
Wu
,
Z.-L.
Zhu
,
M.
Huang
,
L.-W.
Liu
,
L.
Liu
,
P.
Cheng
,
K.-H.
Wu
,
S.-B.
Tian
,
C.-Z.
Gu
,
Y.-G.
Shi
,
Y.-F.
Guo
,
Z. G.
Cheng
,
J.-P.
Hu
,
L.
Zhao
,
G.-H.
Yang
,
E.
Sutter
,
P.
Sutter
,
Y.-L.
Wang
,
W.
Ji
,
X.-J.
Zhou
, and
H.-J.
Gao
,
Nat. Commun.
11
,
2453
(
2020
).
33.
Y.
Yao
,
B.
Wu
,
Z.
Liu
, and
W.
Ouyang
,
J. Phys. Chem. C
128
(
16
),
6836
6851
(
2024
).
34.
S.
Nasiri
,
C.
Greff
,
K.
Wang
,
M.
Yang
,
Q.
Li
,
P.
Moretti
, and
M.
Zaiser
,
Adv. Eng. Mater.
22
(
9
),
2000207
(
2020
).
35.
Z.
Xu
and
M. J.
Buehler
,
J. Phys.: Condens.Matter
22
(
48
),
485301
(
2010
).
36.
W.
Ouyang
,
O.
Hod
, and
R.
Guerra
,
J. Chem. Theory Comput.
17
(
11
),
7215
7223
(
2021
).
You do not currently have access to this content.