Efficient data processing is heavily reliant on prioritizing specific stimuli and categorizing incoming information. Within human biological systems, dorsal root ganglions (particularly nociceptors situated in the skin) perform a pivotal role in detecting external stimuli. These neurons send warnings to our brain, priming it to anticipate potential harm and prevent injury. In this study, we explore the potential of using a ferroelectric memristor device structured as a metal–ferroelectric–insulator–semiconductor as an artificial nociceptor. The aim of this device is to electrically receive external damage and interpret signals of danger. The TiN/HfAlOx (HAO)/HfSiOx (HSO)/n+ Si configuration of this device replicates the key functions of a biological nociceptor. The emulation includes crucial aspects, such as threshold reactivity, relaxation, no adaptation, and sensitization phenomena known as “allodynia” and “hyperalgesia.” Moreover, we propose establishing a connection between nociceptors and synapses by training the Hebbian learning rule. This involves exposing the device to injurious stimuli and using this experience to enhance its responsiveness, replicating synaptic plasticity.

1.
R.
Athle
,
A. E. O.
Persson
,
A.
Troian
, and
M.
Borg
, “
Top electrode engineering for freedom in design and implementation of ferroelectric tunnel junctions based on HfxZrxO2
,”
ACS Appl. Electron. Mater.
4
(
3
),
1002
1009
(
2022
).
2.
F.
Zahoor
,
T. Z.
Azni Zulkifli
, and
F. A.
Khanday
, “
Resistive random access memory (RRAM): An overview of materials, switching mechanism, performance, multilevel cell (MLC) storage, modeling, and applications
,”
Nanoscale Res. Lett.
15
(
1
),
90
(
2020
).
3.
Y.
Yu
and
N. K.
Jha
, “
Energy-efficient monolithic three-dimensional on-chip memory architectures
,”
IEEE Trans. Nanotechnol.
17
(
4
),
620
633
(
2018
).
4.
J.
Li
,
C.
Ge
,
H.
Lu
,
H.
Guo
,
E. J.
Guo
,
M.
He
,
C.
Wang
,
G.
Yang
, and
K.
Jin
, “
Energy-efficient artificial synapses based on oxide tunnel junctions
,”
ACS Appl. Mater. Interfaces
11
(
46
),
43473
43479
(
2019
).
5.
D.
Kuzum
,
S.
Yu
, and
H. S.
Philip Wong
, “
Synaptic electronics: Materials, devices and applications
,”
Nanotechnology
24
(
38
),
382001
(
2013
).
6.
M. A.
Zidan
,
J. P.
Strachan
, and
W. D.
Lu
, “
The future of electronics based on memristive systems
,”
Nat. Electron.
1
(
1
),
22
29
(
2018
).
7.
J. J.
Yang
,
D. B.
Strukov
, and
D. R.
Stewart
, “
Memristive devices for computing
,”
Nat. Nanotechnol.
8
(
1
),
13
24
(
2013
).
8.
Z.
Luo
,
Z.
Wang
,
Z.
Guan
,
C.
Ma
,
L.
Zhao
,
C.
Liu
,
H.
Sun
,
H.
Wang
,
Y.
Lin
,
X.
Jin
,
Y.
Yin
, and
X.
Li
, “
High-precision and linear weight updates by subnanosecond pulses in ferroelectric tunnel junction for neuro-inspired computing
,”
Nat. Commun.
13
(
1
),
699
(
2022
).
9.
M. S.
Gold
and
G. F.
Gebhart
, “
Nociceptor sensitization in pain pathogenesis
,”
Nat. Med.
16
(
11
),
1248
1257
(
2010
).
10.
M.
Xiao
,
D.
Shen
,
M. H.
Futscher
,
B.
Ehrler
,
K. P.
Musselman
,
W. W.
Duley
, and
Y. N.
Zhou
, “
Threshold switching in single metal-oxide nanobelt devices emulating an artificial nociceptor
,”
Adv. Electron. Mater.
6
(
1
),
1900595
(
2020
).
11.
D. M.
Cain
,
S. G.
Khasabov
, and
D. A.
Simone
, “
Response properties of mechanoreceptors and nociceptors in mouse glabrous skin: An in vivo study
,”
J. Neurophysiol.
85
(
4
),
1561
1574
(
2001
).
12.
C. J.
Woolf
and
Q.
Ma
, “
Nociceptors-noxious stimulus detectors
,”
Neuron
55
(
3
),
353
364
(
2007
).
13.
W.
Wang
,
G.
Pedretti
,
V.
Milo
,
R.
Carboni
,
A.
Calderoni
,
N.
Ramaswamy
,
A. S.
Spinelli
, and
D.
Ielmini
, “
Learning of spatiotemporal patterns in a spiking neural network with resistive switching synapses
,”
Sci. Adv.
4
(
9
),
eaat4752
(
2018
).
14.
V.
Neugebauer
and
W.
Li
, “
Processing of nociceptive mechanical and thermal information in central amygdala neurons with knee-joint input
,”
J. Neurophysiol.
87
(
1
),
103
112
(
2002
).
15.
R. S.
Dahiya
,
G.
Metta
,
M.
Valle
, and
G.
Sandini
, “
Tactile sensing-from humans to humanoids
,”
IEEE Trans. Robot.
26
(
1
),
1
20
(
2010
).
16.
M.
Kumar
,
H. S.
Kim
, and
J.
Kim
, “
A highly transparent artificial photonic nociceptor
,”
Adv. Mater.
31
(
19
),
1900021
(
2019
).
17.
R.
Khan
,
N. U.
Rehman
,
N.
Ilyas
,
N.
Sfina
,
M.
Barhoumi
,
A.
Khan
,
K.
Althubeiti
,
S. A.
Otaibi
,
S.
Iqbal
,
N.
Rahman
,
M.
Sohail
,
A.
Ullah
,
T.
Del Rosso
,
Q.
Zaman
,
A.
Ali Khan
,
S. S.
Abdullaev
, and
A.
Khan
, “
Threshold switching in nickel-doped zinc oxide based memristor for artificial sensory applications
,”
Nanoscale
15
(
4
),
1900
1913
(
2023
).
18.
A. E.
Dubin
and
A.
Patapoutian
, “
Nociceptors: The sensors of the pain pathway
,”
J. Clin. Invest.
120
(
11
),
3760
3772
(
2010
).
19.
J. H.
Yoon
,
Z.
Wang
,
K. M.
Kim
,
H.
Wu
,
V.
Ravichandran
,
Q.
Xia
,
C. S.
Hwang
, and
J. J.
Yang
, “
An artificial nociceptor based on a diffusive memristor
,”
Nat. Commun.
9
(
1
),
417
(
2018
).
20.
J.
Nijs
,
A.
Lahousse
,
E.
Kapreli
,
P.
Bilika
,
İ.
Saraçoğlu
,
A.
Malfliet
,
I.
Coppieters
,
L.
De Baets
,
L.
Leysen
,
E.
Roose
,
J.
Clark
,
L.
Voogt
, and
E.
Huysmans
, “
Nociplastic pain criteria or recognition of central sensitization? Pain phenotyping in the past, present and future
,”
J. Clin. Med.
10
(
15
),
3203
(
2021
).
21.
J.
Ge
,
S.
Zhang
,
Z.
Liu
,
Z.
Xie
, and
S.
Pan
, “
Flexible artificial nociceptor using a biopolymer-based forming-free memristor
,”
Nanoscale
11
(
14
),
6591
6601
(
2019
).
22.
F.
von Dincklage
,
P.
Koppe
,
J.
Kotsch
,
J. H.
Baars
, and
B.
Rehberg
, “
Investigation of threshold and magnitude criteria of the nociceptive blink reflex
,”
Clin. Neurophysiol.
121
(
6
),
945
949
(
2010
).
23.
Y.
Kim
,
Y. J.
Kwon
,
D. E.
Kwon
,
K. J.
Yoon
,
J. H.
Yoon
,
S.
Yoo
,
H. J.
Kim
,
T. H.
Park
,
J. W.
Han
,
K. M.
Kim
, and
C. S.
Hwang
, “
Nociceptive memristor
,”
Adv. Mater.
30
(
8
),
1707594
(
2018
).
24.
Q.
Xia
,
Y.
Qin
,
P.
Qiu
,
A.
Zheng
, and
X.
Zhang
, “
A bio-inspired tactile nociceptor constructed by integrating wearable sensing paper and a VO2 threshold switching memristor
,”
J. Mater. Chem. B
10
(
12
),
1991
2000
(
2022
).
25.
W. S.
Zhao
,
T.
Devolder
,
Y.
Lakys
,
J. O.
Klein
,
C.
Chappert
, and
P.
Mazoyer
, “
Design considerations and strategies for high-reliable STT-MRAM
,”
Microelectron. Reliab.
51
(
9–11
),
1454
1458
(
2011
).
26.
S. R.
Nandakumar
,
M.
Le Gallo
,
I.
Boybat
,
B.
Rajendran
,
A.
Sebastian
, and
E.
Eleftheriou
, “
A phase-change memory model for neuromorphic computing
,”
J. Appl. Phys.
124
(
15
),
152135
(
2018
).
27.
S. W.
Fong
,
C. M.
Neumann
, and
H. S. P.
Wong
, “
Phase-change memory—towards a storage-class memory
,”
IEEE Trans. Electron Devices
64
(
11
),
4374
4385
(
2017
).
28.
D.
Ju
,
J. H.
Kim
, and
S.
Kim
, “
Highly uniform resistive switching characteristics of Ti/TaOx/ITO memristor devices for neuromorphic system
,”
J. Alloys Compd.
961
,
170920
(
2023
).
29.
K.
Kim
and
S.
Lee
, “
Integration of lead zirconium titanate thin films for high density ferroelectric random access memory
,”
J. Appl. Phys.
100
(
5
),
051604
(
2006
).
30.
K.
Moon
,
S.
Lim
,
J.
Park
,
C.
Sung
,
S.
Oh
,
J.
Woo
,
J.
Lee
, and
H.
Hwang
, “
RRAM-based synapse devices for neuromorphic systems
,”
Faraday Discuss.
213
,
421
451
(
2019
).
31.
H. S. P.
Wong
,
H. Y.
Lee
,
S.
Yu
,
Y. S.
Chen
,
Y.
Wu
,
P. S.
Chen
,
B.
Lee
,
F. T.
Chen
, and
M. J.
Tsai
, “
Metal-oxide RRAM
,”
Proc. IEEE
100
(
6
),
1951
1970
(
2012
).
32.
J.
Yoon
,
S.
Hong
,
Y. W.
Song
,
J. H.
Ahn
, and
S. E.
Ahn
, “
Understanding tunneling electroresistance effect through potential profile in Pt/Hf0.5Zr0.5O2/TiN ferroelectric tunnel junction memory
,”
Appl. Phys. Lett.
115
(
15
),
153502
(
2019
).
33.
D.
Kim
,
B.
Jeon
,
Y.
Lee
,
D.
Kim
,
Y.
Cho
, and
S.
Kim
, “
Prospects and applications of volatile memristors
,”
Appl. Phys. Lett.
121
(
1
),
010501
(
2022
).
34.
Y.
Goh
and
S.
Jeon
, “
The effect of the bottom electrode on ferroelectric tunnel junctions based on CMOS-compatible HfO2
,”
Nanotechnology
29
(
33
),
335201
(
2018
).
35.
F.
Ambriz-Vargas
,
G.
Kolhatkar
,
M.
Broyer
,
A.
Hadj-Youssef
,
R.
Nouar
,
A.
Sarkissian
,
R.
Thomas
,
C.
Gomez-Yáñez
,
M. A.
Gauthier
, and
A.
Ruediger
, “
A complementary metal oxide semiconductor process-compatible ferroelectric tunnel junction
,”
ACS Appl. Mater. Interfaces
9
(
15
),
13262
13268
(
2017
).
36.
R.
Berdan
,
T.
Marukame
,
K.
Ota
,
M.
Yamaguchi
,
M.
Saitoh
,
S.
Fujii
,
J.
Deguchi
, and
Y.
Nishi
, “
Low-power linear computation using nonlinear ferroelectric tunnel junction memristors
,”
Nat. Electron.
3
(
5
),
259
266
(
2020
).
37.
A.
Shekhawat
,
G.
Walters
,
N.
Yang
,
J.
Guo
,
T.
Nishida
, and
S.
Moghaddam
, “
Data retention and low voltage operation of Al2O3/Hf0.5Zr0.5O2 based ferroelectric tunnel junctions
,”
Nanotechnology
31
(
39
),
39LT01
(
2020
).
38.
L.
Chen
,
T. Y.
Wang
,
Y. W.
Dai
,
M. Y.
Cha
,
H.
Zhu
,
Q. Q.
Sun
,
S. J.
Ding
,
P.
Zhou
,
L.
Chua
, and
D. W.
Zhang
, “
Ultra-low power Hf0.5Zr0.5O2 based ferroelectric tunnel junction synapses for hardware neural network applications
,”
Nanoscale
10
(
33
),
15826
15833
(
2018
).
39.
E.
Tokumitsu
,
K.
Okamoto
, and
H.
Ishiwara
, “
Low voltage operation of nonvolatile metal-ferroelectric-metal-insulator-semiconductor (MFMIS)-Field-Effect-Transistors (FETs) using Pt/SrBi2Ta2O9/Pt/SrTa2O6/SiON/Si structures
,”
Jpn. J. Appl. Phys.
40
(
4S
),
2917
(
2001
).
40.
W. C.
Shih
,
P. C.
Juan
, and
J. Y. M.
Lee
, “
Fabrication and characterization of metal-ferroelectric (PbZr0.53Ti0.47O3)-Insulator (Y2O3)-semiconductor field effect transistors for nonvolatile memory applications
,”
J. Appl. Phys.
103
(
9
),
094110
(
2008
).
41.
Y. Q.
Chen
,
X. B.
Xu
,
Z. F.
Lei
,
X. Y.
Liao
,
X.
Wang
,
C.
Zeng
,
Y. F.
En
, and
Y.
Huang
, “
Effect of temperature on the electrical properties of a metal-ferroelectric (SrBi2Ta2O9)-insulator (HfTaO)-silicon capacitor
,”
J. Phys. D Appl. Phys.
48
(
3
),
035109
(
2015
).
42.
J.
Zhou
,
Z.
Zhou
,
X.
Wang
,
H.
Wang
,
C.
Sun
,
K.
Han
,
Y.
Kang
, and
X.
Gong
, “
Demonstration of ferroelectricity in Al-doped HfO with a low thermal budget of 500 °C
,”
IEEE Electron Device Lett.
41
(
7
),
1130
1133
(
2020
).
43.
S.
Li
,
Y.
Zheng
,
R.
Jakoby
, and
A.
Klein
, “
Electrically programmable bistable capacitor for high-frequency applications based on charge storage at the (Ba,Sr)TiO3/Al2O3 interface
,”
Adv. Funct. Mater.
22
(
22
),
4827
4832
(
2012
).
44.
J. Y.
Park
,
D. H.
Choe
,
D. H.
Lee
,
G. T.
Yu
,
K.
Yang
,
S. H.
Kim
,
G. H.
Park
,
S. G.
Nam
,
H. J.
Lee
,
S.
Jo
,
B. J.
Kuh
,
D.
Ha
,
Y.
Kim
,
J.
Heo
, and
M. H.
Park
, “
Revival of ferroelectric memories based on emerging fluorite-structured ferroelectrics
,”
Adv. Mater.
35
(
43
),
2204904
(
2023
).
45.
T. S.
Böscke
,
S.
Teichert
,
D.
Bräuhaus
,
J.
Müller
,
U.
Schröder
,
U.
Böttger
, and
T.
Mikolajick
, “
Phase transitions in ferroelectric silicon doped hafnium oxide
,”
Appl. Phys. Lett.
99
(
11
),
112904
(
2011
).
46.
P. D.
Lomenzo
,
Q.
Takmeel
,
S.
Moghaddam
, and
T.
Nishida
, “
Annealing behavior of ferroelectric Si-doped HfO2 thin films
,”
Thin Solid Films
615
,
139
144
(
2016
).
47.
J.
Müller
,
U.
Schröder
,
T. S.
Böscke
,
I.
Müller
,
U.
Böttger
,
L.
Wilde
,
J.
Sundqvist
,
M.
Lemberger
,
P.
Kücher
,
T.
Mikolajick
, and
L.
Frey
, “
Ferroelectricity in yttrium-doped hafnium oxide
,”
J. Appl. Phys.
110
(
11
),
114113
(
2011
).
48.
S.
Starschich
and
U.
Boettger
, “
An extensive study of the influence of dopants on the ferroelectric properties of HfO2
,”
J. Mater. Chem. C
5
(
2
),
333
338
(
2017
).
49.
S.
Mueller
,
J.
Mueller
,
A.
Singh
,
S.
Riedel
,
J.
Sundqvist
,
U.
Schroeder
, and
T.
Mikolajick
, “
Incipient ferroelectricity in Al-doped HfO2 thin films
,”
Adv. Funct. Mater.
22
(
11
),
2412
2417
(
2012
).
50.
J.
Hwang
,
Y.
Goh
, and
S.
Jeon
, “
Effect of forming gas high-pressure annealing on metal-ferroelectric-semiconductor hafnia ferroelectric tunnel junction
,”
IEEE Electron Device Lett.
41
(
8
),
1193
1196
(
2020
).
51.
Y.
Goh
,
J.
Hwang
,
M.
Kim
,
Y.
Lee
,
M.
Jung
, and
S.
Jeon
, “
Selector-less ferroelectric tunnel junctions by stress engineering and an imprinting effect for high-density cross-point synapse arrays
,”
ACS Appl. Mater. Interfaces
13
(
49
),
59422
59430
(
2021
).
52.
Y.
Goh
,
J.
Hwang
, and
S.
Jeon
, “
Excellent reliability and high-speed antiferroelectric HfZrO2 tunnel junction by a high-pressure annealing process and built-in bias engineering
,”
ACS Appl. Mater. Interfaces
12
(
51
),
57539
57546
(
2020
).
53.
Y.
Zhang
,
D.
Wang
,
J.
Wang
,
C.
Luo
,
M.
Li
,
Y.
Li
,
R.
Tao
,
D.
Chen
,
Z.
Fan
,
J. Y.
Dai
,
G.
Zhou
,
X.
Lu
, and
J. M.
Liu
, “
Growth of the orthorhombic phase and inhibition of charge injection in ferroelectric HfO2-based MFIS memory devices with a high-permittivity dielectric seed layer
,”
Sci. China Mater.
66
(
1
),
219
232
(
2023
).
54.
K. K.
Min
,
J.
Yu
,
Y.
Kim
,
J. H.
Lee
,
D.
Kwon
, and
B. G.
Park
, “
Interlayer engineering for enhanced ferroelectric tunnel junction operations in HfOx -based metal-ferroelectric-insulator-semiconductor stack
,”
Nanotechnology
32
(
49
),
495203
(
2021
).
55.
Y.
Park
,
J.
Kim
,
S.
Kim
,
D.
Kim
,
W.
Shim
, and
S.
Kim
, “
Effect of interfacial SiO2 layer thickness on the memory performances in the HfAlOx-based ferroelectric tunnel junction for a neuromorphic system
,”
J. Mater. Chem. C
11
(
40
),
13886
13896
(
2023
).
56.
Y.
Lin
,
W.
Wang
,
R.
Li
,
J.
Kim
,
C.
Zhang
,
H.
Kan
, and
Y.
Li
, “
Multifunctional optoelectronic memristor based on CeO2/MoS2 heterojunction for advanced artificial synapses and bionic visual system with nociceptive sensing
,”
Nano Energy
121
,
109267
(
2024
).
57.
R.
Mandal
,
A.
Mandal
, and
T.
Som
, “
Towards on-receptor computing: Electronic nociceptor embedded neuromorphic functionalities at nanoscale
,”
Appl. Mater. Today
37
,
102103
(
2024
).
58.
J.
Kim
,
D.
Kim
,
K. K.
Min
,
M.
Kraatz
,
T.
Han
, and
S.
Kim
, “
Effect of Al concentration on ferroelectric properties in HfAlOx-based ferroelectric tunnel junction devices for neuroinspired applications
,”
Adv. Intell. Syst.
5
(
8
),
2300080
(
2023
).
59.
B.
Max
,
M.
Hoffmann
,
H.
Mulaosmanovic
,
S.
Slesazeck
, and
T.
Mikolajick
, “
Hafnia-based double-layer ferroelectric tunnel junctions as artificial synapses for neuromorphic computing
,”
ACS Appl. Electron. Mater.
2
(
12
),
4023
4033
(
2020
).
60.
S.
Chandrasekaran
,
F. M.
Simanjuntak
,
R.
Saminathan
,
D.
Panda
, and
T. Y.
Tseng
, “
Improving linearity by introducing Al in HfO2 as a memristor synapse device
,”
Nanotechnology
30
(
44
),
445205
(
2019
).
61.
J.
Chen
,
C.
Jin
,
X.
Yu
,
X.
Jia
,
Y.
Peng
,
Y.
Liu
,
B.
Chen
,
R.
Cheng
, and
G.
Han
, “
Impact of oxygen vacancy on ferroelectric characteristics and its implication for wake-up and fatigue of HfO2-based thin films
,”
IEEE Trans. Electron Devices
69
(
9
),
5297
5301
(
2022
).
62.
S.
Starschich
,
S.
Menzel
, and
U.
Böttger
, “
Evidence for oxygen vacancies movement during wake-up in ferroelectric hafnium oxide
,”
Appl. Phys. Lett.
108
(
3
),
032903
(
2016
).
63.
Y.
Zhou
,
Y. K.
Zhang
,
Q.
Yang
,
J.
Jiang
,
P.
Fan
,
M.
Liao
, and
Y. C.
Zhou
, “
The effects of oxygen vacancies on ferroelectric phase transition of HfO2-based thin film from first-principle
,”
Comput. Mater. Sci.
167
,
143
150
(
2019
).
64.
Y. J.
Suh
,
J.
Jeong
,
B. H.
Kim
,
S. H.
Kuk
,
S. K.
Kim
,
J. P.
Kim
, and
S.
Kim
, “
Large polarization of Hf0.5Zr0.5Ox ferroelectric film on InGaAs with electric-field cycling and annealing temperature engineering
,”
IEEE Electron Device Lett.
45
(
5
),
766
769
(
2024
).
65.
Z. M.
Ye
et al, “
Giant electroresistance in ferroelectric tunnel junctions
,”
Phys. Rev. Lett.
94
(
24
),
246802
(
2005
).
66.
M. A.
Zidan
,
H. A. H.
Fahmy
,
M. M.
Hussain
, and
K. N.
Salama
, “
Memristor-based memory: The sneak paths problem and solutions
,”
Microelectron. J.
44
(
2
),
176
183
(
2013
).
67.
G.
Shao
, “
Work function and electron affinity of semiconductors: Doping effect and complication due to fermi level pinning
,”
Energy Environ. Mater.
4
(
3
),
273
276
(
2021
).
68.
M.
Ťapajna
,
K.
Hušeková
,
J. P.
Espinos
,
L.
Harmatha
, and
K.
Fröhlich
, “
Precise determination of metal effective work function and fixed oxide charge in MOS capacitors with high-κ dielectric
,”
Mater. Sci. Semicond. Process.
9
(
6
),
969
974
(
2006
).
69.
Z.
Li
,
J.
Wei
,
J.
Meng
,
Y.
Liu
,
J.
Yu
,
T.
Wang
,
K.
Xu
,
P.
Liu
,
H.
Zhu
,
S.
Chen
,
Q. Q.
Sun
,
D. W.
Zhang
, and
L.
Chen
, “
The doping effect on the intrinsic ferroelectricity in hafnium oxide-based nano-ferroelectric devices
,”
Nano Lett.
23
(
10
),
4675
4682
(
2023
).
70.
Y.
Matveyev
,
D.
Negrov
,
A.
Chernikova
,
Y.
Lebedinskii
,
R.
Kirtaev
,
S.
Zarubin
,
E.
Suvorova
,
A.
Gloskovskii
, and
A.
Zenkevich
, “
Effect of polarization reversal in ferroelectric TiN/Hf0.5Zr0.5O2/TiN devices on electronic conditions at interfaces studied in operando by hard X-ray photoemission spectroscopy
,”
ACS Appl. Mater. Interfaces
9
(
49
),
43370
43376
(
2017
).
71.
J.
Kim
,
O.
Kwon
,
E.
Lim
,
D.
Kim
, and
S.
Kim
, “
Impact of annealing temperature on the remanent polarization and tunneling electro-resistance of ferroelectric Al-doped HfOx tunnel junction memory
,”
Phys. Chem. Chem. Phys.
25
(
6
),
4588
4597
(
2023
).
72.
Y.
Lee
,
S.
Song
,
W.
Ham
, and
S. E.
Ahn
, “
Si-doped HfO2-based ferroelectric tunnel junctions with a composite energy barrier for non-volatile memory applications
,”
Materials
15
(
6
),
2251
(
2022
).
73.
T.
Ikuno
,
H.
Okamoto
,
Y.
Sugiyama
,
H.
Nakano
,
F.
Yamada
, and
I.
Kamiya
, “
Electron transport properties of Si nanosheets: Transition from direct tunneling to Fowler–Nordheim tunneling
,”
Appl. Phys. Lett.
99
(
2
),
023107
(
2011
).
74.
S.
Shrivastava
,
S.
Pratik
,
A. S.
Lin
, and
T. Y.
Tseng
, “
Emulating synaptic and nociceptive behavior via negative photoconductivity of a memristor
,”
IEEE Trans. Electron Devices
70
(
7
),
3530
3535
(
2023
).
75.
S.
Ke
,
Y.
He
,
L.
Zhu
,
Z.
Jiang
,
H.
Mao
,
Y.
Zhu
,
C.
Wan
, and
Q.
Wan
, “
Indium-gallium-Zinc-oxide based photoelectric neuromorphic transistors for modulable photoexcited corneal nociceptor emulation
,”
Adv. Electron. Mater.
7
(
11
),
2100487
(
2021
).
76.
J. H.
Yang
,
S. C.
Mao
,
K. T.
Chen
, and
J. S.
Chen
, “
Emulating nociceptive receptor and LIF neuron behavior via ZrOx-based threshold switching memristor
,”
Adv. Electron. Mater.
9
(
3
),
2201006
(
2023
).
77.
D.
Panda
,
Y. F.
Hui
, and
T. Y.
Tseng
, “
Diffusion limiting layer induced tantalum oxide based memristor as nociceptor
,”
Mater. Today Electron.
3
,
100031
(
2023
).
78.
J.
Tian
,
Z.
Tan
,
Z.
Fan
,
D.
Zheng
,
Y.
Wang
,
Z.
Chen
,
F.
Sun
,
D.
Chen
,
M.
Qin
,
M.
Zeng
,
X.
Lu
,
X.
Gao
, and
J. M.
Liu
, “
Depolarization-field-induced retention loss in ferroelectric diodes
,”
Phys. Rev. Appl.
11
(
2
),
024058
(
2019
).
79.
S.
Majumdar
,
H.
Tan
,
Q. H.
Qin
, and
S.
van Dijken
, “
Energy-efficient organic ferroelectric tunnel junction memristors for neuromorphic computing
,”
Adv. Electron. Mater.
5
(
3
),
1800795
(
2019
).
80.
T. S.
Jensen
and
N. B.
Finnerup
, “
Allodynia and hyperalgesia in neuropathic pain: Clinical manifestations and mechanisms
,”
Lancet Neurol.
13
(
9
),
924
935
(
2014
).
81.
P.
Bousoulas
,
C.
Tsioustas
, and
D.
Tsoukalas
, “
Emulating low power nociceptive functionalities with a forming-free SiO2/VOx conductive bridge memory with Pt nanoparticles
,”
Appl. Phys. Lett.
120
(
25
),
253509
(
2022
).
82.
R.
Yang
,
H. M.
Huang
, and
X.
Guo
, “
Memristive synapses and neurons for bioinspired computing
,”
Adv. Electron. Mater.
5
(
9
),
1900287
(
2019
).
83.
Y.
Munakata
and
J.
Pfaffly
, “
Hebbian learning and development
,”
Dev. Sci.
7
(
2
),
141
148
(
2004
).
84.
M. A.
Shakib
,
Z.
Gao
, and
C.
Lamuta
, “
Synaptic properties of geopolymer memristors: Synaptic plasticity, spike-rate-dependent plasticity, and spike-timing-dependent plasticity
,”
ACS Appl. Electron. Mater.
5
(
9
),
4875
4884
(
2023
).
85.
G.
Rachmuth
,
H. Z.
Shouval
,
M. F.
Bear
, and
C.-S.
Poon
, “
A biophysically-based neuromorphic model of spike rate-and timing-dependent plasticity
,”
Proc. Natl. Acad. Sci. U S A
108
,
E1266
(
2011
).
You do not currently have access to this content.