Thermodynamic hydrate promoters and kinetic hydrate promoters can be used to reduce the P–T conditions for clathrate hydrate synthesis to decrease the nucleation induction time while increasing growth rates. Two commonly used promoters for hydrate research are tetrahydrofuran (THF) and sodium dodecyl sulfate (SDS), which can increase the overall hydrate promotion when used in tandem as compared to individually. There are several molecular theories regarding how SDS promotes hydrate growth. This study explores the micellular theory, for which hydrate formation depends on surfactant aggregates (micelles) at a critical micelle concentration (CMC) to increase the interfacial surface area. The micellular theory is the most investigated and criticized surfactant hydrate promotion theory. To address questions related to micellar behavior, this study investigates the intermolecular behavior between SDS and THF for the identification of micelles at hydrate-forming conditions. The systems explored contained THF at 3 and 5 wt. % with varying concentrations of SDS below and above the CMC. Several methods including a qualitative visual method, conductivity, interfacial tensiometry, 13C Liquid-state Nuclear Magnetic Resonance (NMR) spectroscopy, and 1H diffusion NMR spectroscopy were evaluated at temperatures below the Krafft point of SDS and above 0 °C. The presence of THF at low concentrations decreased the critical temperature for the formation of SDS micelles, where SDS is solubilized in THF/water solution at hydrate-forming temperatures without precipitation. The CMC of SDS was decreased significantly even at hydrate-forming conditions. Mixed surfactant–cosolvent micellular behavior of SDS in the presence of low concentrations of THF was confirmed at hydrate-forming conditions above 0 °C.

1.
A. A. A.
Majid
,
J.
Worley
, and
C. A.
Koh
, “
Thermodynamic and kinetic promoters for gas hydrate technological applications
,”
Energy Fuels
35
,
19288
19301
(
2021
).
2.
D.
Sloan
and
C.
Koh
,
Clathrate Hydrates of Natural Gases
, 3rd ed. (
CRC Press
,
Boca Raton, FL
,
2008
).
3.
Z. Y.
Lin
,
D. T.
Wu
, and
S. T.
Lin
, “
Equilibrium and transport properties of methane at the methane/water interface with the presence of SDS
,”
J. Phys. Chem. C
122
,
29259
29267
(
2018
).
4.
Y.
Zhong
and
R. E.
Rogers
, “
Surfactant effects on gas hydrate formation
,”
Chem. Eng. Sci.
55
,
4175
4187
(
2000
).
5.
F.
Wang
et al, “
Effects of different anionic surfactants on methane hydrate formation
,”
Chem. Eng. Sci.
137
,
896
903
(
2015
).
6.
P.
Di Profio
,
S.
Arca
,
R.
Germani
, and
G.
Savelli
, “
Surfactant promoting effects on clathrate hydrate formation: Are micelles really involved?
,”
Chem. Eng. Sci.
60
,
4141
4145
(
2005
).
7.
N.
Ando
,
Y.
Kuwabara
, and
Y. H.
Mori
, “
Surfactant effects on hydrate formation in an unstirred gas/liquid system: An experimental study using methane and micelle-forming surfactants
,”
Chem. Eng. Sci.
73
,
79
85
(
2012
).
8.
K.
Watanabe
,
S.
Imai
, and
Y. H.
Mori
, “
Surfactant effects on hydrate formation in an unstirred gas/liquid system: An experimental study using HFC-32 and sodium dodecyl sulfate
,”
Chem. Eng. Sci.
60
,
4846
4857
(
2005
).
9.
K.
Watanabe
,
S.
Niwa
, and
Y. H.
Mori
, “
Surface tensions of aqueous solutions of sodium alkyl sulfates in contact with methane under hydrate-forming conditions
,”
J. Chem. Eng. Data
50
,
1672
1676
(
2005
).
10.
A.
Phan
,
H.
Schlösser
, and
A.
Striolo
, “
Molecular mechanisms by which tetrahydrofuran affects CO2 hydrate growth: Implications for carbon storage
,”
Chem. Eng. J.
418
,
129423
(
2021
).
11.
A. H.
Mohammadi
and
D.
Richon
, “
Phase equilibria of clathrate hydrates of tetrahydrofuran + hydrogen sulfide and tetrahydrofuran + methane
,”
Ind. Eng. Chem. Res.
48
,
7838
7841
(
2009
).
12.
J. Y.
Wu
,
L. J.
Chen
,
Y. P.
Chen
, and
S. T.
Lin
, “
Molecular dynamics study on the nucleation of methane + tetrahydrofuran mixed guest hydrate
,”
Phys. Chem. Chem. Phys.
18
,
9935
9947
(
2016
).
13.
H. J.
Lee
,
J. D.
Lee
, and
Y. D.
Kim
, “
Pre-combustion capture of carbon dioxide using principles of gas hydrate formation
,”
Korean J. Mater. Res.
18
,
650
654
(
2008
).
14.
X. L.
Wang
et al, “
Vapor-hydrate equilibria for the methane + hydrogen + tetrahydrofuran + water system
,”
J. Chem. Eng. Data
54
,
310
313
(
2009
).
15.
Q.
Zhang
et al, “
Hydrate formation conditions of a hydrogen + methane gas mixture in tetrahydrofuran + water
,”
J. Chem. Eng. Data
50
,
234
236
(
2005
).
16.
D. D.
Link
,
E. P.
Ladner
,
H. A.
Elsen
, and
C. E.
Taylor
, “
Formation and dissociation studies for optimizing the uptake of methane by methane hydrates
,”
Fluid Phase Equilib.
211
,
1
10
(
2003
).
17.
N. S.
Molokitina
,
A. N.
Nesterov
,
L. S.
Podenko
, and
A. M.
Reshetnikov
, “
Carbon dioxide hydrate formation with SDS: Further insights into mechanism of gas hydrate growth in the presence of surfactant
,”
Fuel
235
,
1400
1411
(
2019
).
18.
H. P.
Veluswamy
,
J. Y.
Chen
, and
P.
Linga
, “
Surfactant effect on the kinetics of mixed hydrogen/propane hydrate formation for hydrogen storage as clathrates
,”
Chem. Eng. Sci.
126
,
488
499
(
2015
).
19.
D.
Daniel-David
,
F.
Guerton
,
C.
Dicharry
,
J. P.
Torré
, and
D.
Broseta
, “
Hydrate growth at the interface between water and pure or mixed CO2/CH4 gases: Influence of pressure, temperature, gas composition and water-soluble surfactants
,”
Chem. Eng. Sci.
132
,
118
127
(
2015
).
20.
O. B.
Kutergin
,
V. P.
Mel’nikov
, and
A. N.
Nesterov
, “
Surfactant effect on the mechanism and kinetics of gas hydrate formation
,”
Dokl. Akad. Nauk
323
,
549
553
(
1992
).
21.
V. P.
Mel’nikov
,
A. N.
Nesterov
, and
V. V.
Feklistov
, “
Formation of gas hydrates in the presence of additives consisting of surface-active substances
,”
Khim. Interesakh Ustoich. Razvit.
6
,
97
102
(
1998
).
22.
N. C.
Christov
,
N. D.
Denkov
,
P. A.
Kralchevsky
,
K. P.
Ananthapadmanabhan
, and
A.
Lips
, “
Synergistic sphere-to-rod micelle transition in mixed solutions of sodium dodecyl sulfate and cocoamidopropyl betaine
,”
Langmuir
20
,
565
571
(
2004
) Preprint at.
23.
C. Y.
Sun
,
G. J.
Chen
, and
L. Y.
Yang
, “
Interfacial tension of methane + water with surfactant near the hydrate formation conditions
,”
J. Chem. Eng. Data
49
,
1023
1025
(
2004
).
24.
J. S.
Zhang
,
S.
Lee
, and
J. W.
Lee
, “
Kinetics of methane hydrate formation from SDS solution
,”
Ind. Eng. Chem. Res.
46
,
6353
6359
(
2007
).
25.
P. U.
Karanjkar
,
J. W.
Lee
, and
J. F.
Morris
, “
Surfactant effects on hydrate crystallization at the water-oil interface: Hollow-conical crystals
,”
Cryst. Growth Des.
12
,
3817
3824
(
2012
).
26.
J. S.
Zhang
,
S.
Lee
, and
J. W.
Lee
, “
Does SDS micellize under methane hydrate-forming conditions below the normal Krafft point?
,”
J. Colloid Interface Sci.
315
,
313
318
(
2007
).
27.
P.
Gayet
et al, “
Experimental determination of methane hydrate dissociation curve up to 55 MPa by using a small amount of surfactant as hydrate promoter
,”
Chem. Eng. Sci.
60
,
5751
5758
(
2005
).
28.
K.
Okutani
,
Y.
Kuwabara
, and
Y. H.
Mori
, “
Surfactant effects on hydrate formation in an unstirred gas/liquid system: An experimental study using methane and sodium alkyl sulfates
,”
Chem. Eng. Sci.
63
,
183
194
(
2008
).
29.
F.
Wang
,
G.
Guo
,
G. Q.
Liu
,
S. J.
Luo
, and
R. B.
Guo
, “
Effects of surfactant micelles and surfactant-coated nanospheres on methane hydrate growth pattern
,”
Chem. Eng. Sci.
144
,
108
115
(
2016
).
30.
F.
Wang
et al, “
Improved methane hydrate formation and dissociation with nanosphere-based fixed surfactants as promoters
,”
ACS Sustainable Chem. Eng.
4
,
2107
2113
(
2016
).
31.
G.
Bhattacharjee
et al, “
Effects of micellization on growth kinetics of methane hydrate
,”
Ind. Eng. Chem. Res.
56
,
3687
3698
(
2017
).
32.
A.
Farhadian
,
P.
Naeiji
,
M. A.
Varfolomeev
,
K.
Peyvandi
, and
A. G.
Kiiamov
, “
Reconsideration of the micellization theory: Promotion or inhibition of gas hydrate formation for gas storage and flow assurance applications
,”
Chem. Eng. J.
427
,
131852
(
2022
).
33.
J. S.
Zhang
et al, “
Adsorption of sodium dodecyl sulfate at THF hydrate/liquid interface
,”
J. Phys. Chem. C
112
,
12381
12385
(
2008
).
34.
C.
Lo
,
J. S.
Zhang
,
A.
Couzis
,
P.
Somasundaran
, and
J. W.
Lee
, “
Adsorption of cationic and anionic surfactants on cyclopentane hydrates
,”
J. Phys. Chem. C
114
,
13385
13389
(
2010
).
35.
C.
Lo
et al, “
Adsorption of surfactants on two different hydrates
,”
Langmuir
24
,
12723
12726
(
2008
).
36.
M.
Albertí
,
A.
Costantini
,
A.
Laganá
, and
F.
Pirani
, “
Are micelles needed to form methane hydrates in sodium dodecyl sulfate solutions?
,”
J. Phys. Chem. B
116
,
4220
4227
(
2012
).
37.
A.
Al-Sowadi
et al, “
The effects of SDS, SLES and THF on the growth rate, kinetic behaviors and energy consumption during ethylene hydrate formation process
,”
J. Mol. Liq.
294
,
111608
(
2019
).
38.
J. P.
Torré
et al, “
1,3 dioxolane versus tetrahydrofuran as promoters for CO2 -hydrate formation: Thermodynamics properties, and kinetics in presence of sodium dodecyl sulfate
,”
Chem. Eng. Sci.
126
,
688
697
(
2015
).
39.
J. P.
Torré
,
C.
Dicharry
,
M.
Ricaurte
,
D.
Daniel-David
, and
D.
Broseta
, “
CO2 capture by hydrate formation in quiescent conditions: In search of efficient kinetic additives
,”
Energy Procedia
4
,
621
628
(
2011
)
40.
J. P.
Torré
,
M.
Ricaurte
,
C.
Dicharry
, and
D.
Broseta
, “
CO2 enclathration in the presence of water-soluble hydrate promoters: Hydrate phase equilibria and kinetic studies in quiescent conditions
,”
Chem. Eng. Sci.
82
,
1
13
(
2012
).
41.
M.
Yang
et al, “
Effects of additive mixture (THF/SDS) on the thermodynamic and kinetic properties of CO2/H2 hydrate in porous media
,”
Ind. Eng. Chem. Res.
52
,
4911
4918
(
2013
).
42.
C. F. d. S.
Lirio
,
F. L. P.
Pessoa
, and
A. M. C.
Uller
, “
Storage capacity of carbon dioxide hydrates in the presence of sodium dodecyl sulfate (SDS) and tetrahydrofuran (THF)
,”
Chem. Eng. Sci.
96
,
118
123
(
2013
).
43.
M.
Ricaurte
,
C.
Dicharry
,
D.
Broseta
,
X.
Renaud
, and
J. P.
Torré
, “
CO2 removal from a CO2–CH4 gas mixture by clathrate hydrate formation using THF and SDS as water-soluble hydrate promoters
,”
Ind. Eng. Chem. Res.
52
,
899
910
(
2013
).
44.
M.
Ricaurte
,
C.
Dicharry
,
X.
Renaud
, and
J. P.
Torré
, “
Combination of surfactants and organic compounds for boosting CO2 separation from natural gas by clathrate hydrate formation
,”
Fuel
122
,
206
217
(
2014
).
45.
H. P.
Veluswamy
,
S.
Kumar
,
R.
Kumar
,
P.
Rangsunvigit
, and
P.
Linga
, “
Enhanced clathrate hydrate formation kinetics at near ambient temperatures and moderate pressures: Application to natural gas storage
,”
Fuel
182
,
907
919
(
2016
).
46.
A.
Kumar
,
R.
Kumar
, and
P.
Linga
, “
Sodium dodecyl sulfate preferentially promotes enclathration of methane in mixed methane-tetrahydrofuran hydrates
,”
iScience
14
,
136
146
(
2019
).
47.
D.
Mech
,
P.
Gupta
, and
J. S.
Sangwai
, “
Kinetics of methane hydrate formation in an aqueous solution of thermodynamic promoters (THF and TBAB) with and without kinetic promoter (SDS)
,”
J. Nat. Gas Sci. Eng.
35
,
1519
1534
(
2016
).
48.
X.
Cai
et al, “
Understanding the effect of moderate concentration SDS on CO2 hydrates growth in the presence of THF
,”
J. Colloid Interface Sci.
658
,
1
11
(
2024
).
49.
M.
Almgren
,
S.
Swarup
, and
J. E.
Loefroth
, “
Effect of formamide and other organic polar solvents on the micelle formation of sodium dodecyl sulfate
,”
J. Phys. Chem.
89
,
4621
4626
(
1985
).
50.
T. P.
Niraula
,
A.
Bhattarai
, and
S. K.
Chatterjee
, “
Critical micelle concentration of sodium dodecyl sulphate in pure water and in methanol-water mixed solvent media in presence and absence of KCl by surface tension and viscosity methods
,”
BIBECHANA
11
,
103
(
2014
).
51.
A.
Pan
et al, “
Micellization and related behavior of sodium dodecylsulfate in mixed binary solvent media of tetrahydrofuran (Tf) and formamide (Fa) with water: A detailed physicochemical investigation
,”
Soft Matter
10
,
5682
5694
(
2014
).
52.
Y.
Moroi
,
K.
Motomura
, and
R.
Matuura
, “
The critical micelle concentration of sodium dodecyl sulfate-bivalent metal dodecyl sulfate mixtures in aqueous solutions
,”
J. Colloid Interface Sci.
46
,
111
117
(
1974
).
53.
K. S.
Birdi
,
S.
Backlund
,
K.
Sorensen
,
T.
Krag
, and
S.
Dalsager
, “
The effect of additives on the micellar systems as studied by membrane osmometry
,”
J. Colloid Interface Sci.
66
,
118
123
(
1978
).
54.
N.
Singh
,
S. M.
Saleem
,
R. P.
Singh
, and
K. S.
Birdi
, “
Micelle formation of ionic surfactants in polar nonaqueous solvents
,”
J. Phys. Chem.
84
,
2191
2194
(
1980
).
55.
P. K.
Misra
,
B. K.
Mishra
, and
G. B.
Behera
, “
Micellization of ionic surfactants in tetrahydrofuran-water and acetonitrile-water mixed-solvent systems
,”
Colloids Surf.
57
,
1
10
(
1991
).
56.
A.
Siderius
,
S. K.
Kehl
, and
D. G.
Leaist
, “
Surfactant diffusion near critical micelle concentrations
,”
J. Solution Chem.
16
,
28
(
2002
).
57.
Y. F.
Zuev
,
O. I.
Gnezdilov
,
O. S.
Zueva
, and
O. G.
Us’Yarov
, “
Effective self-diffusion coefficients of ions in sodium dodecyl sulfate micellar solutions
,”
Colloid J.
73
,
59
64
(
2011
).
58.
E. S.
Podchasskaya
and
O. G.
Us’yarov
, “
Binding of counterions by micelles of ionic surfactants
,”
Colloid J.
67
,
184
188
(
2005
).
59.
M. N.
Rodnikova
,
Z. S.
Idiyatullin
,
I. A.
Solonina
, and
D. A.
Sirotkin
, “
Molecular self-diffusion coefficients in aqueous and ethylene-glycol solutions of tetrahydrofuran
,”
Russ. J. Phys. Chem. A
93
,
275
277
(
2019
).
60.
J. E.
Desnoyers
,
D.
Hetu
, and
G.
Perron
, “
Volumes and heat capacities of some watersurfactant-alcohol ternary systems
,”
J. Solution Chem.
12
,
427
447
(
1983
).
61.
H.
Naorem
and
S. D.
Devi
, “
Spectrophotometric determination of the formation constant of triiodide ions in aqueous-organic solvent or polymer mixed media both in absence and presence of a surfactant
,”
Spectrochim. Acta, Part A
101
,
67
73
(
2013
).
62.
M.
Almgren
and
S.
Swarup
, “
Size of sodium dodecyl sulfate micelles in the presence of additives I. Alcohols and other polar compounds
,”
J. Colloid Interface Sci.
91
,
256
266
(
1983
).
63.
B. Z.
Idiyatullin
,
K. S.
Potarikina
,
Y. F.
Zuev
,
O. S.
Zueva
, and
O. G.
Us’Yarov
, “
Association of sodium dodecyl sulfate in aqueous solutions according to chemical shifts in 1H NMR spectra
,”
Colloid J.
75
,
532
537
(
2013
).
64.
Y.
Cohen
,
L.
Avram
, and
L.
Frish
, “
Diffusion NMR spectroscopy in supramolecular and combinatorial chemistry: An old parameter-new insights
,”
Angew. Chem., Int. Ed.
44
,
520
554
(
2005
).
65.
Y.
Moroi
,
Micelles—Theoretical and Applied Aspects
(
Springer US
,
Boston, MA
,
1992
).
66.
J. K.
Weil
,
F. S.
Smith
,
A. J.
Stirton
, and
R. G.
Bistline
, “
Long chain alkanesulfonates and 1-hydroxy-2-alkanesulfonates: Structure and property relations
,”
J. Am. Oil Chem. Soc.
40
,
538
540
(
1963
).
67.
H.
Nakayama
and
K.
Shinoda
, “
The effect of added salts on the solubilities and Krafft points of sodium dodecyl sulfate and potassium perfluoro-octanoate
,”
Bull. Chem. Soc. Jpn.
40
,
1797
1799
(
1967
).
68.
H.
Lange
and
M. J.
Schwuger
, “
Mizellbildung und Krafft–Punkte in der homologen Reiche der Natrium-n-alkyl-sulfate einschließlich der ungeradzahligen Glieder
,”
Kolloid Z. Z. Polym.
223
,
145
149
(
1968
).
69.
S. M.
Rajput
,
U. U.
More
,
Z. S.
Vaid
,
K. D.
Prajapati
, and
N. I.
Malek
, “
Impact of organic solvents on the micellization and interfacial behavior of ionic liquid based surfactants
,”
Colloids Surf., A
507
,
182
189
(
2016
).
70.
N.
Dubey
, “
Micellar properties and related thermodynamic parameters of aqueous anionic surfactants in the presence of monohydric alcohols
,”
J. Chem. Eng. Data
56
,
3291
3300
(
2011
).
71.
M.
Varshney
, “
Reassignment of 13C NMR peaks of SDS micellar system by HMQC-NMR spectroscopy
,”
Colloids Surf., A
96
,
273
275
(
1995
).
72.
S. A.
Markarian
,
H. R.
Sargsyan
,
G. S.
Grigoryan
,
H. H.
Ghazoyan
, and
V. V.
Chaban
, “
Dimethyl sulfoxide fosters larger micelles of docusate sodium in the mixed solutions with water
,”
J. Mol. Liq.
369
,
120960
(
2023
).
73.
K.
Gracie
,
D.
Turner
, and
R.
Palepu
, “
Thermodynamic properties of micellization of sodium dodecyl sulfate in binary mixtures of ethylene glycol with water
,”
Can. J. Chem.
74
,
1616
1625
(
1996
).
74.
M. S.
Bakshi
, “
Micelle formation by anionic and cationic surfactants in binary aqueous solvents
,”
J. Chem. Soc., Faraday Trans.
89
,
4323
4326
(
1993
).
75.
S.
Das
,
S.
Mondal
, and
S.
Ghosh
, “
Physicochemical studies on the micellization of cationic, anionic, and nonionic surfactants in water-polar organic solvent mixtures
,”
J. Chem. Eng. Data
58
,
2586
2595
(
2013
).
76.
M. J.
Hey
and
D. P.
Jackson
, “
Attenuated total reflection FT–IR study of hydrogen bonding in water/ether mixtures
,”
Chem. Phys. Lett.
309
,
69
74
(
1999
).
77.
M. D.
Smith
,
B.
Mostofian
,
L.
Petridis
,
X.
Cheng
, and
J. C.
Smith
, “
Molecular driving forces behind the tetrahydrofuran-water miscibility gap
,”
J. Phys. Chem. B
120
,
740
747
(
2016
).
You do not currently have access to this content.