Organic matter can initiate heterogeneous ice nucleation in supercooled water droplets, thereby influencing atmospheric cloud glaciation. Predicting the ice nucleation ability of organic matter-containing cloud droplets is challenging due to the unknown mechanism for templating ice. Here, we observed the presence of nanoparticles in aqueous samples of known ice-nucleating biopolymers cellulose and lignin, as well as in newly identified ice-nucleating biopolymers xylan and laminarin. Using our drop Freezing Ice Nuclei Counter (FINC), we measured the median ice nucleation temperature (T50) of xylan and of laminarin droplets of 2 μl to be −14.2 and −20.0 °C, respectively. Next, we characterized these samples using nanoparticle tracking analysis, and we detected and quantified nanoparticles with mean diameters between 132 and 267 nm. Xylan contained the largest nanoparticles and froze at higher temperatures. Xylan also dictated the freezing in a 1:1:1:1 mixture with cellulose, lignin, laminarin, and xylan. Filtration experiments down to 300 kDa with the xylan sample indicated that the presence of nanoparticles triggered freezing. Overall, only samples with mean diameters above 150 nm froze above −20 °C. Furthermore, we determined the ice-active site densities normalized to particle concentrations, surface area, and mass of the nanoparticles to show that the samples’ nucleation site densities are similar to sea spray aerosols and nanometer-sized dust. The identification and characterization of xylan and laminarin as nanometer-sized ice-nucleating substances expands the growing list of organic matter capable of impacting cloud formation and thus climate.

1.
H. R.
Pruppacher
,
J. D.
Klett
, and
P. K.
Wang
, “
Microphysics of clouds and precipitation
,”
Aerosol Sci. Technol.
28
,
381
382
(
1998
).
2.
B. J.
Murray
,
D.
O’Sullivan
,
J. D.
Atkinson
, and
M. E.
Webb
, “
Ice nucleation by particles immersed in supercooled cloud droplets
,”
Chem. Soc. Rev.
41
,
6519
(
2012
).
3.
T.
Storelvmo
, “
Aerosol effects on climate via mixed-phase and ice clouds
,”
Annu. Rev. Earth Planet. Sci.
45
,
199
222
(
2017
).
4.
J. D.
Atkinson
,
B. J.
Murray
,
M. T.
Woodhouse
,
T. F.
Whale
,
K. J.
Baustian
,
K. S.
Carslaw
,
S.
Dobbie
,
D.
O’Sullivan
, and
T. L.
Malkin
, “
The importance of feldspar for ice nucleation by mineral dust in mixed-phase clouds
,”
Nature
498
,
355
358
(
2013
).
5.
M. I.
Daily
,
T. F.
Whale
,
P.
Kilbride
,
S.
Lamb
,
G.
John Morris
,
H. M.
Picton
, and
B. J.
Murray
, “
A highly active mineral-based ice nucleating agent supports in situ cell cryopreservation in a high throughput format
,”
J. R. Soc., Interface
20
,
20220682
(
2023
).
6.
K.
Dreischmeier
,
C.
Budke
,
L.
Wiehemeier
,
T.
Kottke
, and
T.
Koop
, “
Boreal pollen contain ice-nucleating as well as ice-binding ‘antifreeze’ polysaccharides
,”
Sci. Rep.
7
,
41890
(
2017
).
7.
B. G.
Pummer
,
C.
Budke
,
S.
Augustin-Bauditz
,
D.
Niedermeier
,
L.
Felgitsch
,
C. J.
Kampf
,
R. G.
Huber
,
K. R.
Liedl
,
T.
Loerting
,
T.
Moschen
,
M.
Schauperl
,
M.
Tollinger
,
C. E.
Morris
,
H.
Wex
,
H.
Grothe
,
U.
Pöschl
,
T.
Koop
, and
J.
Fröhlich-Nowoisky
, “
Ice nucleation by water-soluble macromolecules
,”
Atmos. Chem. Phys.
15
,
4077
4091
(
2015
).
8.
A. T.
Kunert
,
M. L.
Pöhlker
,
K.
Tang
,
C. S.
Krevert
,
C.
Wieder
,
K. R.
Speth
,
L. E.
Hanson
,
C. E.
Morris
,
D. G.
Schmale
III
,
U.
Pöschl
, and
J.
Fröhlich-Nowoisky
, “
Macromolecular fungal ice nuclei in Fusarium: Effects of physical and chemical processing
,”
Biogeosciences
16
,
4647
4659
(
2019
).
9.
R.
Schwidetzky
,
I.
De Almeida Ribeiro
,
N.
Bothen
,
A. T.
Backes
,
A. L.
DeVries
,
M.
Bonn
,
J.
Fröhlich-Nowoisky
,
V.
Molinero
, and
K.
Meister
, “
Functional aggregation of cell-free proteins enables fungal ice nucleation
,”
Proc. Natl. Acad. Sci. U. S. A.
120
,
e2303243120
(
2023
).
10.
P. J.
DeMott
,
A. J.
Prenni
,
X.
Liu
,
S. M.
Kreidenweis
,
M. D.
Petters
,
C. H.
Twohy
,
M. S.
Richardson
,
T.
Eidhammer
, and
D. C.
Rogers
, “
Predicting global atmospheric ice nuclei distributions and their impacts on climate
,”
Proc. Natl. Acad. Sci. U. S. A.
107
,
11217
11222
(
2010
).
11.
M. A.
Holden
,
T. F.
Whale
,
M. D.
Tarn
,
D.
O’Sullivan
,
R. D.
Walshaw
,
B. J.
Murray
,
F. C.
Meldrum
, and
H. K.
Christenson
, “
High-speed imaging of ice nucleation in water proves the existence of active sites
,”
Sci. Adv.
5
,
eaav4316
(
2019
).
12.
M. A.
Holden
,
J. M.
Campbell
,
F. C.
Meldrum
,
B. J.
Murray
, and
H. K.
Christenson
, “
Active sites for ice nucleation differ depending on nucleation mode
,”
Proc. Natl. Acad. Sci. U. S. A.
118
,
e2022859118
(
2021
).
13.
B. G.
Pummer
,
H.
Bauer
,
J.
Bernardi
,
S.
Bleicher
, and
H.
Grothe
, “
Suspendable macromolecules are responsible for ice nucleation activity of birch and conifer pollen
,”
Atmos. Chem. Phys.
12
,
2541
2550
(
2012
).
14.
M.
Lukas
,
R.
Schwidetzky
,
R. J.
Eufemio
,
M.
Bonn
, and
K.
Meister
, “
Toward understanding bacterial ice nucleation
,”
J. Phys. Chem. B
126
,
1861
1867
(
2022
).
15.
D. C.
Gross
,
E. L.
Proebsting
, and
H.
Maccrindle-Zimmerman
, “
Development, distribution, and characteristics of intrinsic, nonbacterial ice nuclei in prunus wood
,”
Plant Physiol.
88
,
915
922
(
1988
).
16.
A. N.
Alsante
,
D. C. O.
Thornton
, and
S. D.
Brooks
, “
Ice nucleation catalyzed by the photosynthesis enzyme RuBisCO and other abundant biomolecules
,”
Commun. Earth Environ.
4
,
51
(
2023
).
17.
J.
Burkart
,
J.
Gratzl
,
T. M.
Seifried
,
P.
Bieber
, and
H.
Grothe
, “
Isolation of subpollen particles (SPPs) of birch: SPPs are potential carriers of ice nucleating macromolecules
,”
Biogeosciences
18
,
5751
5765
(
2021
).
18.
E.
Gute
,
R. O.
David
,
Z. A.
Kanji
, and
J. P. D.
Abbatt
, “
Ice nucleation ability of tree pollen altered by atmospheric processing
,”
ACS Earth Space Chem.
4
,
2312
2319
(
2020
).
19.
S.
Bogler
and
N.
Borduas-Dedekind
, “
Lignin’s ability to nucleate ice via immersion freezing and its stability towards physicochemical treatments and atmospheric processing
,”
Atmos. Chem. Phys.
20
,
14509
14522
(
2020
).
20.
A. J.
Miller
,
K. P.
Brennan
,
C.
Mignani
,
J.
Wieder
,
R. O.
David
, and
N.
Borduas-Dedekind
, “
Development of the drop Freezing Ice Nuclei Counter (FINC), intercomparison of droplet freezing techniques, and use of soluble lignin as an atmospheric ice nucleation standard
,”
Atmos. Meas. Tech.
14
,
3131
3151
(
2021
).
21.
N.
Borduas-Dedekind
,
R.
Ossola
,
R. O.
David
,
L. S.
Boynton
,
V.
Weichlinger
,
Z. A.
Kanji
, and
K.
McNeill
, “
Photomineralization mechanism changes the ability of dissolved organic matter to activate cloud droplets and to nucleate ice crystals
,”
Atmos. Chem. Phys.
19
,
12397
12412
(
2019
).
22.
I.
Steinke
,
N.
Hiranuma
,
R.
Funk
,
K.
Höhler
,
N.
Tüllmann
,
N. S.
Umo
,
P. G.
Weidler
,
O.
Möhler
, and
T.
Leisner
, “
Complex plant-derived organic aerosol as ice-nucleating particles – more than the sums of their parts?
,”
Atmos. Chem. Phys.
20
,
11387
11397
(
2020
).
23.
Y.
Qiu
,
N.
Odendahl
,
A.
Hudait
,
R.
Mason
,
A. K.
Bertram
,
F.
Paesani
,
P. J.
DeMott
, and
V.
Molinero
, “
Ice nucleation efficiency of hydroxylated organic surfaces is controlled by their structural fluctuations and mismatch to ice
,”
J. Am. Chem. Soc.
139
,
3052
3064
(
2017
).
24.
G. M.
Mueller
,
P. K.
Wolber
, and
G. J.
Warren
, “
Clustering of ice nucleation protein correlates with ice nucleation activity
,”
Cryobiology
27
,
416
422
(
1990
).
25.
S.
Hartmann
,
M.
Ling
,
L. S. A.
Dreyer
,
A.
Zipori
,
K.
Finster
,
S.
Grawe
,
L. Z.
Jensen
,
S.
Borck
,
N.
Reicher
,
T.
Drace
,
D.
Niedermeier
,
N. C.
Jones
,
S. V.
Hoffmann
,
H.
Wex
,
Y.
Rudich
,
T.
Boesen
, and
T.
Šantl Temkiv
, “
Structure and protein-protein interactions of ice nucleation proteins drive their activity
,”
Front. Microbiol.
13
,
872306
(
2022
).
26.
P.
Bieber
and
N.
Borduas-Dedekind
, “
High-speed cryo-microscopy reveals that ice-nucleating proteins of Pseudomonas syringae trigger freezing at hydrophobic interfaces
,”
Sci. Adv.
10
,
eadn6606
(
2024
).
27.
C. P.
Garnham
,
R. L.
Campbell
,
V. K.
Walker
, and
P. L.
Davies
, “
Novel dimeric β-helical model of an ice nucleation protein with bridged active sites
,”
BMC Struct. Biol.
11
,
36
(
2011
).
28.
R.
Schwidetzky
,
P.
Sudera
,
A. T.
Backes
,
U.
Pöschl
,
M.
Bonn
,
J.
Fröhlich-Nowoisky
, and
K.
Meister
, “
Membranes are decisive for maximum freezing efficiency of bacterial ice nucleators
,”
J. Phys. Chem. Lett.
12
,
10783
10787
(
2021
).
29.
T.
Hansen
,
J.
Lee
,
N.
Reicher
,
G.
Ovadia
,
S.
Guo
,
W.
Guo
,
J.
Liu
,
I.
Braslavsky
,
Y.
Rudich
, and
P. L.
Davies
, “
Ice nucleation proteins self-assemble into large fibres to trigger freezing at near 0 °C
,”
eLife
12
,
RP91976
(
2023
).
30.
J.
Forbes
,
A.
Bissoyi
,
L.
Eickhoff
,
N.
Reicher
,
T.
Hansen
,
C. G.
Bon
,
V. K.
Walker
,
T.
Koop
,
Y.
Rudich
,
I.
Braslavsky
, and
P. L.
Davies
, “
Water-organizing motif continuity is critical for potent ice nucleation protein activity
,”
Nat. Commun.
13
,
5019
(
2022
).
31.
M.
Cascajo-Castresana
,
R. O.
David
,
M. A.
Iriarte-Alonso
,
A. M.
Bittner
, and
C.
Marcolli
, “
Protein aggregates nucleate ice: The example of apoferritin
,”
Atmos. Chem. Phys.
20
,
3291
3315
(
2020
).
32.
Y. M.
Bar-On
,
R.
Phillips
, and
R.
Milo
, “
The biomass distribution on Earth
,”
Proc. Natl. Acad. Sci. U. S. A.
115
,
6506
6511
(
2018
).
33.
I.
Kögel-Knabner
, “
The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter
,”
Soil Biol. Biochem.
34
,
139
162
(
2002
).
34.
S. U.
Kadam
,
B. K.
Tiwari
, and
C. P.
O’Donnell
, “
Extraction, structure and biofunctional activities of laminarin from brown algae
,”
Int. J. Food Sci. Technol.
50
,
24
31
(
2015
).
35.
S.
Becker
,
J.
Tebben
,
S.
Coffinet
,
K.
Wiltshire
,
M. H.
Iversen
,
T.
Harder
,
K.-U.
Hinrichs
, and
J.-H.
Hehemann
, “
Laminarin is a major molecule in the marine carbon cycle
,”
Proc. Natl. Acad. Sci. U. S. A.
117
,
6599
6607
(
2020
).
36.
T. C. J.
Hill
,
P. J.
DeMott
,
Y.
Tobo
,
J.
Fröhlich-Nowoisky
,
B. F.
Moffett
,
G. D.
Franc
, and
S. M.
Kreidenweis
, “
Sources of organic ice nucleating particles in soils
,”
Atmos. Chem. Phys.
16
,
7195
7211
(
2016
).
37.
D.
O’Sullivan
,
B. J.
Murray
,
J. F.
Ross
,
T. F.
Whale
,
H. C.
Price
,
J. D.
Atkinson
,
N. S.
Umo
, and
M. E.
Webb
, “
The relevance of nanoscale biological fragments for ice nucleation in clouds
,”
Sci. Rep.
5
,
8082
(
2015
).
38.
K. J.
Suski
,
T. C. J.
Hill
,
E. J. T.
Levin
,
A.
Miller
,
P. J.
DeMott
, and
S. M.
Kreidenweis
, “
Agricultural harvesting emissions of ice-nucleating particles
,”
Atmos. Chem. Phys.
18
,
13755
13771
(
2018
).
39.
V. R.
Després
,
J. A.
Huffman
,
S. M.
Burrows
,
C.
Hoose
,
A. S.
Safatov
,
G.
Buryak
,
J.
Fröhlich-Nowoisky
,
W.
Elbert
,
M. O.
Andreae
,
U.
Pöschl
, and
R.
Jaenicke
, “
Primary biological aerosol particles in the atmosphere: A review
,”
Tellus B
64
,
15598
(
2012
).
40.
K. M.
Shakya
,
P.
Louchouarn
, and
R. J.
Griffin
, “
Lignin-derived phenols in Houston aerosols: Implications for natural background sources
,”
Environ. Sci. Technol.
45
,
8268
8275
(
2011
).
41.
T. W.
Wilson
,
L. A.
Ladino
,
P. A.
Alpert
,
M. N.
Breckels
,
I. M.
Brooks
,
J.
Browse
,
S. M.
Burrows
,
K. S.
Carslaw
,
J. A.
Huffman
,
C.
Judd
,
W. P.
Kilthau
,
R. H.
Mason
,
G.
McFiggans
,
L. A.
Miller
,
J. J.
Nájera
,
E.
Polishchuk
,
S.
Rae
,
C. L.
Schiller
,
M.
Si
,
J. V.
Temprado
,
T. F.
Whale
,
J. P. S.
Wong
,
O.
Wurl
,
J. D.
Yakobi-Hancock
,
J. P. D.
Abbatt
,
J. Y.
Aller
,
A. K.
Bertram
,
D. A.
Knopf
, and
B. J.
Murray
, “
A marine biogenic source of atmospheric ice-nucleating particles
,”
Nature
525
,
234
238
(
2015
).
42.
L. N.
Hawkins
and
L. M.
Russell
, “
Polysaccharides, proteins, and phytoplankton fragments: Four chemically distinct types of marine primary organic aerosol classified by single particle spectromicroscopy
,”
Adv. Meteorol.
2010
,
1
14
.
43.
R.
Jaenicke
, “
Abundance of cellular material and proteins in the atmosphere
,”
Science
308
,
73
(
2005
).
44.
H.
Puxbaum
, “
Size distribution and seasonal variation of atmospheric cellulose
,”
Atmos. Environ.
37
,
3693
3699
(
2003
).
45.
C. A.
Alves
, “
A short review on atmospheric cellulose
,”
Air Qual., Atmos. Health
10
,
669
678
(
2017
).
46.
D. A.
Knopf
,
P. A.
Alpert
, and
B.
Wang
, “
The role of organic aerosol in atmospheric ice nucleation: A review
,”
ACS Earth Space Chem.
2
,
168
202
(
2018
).
47.
N.
Hiranuma
,
O.
Möhler
,
K.
Yamashita
,
T.
Tajiri
,
A.
Saito
,
A.
Kiselev
,
N.
Hoffmann
,
C.
Hoose
,
E.
Jantsch
,
T.
Koop
, and
M.
Murakami
, “
Ice nucleation by cellulose and its potential contribution to ice formation in clouds
,”
Nat. Geosci.
8
,
273
277
(
2015
).
48.
N.
Hiranuma
,
K.
Adachi
,
D. M.
Bell
,
F.
Belosi
,
H.
Beydoun
,
B.
Bhaduri
,
H.
Bingemer
,
C.
Budke
,
H.-C.
Clemen
,
F.
Conen
,
K. M.
Cory
,
J.
Curtius
,
P. J.
DeMott
,
O.
Eppers
,
S.
Grawe
,
S.
Hartmann
,
N.
Hoffmann
,
K.
Höhler
,
E.
Jantsch
,
A.
Kiselev
,
T.
Koop
,
G.
Kulkarni
,
A.
Mayer
,
M.
Murakami
,
B. J.
Murray
,
A.
Nicosia
,
M. D.
Petters
,
M.
Piazza
,
M.
Polen
,
N.
Reicher
,
Y.
Rudich
,
A.
Saito
,
G.
Santachiara
,
T.
Schiebel
,
G. P.
Schill
,
J.
Schneider
,
L.
Segev
,
E.
Stopelli
,
R. C.
Sullivan
,
K.
Suski
,
M.
Szakáll
,
T.
Tajiri
,
H.
Taylor
,
Y.
Tobo
,
R.
Ullrich
,
D.
Weber
,
H.
Wex
,
T. F.
Whale
,
C. L.
Whiteside
,
K.
Yamashita
,
A.
Zelenyuk
, and
O.
Möhler
, “
A comprehensive characterization of ice nucleation by three different types of cellulose particles immersed in water
,”
Atmos. Chem. Phys.
19
,
4823
4849
(
2019
).
49.
V.
Filipe
,
A.
Hawe
, and
W.
Jiskoot
, “
Critical evaluation of nanoparticle tracking analysis (NTA) by NanoSight for the measurement of nanoparticles and protein aggregates
,”
Pharm. Res.
27
,
796
810
(
2010
).
50.
D. L.
Rupert
,
V.
Claudio
,
C.
Lässer
, and
M.
Bally
, “
Methods for the physical characterization and quantification of extracellular vesicles in biological samples
,”
Biochim. Biophys. Acta, Gen. Subj.
1861
,
3164
3179
(
2017
).
51.
B.
Saake
,
T.
Kruse
, and
J.
Puls
, “
Investigation on molar mass, solubility and enzymatic fragmentation of xylans by multi-detected SEC chromatography
,”
Bioresour. Technol.
80
,
195
204
(
2001
).
52.
M.
Friedlaender
,
W.
Cook
, and
W.
Martin
, “
Molecular weight and hydrodynamic properties of laminarin
,”
Biochim. Biophys. Acta
14
,
136
144
(
1954
).
53.
E. H.
Immergut
,
B. G.
Ranby
, and
H. F.
Mark
, “
Recent work on molecular weight of cellulose
,”
Ind. Eng. Chem.
45
,
2483
2490
(
1953
).
54.
D.
Dong
and
A. L.
Fricke
, “
Intrinsic viscosity and the molecular weight of kraft lignin
,”
Polymer
36
,
2075
2078
(
1995
).
55.
R. O.
David
,
M.
Cascajo-Castresana
,
K. P.
Brennan
,
M.
Rösch
,
N.
Els
,
J.
Werz
,
V.
Weichlinger
,
L. S.
Boynton
,
S.
Bogler
,
N.
Borduas-Dedekind
,
C.
Marcolli
, and
Z. A.
Kanji
, “
Development of the DRoplet ice nuclei counter Zurich (DRINCZ): Validation and application to field-collected snow samples
,”
Atmos. Meas. Tech.
12
,
6865
6888
(
2019
).
56.
G.
Vali
, “
Quantitative evaluation of experimental results an the heterogeneous freezing nucleation of supercooled liquids
,”
J. Atmos. Sci.
28
,
402
409
(
1971
).
57.
L. R.
Maki
,
E. L.
Galyan
,
M.-M.
Chang-Chien
, and
D. R.
Caldwell
, “
Ice nucleation induced by Pseudomonas syringae
,”
Appl. Microbiol.
28
,
456
459
(
1974
).
58.
M.
Niemand
,
O.
Möhler
,
B.
Vogel
,
H.
Vogel
,
C.
Hoose
,
P.
Connolly
,
H.
Klein
,
H.
Bingemer
,
P.
DeMott
,
J.
Skrotzki
, and
T.
Leisner
, “
A particle-surface-area-based parameterization of immersion freezing on desert dust particles
,”
J. Atmos. Sci.
69
,
3077
3092
(
2012
).
59.
J.
Chen
,
Z.
Wu
,
J.
Chen
,
N.
Reicher
,
X.
Fang
,
Y.
Rudich
, and
M.
Hu
, “
Size-resolved atmospheric ice-nucleating particles during East Asian dust events
,”
Atmos. Chem. Phys.
21
,
3491
3506
(
2021
).
60.
I.
De Almeida Ribeiro
,
K.
Meister
, and
V.
Molinero
, “
HUB: A method to model and extract the distribution of ice nucleation temperatures from drop-freezing experiments
,”
Atmos. Chem. Phys.
23
,
5623
5639
(
2023
).
61.
E.
Limpert
,
W. A.
Stahel
, and
M.
Abbt
, “
Log-normal distributions across the Sciences: Keys and clues
,”
BioScience
51
,
341
(
2001
).
62.
Å.
Linder
,
R.
Bergman
,
A.
Bodin
, and
P.
Gatenholm
, “
Mechanism of assembly of xylan onto cellulose surfaces
,”
Langmuir
19
,
5072
5077
(
2003
).
63.
M. A.
Turner
,
F.
Arellano
, and
L. M.
Kozloff
, “
Three separate classes of bacterial ice nucleation structures
,”
J. Bacteriol.
172
,
2521
2526
(
1990
).
64.
Y.
Qiu
,
A.
Hudait
, and
V.
Molinero
, “
How size and aggregation of ice-binding proteins control their ice nucleation efficiency
,”
J. Am. Chem. Soc.
141
,
7439
7452
(
2019
).
65.
S.
Hartmann
,
S.
Augustin
,
T.
Clauss
,
H.
Wex
,
T.
Šantl Temkiv
,
J.
Voigtländer
,
D.
Niedermeier
, and
F.
Stratmann
, “
Immersion freezing of ice nucleation active protein complexes
,”
Atmos. Chem. Phys.
13
,
5751
5766
(
2013
).
66.
F.
Panzer
,
H.
Bässler
, and
A.
Köhler
, “
Temperature induced order–disorder transition in solutions of conjugated polymers probed by optical spectroscopy
,”
J. Phys. Chem. Lett.
8
,
114
125
(
2017
).
67.
T. M.
Seifried
,
P.
Bieber
,
L.
Felgitsch
,
J.
Vlasich
,
F.
Reyzek
,
D. G.
Schmale
III
, and
H.
Grothe
, “
Surfaces of silver birch (Betula pendula) are sources of biological ice nuclei: In vivo and in situ investigations
,”
Biogeosciences
17
,
5655
5667
(
2020
).
68.
L.
Felgitsch
,
P.
Baloh
,
J.
Burkart
,
M.
Mayr
,
M. E.
Momken
,
T. M.
Seifried
,
P.
Winkler
,
D. G.
Schmale
III
, and
H.
Grothe
, “
Birch leaves and branches as a source of ice-nucleating macromolecules
,”
Atmos. Chem. Phys.
18
,
16063
16079
(
2018
).
69.
Y.
Tobo
,
P. J.
DeMott
,
T. C. J.
Hill
,
A. J.
Prenni
,
N. G.
Swoboda-Colberg
,
G. D.
Franc
, and
S. M.
Kreidenweis
, “
Organic matter matters for ice nuclei of agricultural soil origin
,”
Atmos. Chem. Phys.
14
,
8521
8531
(
2014
).
70.
F.
Conen
,
C. E.
Morris
,
J.
Leifeld
,
M. V.
Yakutin
, and
C.
Alewell
, “
Biological residues define the ice nucleation properties of soil dust
,”
Atmos. Chem. Phys.
11
,
9643
9648
(
2011
).
71.
I.
Steinke
,
R.
Funk
,
J.
Busse
,
A.
Iturri
,
S.
Kirchen
,
M.
Leue
,
O.
Möhler
,
T.
Schwartz
,
M.
Schnaiter
,
B.
Sierau
,
E.
Toprak
,
R.
Ullrich
,
A.
Ulrich
,
C.
Hoose
, and
T.
Leisner
, “
Ice nucleation activity of agricultural soil dust aerosols from Mongolia, Argentina, and Germany
,”
J. Geophys. Res.: Atmos.
121
,
13559
, (
2016
).
72.
Z. A.
Kanji
,
L. A.
Ladino
,
H.
Wex
,
Y.
Boose
,
M.
Burkert-Kohn
,
D. J.
Cziczo
, and
M.
Krämer
, “
Overview of ice nucleating particles
,”
Meteorol. Monogr.
58
,
1.1
1.33
(
2017
).
73.
D. I.
Haga
,
S. M.
Burrows
,
R.
Iannone
,
M. J.
Wheeler
,
R. H.
Mason
,
J.
Chen
,
E. A.
Polishchuk
,
U.
Pöschl
, and
A. K.
Bertram
, “
Ice nucleation by fungal spores from the classes Agaricomycetes, Ustilaginomycetes, and Eurotiomycetes, and the effect on the atmospheric transport of these spores
,”
Atmos. Chem. Phys.
14
,
8611
8630
(
2014
).
74.
C. S.
McCluskey
,
J.
Ovadnevaite
,
M.
Rinaldi
,
J.
Atkinson
,
F.
Belosi
,
D.
Ceburnis
,
S.
Marullo
,
T. C. J.
Hill
,
U.
Lohmann
,
Z. A.
Kanji
,
C.
O’Dowd
,
S. M.
Kreidenweis
, and
P. J.
DeMott
, “
Marine and terrestrial organic ice-nucleating particles in pristine marine to continentally influenced northeast atlantic air masses
,”
J. Geophys. Res.: Atmos.
123
,
6196
6212
, (
2018
).
75.
J.
Jang
,
J.
Park
,
J.
Park
,
Y. J.
Yoon
,
M.
Dall’Osto
,
K.-T.
Park
,
E.
Jang
,
J. Y.
Lee
,
K. H.
Cho
, and
B. Y.
Lee
, “
Ocean-Atmosphere interactions: Different organic components across pacific and southern Oceans
,”
Sci. Total Environ.
878
,
162969
(
2023
).
76.
H.
Wex
,
S.
Augustin-Bauditz
,
Y.
Boose
,
C.
Budke
,
J.
Curtius
,
K.
Diehl
,
A.
Dreyer
,
F.
Frank
,
S.
Hartmann
,
N.
Hiranuma
,
E.
Jantsch
,
Z. A.
Kanji
,
A.
Kiselev
,
T.
Koop
,
O.
Möhler
,
D.
Niedermeier
,
B.
Nillius
,
M.
Rösch
,
D.
Rose
,
C.
Schmidt
,
I.
Steinke
, and
F.
Stratmann
, “
Intercomparing different devices for the investigation of ice nucleating particles using Snomax® as test substance
,”
Atmos. Chem. Phys.
15
,
1463
1485
(
2015
).
You do not currently have access to this content.