The in situ growth dynamics of colloidal silver–gold core–shell (Ag@Au CS) nanoparticles (NPs) are studied using time-dependent second harmonic generation (SHG) and extinction spectroscopy. Four sequential additions of chloroauric acid, sodium citrate, and hydroquinone are added to a silver nanoparticle solution to form a gold shell around a 45 nm silver core under different reaction conditions, resulting in final sizes ranging from 80 to 125 nm in diameter. In the first addition, a bumpy, urchin-like surface morphology is produced, while the second, third, and fourth additions provide additional nanoparticle growth with the surface morphology becoming more smooth and uniform, as shown using transmission electron microscopy measurements. The in situ extinction spectra increase in intensity for each addition, where blue-shifting and spectral narrowing are observed as the Ag@Au CS NPs grow in size. The extinction spectra are compared to Mie theory simulations, showing general agreement at later stages of the reactions for smooth CS surfaces. The in situ SHG signal is dominated by surface-enhanced plasmonic hotspots at the early stages of the shell growth, followed by gradual decreases in signal as the surface becomes more smooth. Two-photon fluorescence is also monitored during the CS growth, showing complementary information for comparisons to the extinction and SHG results. The holistic study of the synthesis and characterization of Ag@Au CS nanoparticles using in situ SHG spectroscopy, extinction spectroscopy, and Mie theory simulations allows for a comprehensive analysis of the complex growth dynamics occurring at the nanoscale for developing optimized plasmonic nanomaterial properties.

1.
A. J.
Haes
and
R. P.
van Duyne
, “
A nanoscale optical biosensor: Sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles
,”
J. Am. Chem. Soc.
124
,
10596
10604
(
2002
).
2.
T. E.
Karam
and
L. H.
Haber
, “
Molecular adsorption and resonance coupling at the colloidal gold nanoparticle interface
,”
J. Phys. Chem. C
118
,
642
649
(
2014
).
3.
R. R.
Kumal
,
T. E.
Karam
, and
L. H.
Haber
, “
Determination of the surface charge density of colloidal gold nanoparticles using second harmonic generation
,”
J. Phys. Chem. C
119
,
16200
16207
(
2015
).
4.
S. E.
Skrabalak
,
J.
Chen
,
Y.
Sun
,
X.
Lu
,
L.
Au
,
C. M.
Cobley
, and
Y.
Xia
, “
Gold nanocages: Synthesis, properties, and applications
,”
Acc. Chem. Res.
41
,
1587
1595
(
2008
).
5.
E.
Boisselier
and
D.
Astruc
, “
Gold nanoparticles in nanomedicine: Preparations, imaging, diagnostics, therapies and toxicity
,”
Chem. Soc. Rev.
38
,
1759
1782
(
2009
).
6.
P.
Ghosh
,
G.
Han
,
M.
De
,
C. K.
Kim
, and
V. M.
Rotello
, “
Gold nanoparticles in delivery applications
,”
Adv. Drug Delivery Rev.
60
,
1307
1315
(
2008
).
7.
X.
Zhao
,
W.
Hu
,
Y.
Wang
,
L.
Zhu
,
L.
Yang
,
Z.
Sha
, and
J.
Zhang
, “
Decoration of graphene with 2-aminoethanethiol functionalized gold nanoparticles for molecular imprinted sensing of erythrosine
,”
Carbon
127
,
618
626
(
2018
).
8.
M.
Davis
,
Z.
Chen
, and
D.
Shin
, “
Nanoparticle therapeutics: An emerging treatment modality for cancer
,”
Nat. Rev. Drug Discovery
7
,
771
782
(
2008
).
9.
A. S.
Thakor
and
S. S.
Gambhir
, “
Nanooncology: The future of cancer diagnosis and therapy
,”
Ca-Cancer J. Clin.
63
,
395
418
(
2013
).
10.
P.
Couvreur
, “
Nanoparticles in drug delivery: Past, present and future
,”
Adv. Drug Delivery Rev.
65
,
21
23
(
2013
).
11.
E. C.
Dreaden
,
A. M.
Alkilany
,
X.
Huang
,
C. J.
Murphy
, and
M. A.
El-Sayed
, “
The golden age: Gold nanoparticles for biomedicine
,”
Chem. Soc. Rev.
41
,
2740
2779
(
2012
).
12.
M.
Chandra
,
A. M.
Dowgiallo
, and
K. L.
Knappenberger
, Jr.
, “
Controlled plasmon resonance properties of hollow gold nanosphere aggregates
,”
J. Am. Chem. Soc.
132
,
15782
15789
(
2010
).
13.
S.
Eustis
and
M. A.
El-Sayed
, “
Why gold nanoparticles are more precious than pretty gold: Noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes
,”
Chem. Soc. Rev.
35
,
209
217
(
2006
).
14.
M.
Chanana
and
L. M.
Liz-Marzan
, “
Coating matters: The influence of coating materials on the optical properties of gold nanoparticles
,”
Nanophotonics
1
,
199
220
(
2012
).
15.
L. H.
Haber
,
S. J. J.
Kwok
,
M.
Semeraro
, and
K. B.
Eisenthal
, “
Probing the colloidal gold nanoparticle/aqueous interface with second harmonic generation
,”
Chem. Phys. Lett.
507
,
11
14
(
2011
).
16.
P. V.
Kamat
, “
Photophysical, photochemical and photocatalytic aspects of metal nanoparticles
,”
J. Phys. Chem. B
106
,
7729
7744
(
2002
).
17.
W.-Y.
Chiang
,
A.
Bruncz
,
B.
Ostovar
,
E. K.
Searles
,
S.
Brasel
,
G.
Hartland
, and
S.
Link
, “
Electron–phonon relaxation dynamics of hot electrons in gold nanoparticles are independent of excitation pathway
,”
J. Phys. Chem. C
127
,
21176
21185
(
2023
).
18.
K. G.
Thomas
and
P. V.
Kamat
, “
Chromophore-functionalized gold nanoparticles
,”
Acc. Chem. Res.
36
,
888
898
(
2003
).
19.
P. K.
Jain
,
K. S.
Lee
,
I. H.
El-Sayed
, and
M. A.
El-Sayed
, “
Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: Applications in biological imaging and biomedicine
,”
J. Phys. Chem. B
110
,
7238
7248
(
2006
).
20.
Y.
Xia
,
Y. J.
Xiong
,
B.
Lim
, and
S. E.
Skrabalak
, “
Shape-controlled synthesis of metal nanocrystals: Simple chemistry meets complex physics?
,”
Angew. Chem., Int. Ed.
48
,
60
103
(
2009
).
21.
K. A.
Willets
and
R. P.
Van Duyne
, “
Localized surface plasmon resonance spectroscopy and sensing
,”
Annu. Rev. Phys. Chem.
58
,
267
297
(
2007
).
22.
L. J.
Sherry
,
S.-H.
Chang
,
G. C.
Schatz
,
R. P.
Van Duyne
et al, “
Localized surface plasmon resonance spectroscopy of single silver nanocubes
,”
Nano Lett.
5
,
2034
2038
(
2005
).
23.
T. E.
Karam
,
H. T.
Smith
, and
L. H.
Haber
, “
Enhanced photothermal effects and excited-state dynamics of plasmonic size-controlled gold–silver–gold core–shell–shell nanoparticles
,”
J. Phys. Chem. C
119
,
18573
18580
(
2015
).
24.
A. K.
Samal
,
L.
Polavarapu
,
S.
Rodal-Cedeira
,
L. M.
Liz-Marzán
,
J.
Pérez-Juste
, and
I.
Pastoriza-Santos
, “
Size tunable Au@Ag core–shell nanoparticles: Synthesis and surface-enhanced Raman scattering properties
,”
Langmuir
29
,
15076
15082
(
2013
).
25.
X.
Guo
,
Z.
Guo
,
Y.
Jin
,
Z.
Liu
,
W.
Zhang
, and
D.
Huang
, “
Silver–gold core–shell nanoparticles containing methylene blue as SERS labels for probing and imaging of live cells
,”
Microchim. Acta
178
,
229
236
(
2012
).
26.
Y.
Cao
,
R.
Jin
, and
C. A.
Mirkin
, “
DNA-modified core–shell Ag/Au nanoparticles
,”
J. Am. Chem. Soc.
123
,
7961
7962
(
2001
).
27.
Y.
Yang
,
J.
Liu
,
Z.-W.
Fu
, and
D.
Qin
, “
Galvanic replacement-free deposition of Au on Ag for core–shell nanocubes with enhanced chemical stability and SERS activity
,”
J. Am. Chem. Soc.
136
,
8153
8156
(
2014
).
28.
I.
Lee
,
S. W.
Han
, and
K.
Kim
, “
Production of Au–Ag alloy nanoparticles by laser ablation of bulk alloys
,”
Chem. Commun.
2001
,
1782
1783
.
29.
E.
Csapó
,
A.
Oszkó
,
E.
Varga
,
Á.
Juhász
,
N.
Buzás
,
L.
Kőrösi
,
A.
Majzik
, and
I.
Dékány
, “
Synthesis and characterization of Ag/Au alloy and core(Ag)–shell(Au) nanoparticles
,”
Colloids Surf., A
415
,
281
287
(
2012
).
30.
Y.
Gutiérrez
,
M.
Losurdo
,
F.
González
,
H. O.
Everitt
, and
F.
Moreno
, “
Nanoplasmonic photothermal heating and near-field enhancements: A comparative survey of 19 metals
,”
J. Phys. Chem. C
124
,
7386
(
2020
).
31.
J. M.
Sanz
,
D.
Ortiz
,
R.
Alcaraz de la Osa
,
J. M.
Saiz
,
F.
González
,
A. S.
Brown
,
M.
Losurdo
,
H. O.
Everitt
, and
F.
Moreno
, “
UV plasmonic behavior of various metal nanoparticles in the near- and far-field regimes: Geometry and substrate effects
,”
J. Phys. Chem. C
117
,
19606
(
2013
).
32.
L.
Qiu
,
N.
Zhu
,
Y.
Feng
,
E. E.
Michaelides
,
G.
Żyła
,
D.
Jing
,
X.
Zhang
,
P. M.
Norris
,
C. N.
Markides
, and
O.
Mahian
, “
A review of recent advances in thermophysical properties at the nanoscale: From solid state to colloids
,”
Phys. Rep.
843
,
1
81
(
2020
).
33.
M. E.
El-Naggar
,
T. I.
Shaheen
,
M. M.
Fouda
, and
A. A.
Hebeish
, “
Eco-friendly microwave-assisted green and rapid synthesis of well-stabilized gold and core–shell silver–gold nanoparticles
,”
Carbohydr. Polym.
136
,
1128
1136
(
2016
).
34.
Y.
Ji
,
S.
Yang
,
S.
Guo
,
X.
Song
,
B.
Ding
, and
Z.
Yang
, “
Bimetallic Ag/Au nanoparticles: A low temperature ripening strategy in aqueous solution
,”
Colloids Surf., A
372
,
204
209
(
2010
).
35.
A.
Povolotskiy
,
A.
Povolotckaia
,
Y.
Petrov
,
A.
Manshina
, and
S.
Tunik
, “
Laser-induced synthesis of metallic silver–gold nanoparticles encapsulated in carbon nanospheres for surface-enhanced Raman spectroscopy and toxins detection
,”
Appl. Phys. Lett.
103
,
113102
(
2013
).
36.
I.
Srnová-Šloufová
,
F.
Lednický
,
A.
Gemperle
, and
J.
Gemperlová
, “
Core–shell (Ag)Au bimetallic nanoparticles: Analysis of transmission electron microscopy images
,”
Langmuir
16
,
9928
9935
(
2000
).
37.
J.
Turkevich
and
G.
Kim
, “
Palladium: Preparation and catalytic properties of particles of uniform size
,”
Science
169
,
873
879
(
1970
).
38.
A.
Knauer
,
A.
Thete
,
S.
Li
,
H.
Romanus
,
A.
Csaki
,
W.
Fritzsche
, and
J.
Köhler
, “
Au/Ag/Au double shell nanoparticles with narrow size distribution obtained by continuous micro segmented flow synthesis
,”
Chem. Eng. J.
166
,
1164
1169
(
2011
).
39.
S. D.
Perrault
and
W. C.
Chan
, “
Synthesis and surface modification of highly monodispersed, spherical gold nanoparticles of 50–200 nm
,”
J. Am. Chem. Soc.
131
,
17042
17043
(
2009
).
40.
J.
Li
,
J.
Wu
,
X.
Zhang
,
Y.
Liu
,
D.
Zhou
,
H.
Sun
,
H.
Zhang
, and
B.
Yang
, “
Controllable synthesis of stable urchin-like gold nanoparticles using hydroquinone to tune the reactivity of gold chloride
,”
J. Phys. Chem. C
115
,
3630
3637
(
2011
).
41.
N. L.
Pacioni
,
C. D.
Borsarelli
,
V.
Rey
, and
A. V.
Veglia
,
Synthetic Routes for the Preparation of Silver Nanoparticles
(
Springer
,
2015
), pp.
13
46
.
42.
S.
Patra
,
D.
Sen
,
A. K.
Pandey
,
J.
Bahadur
,
S.
Mazumder
,
S. V.
Ramagiri
,
J. R.
Bellare
,
S. V.
Roth
,
G.
Santoro
,
S.
Yu
, and
A.
Goswami
, “
Time resolved growth of membrane stabilized silver NPs and their catalytic activity
,”
RSC Adv.
4
,
59379
59386
(
2014
).
43.
S.
Mourdikoudis
,
R. M.
Pallares
, and
N. T.
Thanh
, “
Characterization techniques for nanoparticles: Comparison and complementarity upon studying nanoparticle properties
,”
Nanoscale
10
,
12871
12934
(
2018
).
44.
L. M.
Liz-Marzán
, “
Tailoring surface plasmons through the morphology and assembly of metal nanoparticles
,”
Langmuir
22
(
1
),
32
41
(
2006
).
45.
T. J.
Woehl
,
J. E.
Evans
,
I.
Arslan
,
W. D.
Ristenpart
, and
N. D.
Browning
, “
Direct in situ determination of the mechanisms controlling nanoparticle nucleation and growth
,”
ACS Nano
6
(
10
),
8599
8610
(
2012
).
46.
T.
Su
,
Z. L.
Wang
, and
Z.
Wang
, “
In situ observations of shell growth and oxidative etching behaviors of Pd nanoparticles in solutions by liquid cell transmission electron microscopy
,”
Small
15
,
1900050
(
2019
).
47.
C.
Sauerbeck
,
M.
Haderlein
,
B.
Schürer
,
B.
Braunschweig
,
W.
Peukert
, and
R. N.
Klupp Taylor
, “
Shedding light on the growth of gold nanoshells
,”
ACS Nano
8
(
3
),
3088
3096
(
2014
).
48.
R. A.
Khoury
,
J. C.
Ranasinghe
,
A. S.
Dikkumbura
,
P.
Hamal
,
R. R.
Kumal
,
T. E.
Karam
,
H. T.
Smith
, and
L. H.
Haber
, “
Monitoring the seed-mediated growth of gold nanoparticles using in situ second harmonic generation and extinction spectroscopy
,”
J. Phys. Chem. C
122
,
24400
24406
(
2018
).
49.
J. C.
Ranasinghe
,
A. S.
Dikkumbura
,
P.
Hamal
,
M.
Chen
,
R. A.
Khoury
,
H. T.
Smith
,
K.
Lopata
, and
L. H.
Haber
, “
Monitoring the growth dynamics of colloidal gold–silver core–shell nanoparticles using in situ second harmonic generation and extinction spectroscopy
,”
J. Chem. Phys.
151
,
224701
(
2019
).
50.
A. S.
Dikkumbura
,
P.
Hamal
,
M.
Chen
,
D. A.
Babayode
,
J. C.
Ranasinghe
,
K.
Lopata
, and
L. H.
Haber
, “
Growth dynamics of colloidal silver–gold core–shell nanoparticles studied by in situ second harmonic generation and extinction spectroscopy
,”
J. Phys. Chem. C
125
(
46
),
25615
25623
(
2021
).
51.
K. B.
Eisenthal
, “
Second harmonic spectroscopy of aqueous nano- and microparticle interfaces
,”
Chem. Rev.
106
,
1462
1477
(
2006
).
52.
S.
Roke
and
G.
Gonella
, “
Nonlinear light scattering and spectroscopy of particles and droplets in liquids
,”
Annu. Rev. Phys. Chem.
63
,
353
378
(
2012
).
53.
R. R.
Kumal
,
M.
Abu-Laban
,
C. R.
Landry
,
B.
Kruger
,
Z.
Zhang
,
D. J.
Hayes
, and
L. H.
Haber
, “
Plasmon-enhanced photocleaving dynamics in colloidal microRNA-functionalized silver nanoparticles monitored with second harmonic generation
,”
Langmuir
32
,
10394
10401
(
2016
).
54.
P. L.
Hayes
,
J. N.
Malin
,
D. S.
Jordan
, and
F. M.
Geiger
, “
Get charged up: Nonlinear optical voltammetry for quantifying the thermodynamics and electrostatics of metal cations at aqueous/oxide interfaces
,”
Chem. Phys. Lett.
499
,
183
192
(
2010
).
55.
C.-C.
Zhang
,
J.-Y.
Zhang
,
J.-R.
Feng
,
S.-T.
Liu
,
S.-J.
Ding
,
L.
Ma
, and
Q.-Q.
Wang
, “
Plasmon-enhanced second harmonic generation of metal nanostructures
,”
Nanoscale
16
,
5960
(
2024
).
56.
Y.
Rao
,
S. J. J.
Kwok
,
J.
Lombardi
,
N. J.
Turro
, and
K. B.
Eisenthal
, “
Label-free probe of HIV-1 TAT peptide binding to mimetic membranes
,”
Proc. Natl. Acad. Sci. U. S. A.
111
(
35
),
12684
12688
(
2014
).
57.
G.
Gonella
and
H.-L.
Dai
, “
Second harmonic light scattering from the surface of colloidal objects: Theory and applications
,”
Langmuir
30
,
2588
2599
(
2014
).
58.
P. E.
Ohno
,
H. B.
Chang
,
A. P.
Spencer
,
Y.
Liu
,
M. D.
Boamah
,
H.-F.
Wang
, and
F. M.
Geiger
, “
Beyond the Gouy–Chapman model with heterodyne-detected second harmonic generation
,”
J. Phys. Chem. Lett.
10
,
2328
2334
(
2019
).
59.
Z.
Li
,
L.
Kang
,
R. W.
Lord
,
K.
Park
,
A.
Gillman
,
R. A.
Vaia
,
R. E.
Schaak
,
D. H.
Werner
, and
K. L.
Knappenberger
, Jr.
, “
Plasmon-mediated chiroptical second harmonic generation from seemingly achiral gold nanorods
,”
ACS Nanosci. Au
2
(
1
),
32
39
(
2022
).
60.
E. C.
Yan
,
Y.
Liu
, and
K. B.
Eisenthal
, “
New method for determination of surface potential of microscopic particles by second harmonic generation
,”
J. Phys. Chem. B
102
,
6331
6336
(
1998
).
61.
P.
Hamal
,
H.
Nguyenhuu
,
V.
Subasinghege Don
,
R. R.
Kumal
,
R.
Kumar
,
R. L.
McCarley
, and
L. H.
Haber
, “
Molecular adsorption and transport at liposome surfaces studied by molecular dynamics simulations and second harmonic generation spectroscopy
,”
J. Phys. Chem. B
123
,
7722
7730
(
2019
).
62.
A. M.
Darlington
and
J. M.
Gibbs-Davis
, “
Bimodal or trimodal? The influence of starting pH on site identity and distribution at the low salt aqueous/silica interface
,”
J. Phys. Chem. C
119
(
29
),
16560
16567
(
2015
).
63.
Y.
Liu
,
J. I.
Dadap
,
D.
Zimdars
, and
K. B.
Eisenthal
, “
Study of interfacial charge-transfer complex on TiO2 particles in aqueous suspension by second-harmonic generation
,”
J. Phys. Chem. B
103
(
13
),
2480
2486
(
1999
).
64.
H.
Li
,
H.
Xia
,
D.
Wang
, and
X.
Tao
, “
Simple synthesis of monodisperse, quasi-spherical, citrate-stabilized silver nanocrystals in water
,”
Langmuir
29
,
5074
5079
(
2013
).
65.
W.
Denk
,
J. H.
Strickler
, and
W. W.
Webb
, “
Two-photon laser scanning fluorescence microscopy
,”
Science
248
(
4951
),
73
76
(
1990
).
66.
P. T. C.
So
, “
Two-photon fluorescence light microscopy
,” in
Encyclopedia of Life Sciences
(
Macmillan Publishers Ltd, Nature Publishing Group
,
2002
), pp.
1
5
.
67.
W.
Zhang
,
M.
Caldarola
,
X.
Lu
, and
M.
Orrit
, “
Plasmonic enhancement of two-photon-excited luminescence of single quantum dots by individual gold nanorods
,”
ACS Photonics
5
(
7
),
2960
2968
(
2018
).
68.
A.
Pniakowska
and
J.
Olesiak-Banska
, “
Plasmonic enhancement of two-photon excited luminescence of gold nanoclusters
,”
Molecules
27
,
807
(
2022
).
69.
X.
Lu
,
D.
Punj
, and
M.
Orrit
, “
Two-photon-excited single-molecule fluorescence enhanced by gold nanorod dimers
,”
Nano Lett.
22
(
10
),
4215
4222
(
2022
).
70.
R. R.
Kumal
,
M.
Abu-Laban
,
P.
Hamal
,
B.
Kruger
,
H. T.
Smith
,
D. J.
Hayes
, and
L. H.
Haber
, “
Near-infrared photothermal release of siRNA from the surface of colloidal gold–silver–gold core–shell–shell nanoparticles studied with second-harmonic generation
,”
J. Phys. Chem. C
122
(
34
),
19699
19704
(
2018
).
71.
O.
Peña-Rodriguez
,
P. P.
González Pérez
, and
U.
Pal
, “
MieLab: A software tool to perform calculations on the scattering of electromagnetic waves by multilayered spheres
,”
Int. J. Spectrosc.
2011
,
583743
.
72.
K. L.
Kelly
,
E.
Coronado
,
L. L.
Zhao
, and
G. C.
Schatz
, “
The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment
,”
J. Phys. Chem. B
107
(
3
),
668
677
(
2003
).
73.
M. I.
Mishchenko
,
L. D.
Travis
, and
A. A.
Lacis
,
Scattering, Absorption, and Emission of Light by Small Particles
(
Cambridge University Press
,
2002
).
74.
C.
Ziegler
and
A.
Eychmuller
, “
Seeded growth synthesis of uniform gold nanoparticles with diameters of 15–300 nm
,”
J. Phys. Chem. C
115
,
4502
4506
(
2011
).
75.
L.
Zhao
,
X.
Ji
,
X.
Sun
,
J.
Li
,
W.
Yang
, and
X.
Peng
, “
Formation and stability of gold nanoflowers by the seeding approach: The effect of intraparticle ripening
,”
J. Phys. Chem. C
113
,
16645
16651
(
2009
).
76.
A.
Lesuffleur
,
L. K. S.
Kumar
, and
R.
Gordon
, “
Enhanced second harmonic generation from nanoscale double-hole arrays in a gold film
,”
Appl. Phys. Lett.
88
(
26
),
261104
(
2006
).
77.
N.
Fukuoka
and
K.
Tanabe
, “
Lightning-rod effect of plasmonic field enhancement on hydrogen-absorbing transition metals
,”
Nanomaterials
9
(
9
),
1235
(
2019
).
78.
J.-M.
Yi
,
D.
Wang
,
F.
Schwarz
,
J.
Zhong
,
A.
Chimeh
,
A.
Korte
,
J.
Zhan
,
P.
Schaaf
,
E.
Runge
, and
C.
Lienau
, “
Doubly resonant plasmonic hot spot–exciton coupling enhances second harmonic generation from Au/ZnO hybrid porous nanosponges
,”
ACS Photonics
6
(
11
),
2779
2787
(
2019
).
79.
Z.
Li
,
X.
Ye
,
Z.
Hu
,
H.
Li
,
S.
Liu
,
Y.
Zheng
, and
X.
Chen
, “
Plasmonic hotspot arrays boost second harmonic generation in thin-film lithium niobate
,”
Opt. Express
32
,
13140
13155
(
2024
).
80.
Q.
Ma
,
C.
Pan
,
Y.
Xue
,
Z.
Fang
,
S.
Zhang
,
B.
Wu
, and
E.
Wu
, “
Plasmon enhanced second harmonic generation from ZnO nanofilms on vertical Au nanorod arrays
,”
Nanomaterials
11
,
2597
(
2021
).
81.
N.
Gao
,
Y.
Chen
,
L.
Li
,
Z.
Guan
,
T.
Zhao
,
N.
Zhou
,
P.
Yuan
,
S. Q.
Yao
, and
Q.-H.
Xu
, “
Shape-dependent two-photon photoluminescence of single gold nanoparticles
,”
J. Phys. Chem. C
118
(
25
),
13904
13911
(
2014
).
82.
R. P. M.
Höller
,
M.
Dulle
,
S.
Thomä
,
M.
Mayer
,
A. M.
Steiner
,
S.
Förster
,
A.
Fery
,
C.
Kuttner
, and
M.
Chanana
, “
Protein-assisted assembly of modular 3D plasmonic raspberry-like core/satellite nanoclusters: Correlation of structure and optical properties
,”
ACS Nano
10
,
5740
5750
(
2016
).
83.
G.
Wang
,
L.
Xu
,
L.
Wu
,
K.
Meng
,
X.
Wang
,
Z.
Liu
,
C.
Fan
, and
G.
Chen
, “
X-ray and optical characterizations of DNA-mediated Janus nanostructures
,”
Appl. Phys. Lett.
109
,
233101
(
2016
).
84.
P. R. A. F.
Garcia
,
O.
Prymak
,
V.
Grasmik
,
K.
Pappert
,
W.
Wlysses
,
L.
Otubo
,
M.
Epple
, and
C. L. P.
Oliveira
, “
An in situ SAXS investigation of the formation of silver nanoparticles and bimetallic silver-gold nanoparticles in controlled wet-chemical reduction synthesis
,”
Nanoscale Adv.
2
,
225
238
(
2020
).
85.
M.
Watari
,
R. A.
McKendry
,
M.
Vögtli
,
G.
Aeppli
,
Y.-A.
Soh
,
X.
Shi
,
G.
Xiong
,
X.
Huang
,
R.
Harder
, and
I. K.
Robinson
, “
Differential stress induced by thiol adsorption on facetted nanocrystals
,”
Nat. Mater.
10
,
862
866
(
2011
).
86.
D.
Kumar
,
I.
Mutreja
, and
P.
Sykes
, “
Seed mediated synthesis of highly mono-dispersed gold nanoparticles in the presence of hydroquinone
,”
Nanotechnology
27
,
355601
(
2016
).
You do not currently have access to this content.