Understanding the underlying principles of contact electrification is critical for more efficient triboelectric nanogenerator (TENG) development. Herein, we use ReaxFF molecular dynamics simulations in conjunction with a charge equilibration method to investigate the contact electrification mechanism in polyisoprene (PI), a natural rubber polymer, when it comes into contact with copper (Cu) and polytetrafluoroethylene (PTFE). The simulations reveal that the charge transfer directions in the PI/Cu and PI/PTFE contact models are opposite, and the amount of charge transfer in the former is substantially less than that in the latter, which are consistent with our TENG measurements. Contact electrification is revealed to be a spontaneous process that occurs to lower electrostatic energy, and the electrostatic energy released during contact electrification of PI/PTFE is greater than that of PI/Cu, which can be correlated with the relative strength of triboelectric charging observed for the two systems. A compression simulation of the PI/Cu contact model reveals that the quantity of charge transfer grows exponentially as compressive strain increases. Despite increasing the total energy of the system due to densification and distortion of the polymer structure, the applied deformation results in an energetically more stable electrostatic arrangement. We also find that the incorporation of a carbonaceous material into a polyisoprene matrix causes a faster increase in the amount of charge transfer with compressive strain, which is governed by a steeper electrostatic energy profile. This study provides an alternative perspective on the contact electrification mechanism, which could be beneficial for the development of energy harvesting devices.

1.
Z. L.
Wang
, “
Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors
,”
ACS Nano
7
(
11
),
9533
9557
(
2013
).
2.
D. J.
Lacks
and
T.
Shinbrot
, “
Long-standing and unresolved issues in triboelectric charging
,”
Nat. Rev. Chem.
3
,
465
476
(
2019
).
3.
H.
Zou
,
Y.
Zhang
,
L.
Guo
,
P.
Wang
,
X.
He
,
G.
Dai
,
H.
Zheng
,
C.
Chen
,
A. C.
Wang
,
C.
Xu
, and
Z. L.
Wang
, “
Quantifying the triboelectric series
,”
Nat. Commun.
10
(
1
),
1427
(
2019
).
4.
H.
Zou
,
L.
Guo
,
H.
Xue
,
Y.
Zhang
,
X.
Shen
,
X.
Liu
,
P.
Wang
,
X.
He
,
G.
Dai
,
P.
Jiang
,
H.
Zheng
,
B.
Zhang
,
C.
Xu
, and
Z. L.
Wang
, “
Quantifying and understanding the triboelectric series of inorganic non-metallic materials
,”
Nat. Commun.
11
(
1
),
2093
(
2020
).
5.
F.-R.
Fan
,
Z.-Q.
Tian
, and
Z.
Lin Wang
, “
Flexible triboelectric generator
,”
Nano Energy
1
,
328
334
(
2012
).
6.
W.-G.
Kim
,
D.-W.
Kim
,
I.-W.
Tcho
,
J.-K.
Kim
,
M.-S.
Kim
, and
Y.-K.
Choi
, “
Triboelectric nanogenerator: Structure, mechanism, and applications
,”
ACS Nano
15
,
258
287
(
2021
).
7.
D.
Choi
,
Y.
Lee
,
Z.-H.
Lin
et al, “
Recent advances in triboelectric nanogenerators: From technological progress to commercial applications
,”
ACS Nano
17
,
11087
11219
(
2023
).
8.
D.
Kim
,
S.-B.
Jeon
,
J. Y.
Kim
,
M.-L.
Seol
,
S. O.
Kim
, and
Y.-K.
Choi
, “
High-performance nanopattern triboelectric generator by block copolymer lithography
,”
Nano Energy
12
,
331
338
(
2015
).
9.
S.-J.
Park
,
M.-L.
Seol
,
D.
Kim
,
S.-B.
Jeon
, and
Y.-K.
Choi
, “
Triboelectric nanogenerator with nanostructured metal surface using water-assisted oxidation
,”
Nano Energy
21
,
258
264
(
2016
).
10.
W.
Kim
,
T.
Okada
,
H.-W.
Park
,
J.
Kim
,
S.
Kim
,
S.-W.
Kim
,
S.
Samukawa
, and
D.
Choi
, “
Surface modification of triboelectric materials by neutral beams
,”
J. Mater. Chem. A
7
(
43
),
25066
25077
(
2019
).
11.
S.
Wang
,
Y.
Zi
,
Y. S.
Zhou
,
S.
Li
,
F.
Fan
,
L.
Lin
, and
Z. L.
Wang
, “
Molecular surface functionalization to enhance the power output of triboelectric nanogenerators
,”
J. Mater. Chem. A
4
(
10
),
3728
3734
(
2016
).
12.
S.-H.
Shin
,
Y. E.
Bae
,
H. K.
Moon
,
J.
Kim
,
S.-H.
Choi
,
Y.
Kim
,
H. J.
Yoon
,
M. H.
Lee
, and
J.
Nah
, “
Formation of triboelectric series via atomic-level surface functionalization for triboelectric energy harvesting
,”
ACS Nano
11
,
6131
6138
(
2017
).
13.
F.
Yi
,
L.
Lin
,
S.
Niu
,
P. K.
Yang
,
Z.
Wang
,
J.
Chen
,
Y.
Zhou
,
Y.
Zi
,
J.
Wang
,
Q.
Liao
,
Y.
Zhang
, and
Z. L.
Wang
, “
Stretchable-rubber-based triboelectric nanogenerator and its application as self-powered body motion sensors
,”
Adv. Funct. Mater.
25
,
3688
3696
(
2015
).
14.
P.
Suphasorn
,
I.
Appamato
,
V.
Harnchana
,
P.
Thongbai
,
C.
Chanthad
,
C.
Siriwong
, and
V.
Amornkitbamrung
, “
Ag nanoparticle-incorporated natural rubber for mechanical energy harvesting application
,”
Molecules
26
,
2720
(
2021
).
15.
I.
Appamato
,
W.
Bunriw
,
V.
Harnchana
,
C.
Siriwong
,
W.
Mongkolthanaruk
,
P.
Thongbai
,
C.
Chanthad
,
A.
Chompoosor
,
S.
Ruangchai
,
T.
Prada
, and
V.
Amornkitbamrung
, “
Engineering triboelectric charge in natural rubber–Ag nanocomposite for enhancing electrical output of a triboelectric nanogenerator
,”
ACS Appl. Mater. Interfaces
15
,
973
983
(
2023
).
16.
W.
Bunriw
,
V.
Harnchana
,
C.
Chanthad
, and
V. N.
Huynh
, “
Natural rubber-TiO2 nanocomposite film for triboelectric nanogenerator application
,”
Polymers
13
,
2213
(
2021
).
17.
T.
Chomjun
,
I.
Appamato
,
V.
Harnchana
, and
V.
Amornkitbamrung
, “
Eco-friendly triboelectric material based on natural rubber and activated carbon from human hair
,”
Polymers
14
,
1110
(
2022
).
18.
P.
Mekbuntoon
,
S.
Kongpet
,
W.
Kaeochana
,
P.
Luechar
,
P.
Thongbai
,
A.
Chingsungnoen
,
K.
Chinnarat
,
S.
Kaewnisai
, and
V.
Harnchana
, “
The modification of activated carbon for the performance enhancement of a natural-rubber-based triboelectric nanogenerator
,”
Polymers
15
,
4562
(
2023
).
19.
O.
Somseemee
,
K.
Siriwong
,
P.
Sae-Oui
,
V.
Harnchana
,
I.
Appamato
,
T.
Prada
, and
C.
Siriwong
, “
Preparation of UV-cured cellulose nanocrystal-filled epoxidized natural rubber and its application in a triboelectric nanogenerator
,”
Int. J. Biol. Macromol.
262
,
130109
(
2024
).
20.
K.
Nanthagal
,
S.
Khoonsap
,
V.
Harnchana
,
P.
Suphasorn
,
N.
Chanlek
,
K.
Sinthiptharakoon
,
K.
Lapawae
, and
S.
Amnuaypanich
, “
Unprecedented triboelectric effect of lignin on enhancing the electrical outputs of natural-rubber-based triboelectric nanogenerators (TENGs)
,”
ACS Sustainable Chem. Eng.
11
,
1311
1323
(
2023
).
21.
P.
Mekbuntoon
,
W.
Kaeochana
,
T.
Prada
,
I.
Appamato
, and
V.
Harnchana
, “
Power output enhancement of natural rubber based triboelectric nanogenerator with cellulose nanofibers and activated carbon
,”
Polymers
14
,
4495
(
2022
).
22.
S.
Chenkhunthod
,
W.
Yamklang
,
W.
Kaeochana
,
T.
Prada
,
W.
Bunriw
, and
V.
Harnchana
, “
Ag–cellulose hybrid filler for boosting the power output of a triboelectric nanogenerator
,”
Polymers
15
,
1295
(
2023
).
23.
C.
Xu
,
Y.
Zi
,
A. C.
Wang
,
H.
Zou
,
Y.
Dai
,
X.
He
,
P.
Wang
,
Y.-C.
Wang
,
P.
Feng
,
D.
Li
, and
Z. L.
Wang
, “
On the electron-transfer mechanism in the contact-electrification effect
,”
Adv. Mater.
30
,
1706790
(
2018
).
24.
Z. L.
Wang
and
A. C.
Wang
, “
On the origin of contact-electrification
,”
Mater. Today
30
,
34
51
(
2019
).
25.
J.
Wu
,
X.
Wang
,
H.
Li
,
F.
Wang
,
W.
Yang
, and
Y.
Hu
, “
Insights into the mechanism of metal-polymer contact electrification for triboelectric nanogenerator via first-principles investigations
,”
Nano Energy
48
,
607
616
(
2018
).
26.
J.
Wu
,
X.
Wang
,
H.
Li
,
F.
Wang
, and
Y.
Hu
, “
First-principles investigations on the contact electrification mechanism between metal and amorphous polymers for triboelectric nanogenerators
,”
Nano Energy
63
,
103864
(
2019
).
27.
L.
Li
,
X.
Wang
,
P.
Zhu
,
H.
Li
,
F.
Wang
, and
J.
Wu
, “
The electron transfer mechanism between metal and amorphous polymers in humidity environment for triboelectric nanogenerator
,”
Nano Energy
70
,
104476
(
2020
).
28.
D.
Tan
,
M.
Willatzen
, and
Z. L.
Wang
, “
Electron transfer in the contact-electrification between corrugated 2D materials: A first-principles study
,”
Nano Energy
79
,
105386
(
2021
).
29.
L.
Li
,
X.
Wang
,
Y.
Hu
,
Z.
Li
,
C.
Wang
, and
Z.
Zhao
, “
Understanding the ferroelectric polymer–metal contact electrification for triboelectric nanogenerator from molecular and electronic structure
,”
Adv. Funct. Mater.
32
,
2109949
(
2022
).
30.
B.
Jia
,
M.
Lei
,
Y.
Zou
,
G.
Qin
,
C.
Zhang
,
L.
Han
,
Q.
Zhang
, and
P.
Lu
, “
The electron transfer mechanism between metal and silicon oxide composites for triboelectric nanogenerators
,”
Adv. Compos. Hybrid Mater.
5
,
3223
3231
(
2022
).
31.
Y.
Nan
,
J.
Shao
,
M.
Willatzen
, and
Z. L.
Wang
, “
Understanding contact electrification at water/polymer interface
,”
Research
2022
,
9861463
.
32.
H.
Gao
,
M.
Hu
,
J.
Ding
,
B.
Xia
,
G.
Yuan
,
H.
Sun
,
Q.
Xu
,
S.
Zhao
,
Y.
Jiang
,
H.
Wu
,
M.
Yuan
,
J.
Li
,
B.
Li
,
J.
Zhao
,
D.
Rao
, and
Y.
Xie
, “
Investigation of contact electrification between 2D MXenes and MoS2 through density functional theory and triboelectric probes
,”
Adv. Funct. Mater.
33
,
2213410
(
2023
).
33.
D.
Kang
,
H. Y.
Lee
,
J.-H.
Hwang
,
S.
Jeon
,
D.
Kim
,
S. M.
Kim
, and
S.-W.
Kim
, “
Deformation-contributed negative triboelectric property of polytetrafluoroethylene: A density functional theory calculation
,”
Nano Energy
100
,
107531
(
2022
).
34.
A.
Ciniero
,
G.
Fatti
,
M.
Marsili
,
D.
Dini
, and
M. C.
Righi
, “
Defects drive the tribocharging strength of PTFE: An ab-initio study
,”
Nano Energy
112
,
108502
(
2023
).
35.
A. K.
Rappe
and
W. A.
Goddard
III
, “
Charge equilibration for molecular dynamics simulations
,”
J. Phys. Chem.
95
,
3358
3363
(
1991
).
36.
A. C. T.
van Duin
,
S.
Dasgupta
,
F.
Lorant
, and
W. A.
Goddard
III
, “
ReaxFF: A reactive force field for hydrocarbons
,”
J. Phys. Chem. A
105
,
9396
9409
(
2001
).
37.
T. P.
Senftle
,
S.
Hong
,
M. M.
Islam
,
S. B.
Kylasa
,
Y.
Zheng
,
Y. K.
Shin
,
C.
Junkermeier
,
R.
Engel-Herbert
,
M. J.
Janik
,
H. M.
Aktulga
,
T.
Verstraelen
,
A.
Grama
, and
A. C. T.
van Duin
, “
The ReaxFF reactive force-field: Development, applications and future directions
,”
npj Comput. Mater.
2
,
15011
(
2016
).
38.
W. J.
Mortier
,
S. K.
Ghosh
, and
S.
Shankar
, “
Electronegativity-equalization method for the calculation of atomic charges in molecules
,”
J. Am. Chem. Soc.
108
,
4315
4320
(
1986
).
39.
S.
Plimpton
, “
Fast parallel algorithms for short-range molecular dynamics
,”
J. Comput. Phys.
117
,
1
19
(
1995
).
40.
M. A.
Wood
,
A. C. T.
van Duin
, and
A.
Strachan
, “
Coupled thermal and electromagnetic induced decomposition in the molecular explosive αHMX; A reactive molecular dynamics study
,”
J. Phys. Chem. A
118
,
885
895
(
2014
).
41.
L.
Huang
,
K. L.
Joshi
,
A. C. T.
van Duin
,
T. J.
Bandosz
, and
K. E.
Gubbins
, “
ReaxFF molecular dynamics simulation of thermal stability of a Cu3(BTC)2 metal–organic framework
,”
Phys. Chem. Chem. Phys.
14
,
11327
11332
(
2012
).
42.
B. P.
Haley
,
N.
Wilson
,
C.
Li
,
A.
Arguelles
,
E.
Jaramillo
, and
A.
Strachan
,
Polym. Model.
(
2022
); https://nanohub.org/resources/polymod.
43.
S. K.
De
and
J. R.
White
,
Rubber Technologist’s Handbook
(
Rapra Technology Ltd.
,
Shawbury, UK
,
2001
).
44.
A.
Chaturvedi
,
M. K.
Gupta
, and
S.
Chaturvedi
, “
Open-cell nickel alloy foam–natural rubber hybrid: Compression energy absorption behavior analysis and experiment
,”
J. Mater. Eng. Perform.
30
,
885
893
(
2021
).
45.
T. S.
Natarajan
,
S. B.
Eshwaran
,
K. W.
Stöckelhuber
,
S.
Wießner
,
P.
Pötschke
,
G.
Heinrich
, and
A.
Das
, “
Strong strain sensing performance of natural rubber nanocomposites
,”
ACS Appl. Mater. Interfaces
9
,
4860
4872
(
2017
).
46.
W.
Thongruang
,
C. M.
Balik
, and
R. J.
Spontak
, “
Volume-exclusion effects in polyethylene blends filled with carbon black, graphite, or carbon fiber
,”
J. Polym. Sci., Part B: Polym. Phys.
40
(
10
),
1013
1025
(
2002
).
47.
D. M.
Gooding
and
G. K.
Kaufman
, “
Tribocharging and the triboelectric series
,” in
Encyclopedia of Inorganic and Bioinorganic Chemistry
(
John Wiley & Sons Ltd.
,
Chichester, UK
,
2014
).
48.
T.
Liang
,
A. C.
Antony
,
S. A.
Akhade
,
M. J.
Janik
, and
S. B.
Sinnott
, “
Applied potentials in variable-charge reactive force fields for electrochemical systems
,”
J. Phys. Chem. A
122
,
631
638
(
2018
).
49.
H.
Nakano
and
H.
Sato
, “
A chemical potential equalization approach to constant potential polarizable electrodes for electrochemical-cell simulations
,”
J. Chem. Phys.
151
,
164123
(
2019
).
50.
H.
Ko
,
Y.
Lim
,
S.
Han
,
C. K.
Jeong
, and
S. B.
Cho
, “
Triboelectrification: Backflow and stuck charges are key
,”
ACS Energy Lett.
6
,
2792
2799
(
2021
).
51.
I. W.
Tcho
,
W. G.
Kim
,
S. B.
Jeon
,
S. J.
Park
,
B. J.
Lee
,
H. K.
Bae
,
D.
Kim
, and
Y. K.
Choi
, “
Surface structural analysis of a friction layer for a triboelectric nanogenerator
,”
Nano Energy
42
,
34
42
(
2017
).
52.
N.-Y.
Ko
,
J.-M.
Hwang
, and
Y.-H.
Ko
, “
Behavior of copper under high pressure: Experimental and theoretical analyses
,”
Curr. Appl. Phys.
31
,
93
98
(
2021
).
53.
D.
Tabor
, “
The bulk modulus of rubber
,”
Polymer
35
,
2759
2763
(
1994
).
54.
Y.
Wu
,
A. R.
Chew
,
G. A.
Rojas
,
G.
Sini
,
G.
Haugstad
,
A.
Belianinov
,
S. V.
Kalinin
,
H.
Li
,
C.
Risko
,
J.-L.
Bredas
,
A.
Salleo
, and
C. D.
Frisbie
, “
Strain effects on the work function of an organic semiconductor
,”
Nat. Commun.
7
,
10270
(
2016
).
You do not currently have access to this content.