The MPSDynamics.jl package provides an easy-to-use interface for performing open quantum systems simulations at zero and finite temperatures. The package has been developed with the aim of studying non-Markovian open system dynamics using the state-of-the-art numerically exact Thermalized-Time Evolving Density operator with Orthonormal Polynomials Algorithm based on environment chain mapping. The simulations rely on a tensor network representation of the quantum states as matrix product states (MPS) and tree tensor network states. Written in the Julia programming language, MPSDynamics.jl is a versatile open-source package providing a choice of several variants of the Time-Dependent Variational Principle method for time evolution (including novel bond-adaptive one-site algorithms). The package also provides strong support for the measurement of single and multi-site observables, as well as the storing and logging of data, which makes it a useful tool for the study of many-body physics. It currently handles long-range interactions, time-dependent Hamiltonians, multiple environments, bosonic and fermionic environments, and joint system–environment observables.

1.
H.-P.
Breuer
and
F.
Petruccione
,
The Theory of Open Quantum Systems
(
Oxford University Press
,
2007
).
2.
A.
Rivas
and
S. F.
Huelga
,
Open Quantum Systems: An Introduction
, 1st ed. (
Springer
,
Berlin, Heidelberg
,
2011
).
3.
U.
Weiss
,
Quantum Dissipative Systems
, 4th ed. (
World Scientific
,
2012
).
4.
K.
Blum
,
Density Matrix Theory and Applications
, Springer Series on Atomic, Optical, and Plasma Physics, 3rd ed. (
Springer
,
2012
), Vol.
64
.
5.
J. C.
Tully
, “
Perspective: Nonadiabatic dynamics theory
,”
J. Chem. Phys.
137
,
22A301
(
2012
).
6.
F.
Agostini
and
B. F. E.
Curchod
, “
Different flavors of nonadiabatic molecular dynamics
,”
WIREs Comput. Mol. Sci.
9
,
e1417
(
2019
).
7.
M.
Mohseni
,
Y.
Omar
,
G. S.
Engel
, and
M. B.
Plenio
,
Quantum Effects in Biology
(
Cambridge University Press
,
2014
).
8.
L.
Li
,
M. J. W.
Hall
, and
H. M.
Wiseman
, “
Concepts of quantum non-Markovianity: A hierarchy
,”
Phys. Rep.
759
,
1
51
(
2018
).
9.
A.
Strathearn
,
P.
Kirton
,
D.
Kilda
,
J.
Keeling
, and
B. W.
Lovett
, “
Efficient non-Markovian quantum dynamics using time-evolving matrix product operators
,”
Nat. Commun.
9
,
3322
(
2018
).
10.
A.
Strathearn
,
Modelling Non-Markovian Quantum Systems Using Tensor Networks
, Springer Theses (
Springer International Publishing
,
2020
).
11.
T.
Collaboration
,
G. E.
Fux
,
P.
Fowler-Wright
,
D.
Gribben
,
J.
Beckles
, and
P.
Kirton
(
2020
). “
OQuPy: A python 3 package to efficiently compute non-Markovian open quantum systems
,” https://doi.org/10.5281/zenodo.7243607.
12.
M.
Cygorek
,
M.
Cosacchi
,
A.
Vagov
,
V. M.
Axt
,
B. W.
Lovett
,
J.
Keeling
, and
E. M.
Gauger
, “
Simulation of open quantum systems by automated compression of arbitrary environments
,”
Nat. Phys.
18
,
662
(
2022
).
13.
M.
Cygorek
,
J.
Keeling
,
B. W.
Lovett
, and
E. M.
Gauger
, “
Sublinear scaling in non-Markovian open quantum systems simulations
,”
Phys. Rev. X
14
,
011010
(
2024
).
14.
M.
Cygorek
, mcygorek/ACE: ACE version May 2024 (
2024
).
15.
Y.
Tanimura
, “
Numerically ‘exact’ approach to open quantum dynamics: The hierarchical equations of motion (HEOM)
,”
J. Chem. Phys.
153
,
020901
(
2020
).
16.
E.
Mangaud
,
A.
Jaouadi
,
A.
Chin
, and
M.
Desouter-Lecomte
, “
Survey of the hierarchical equations of motion in tensor-train format for non-Markovian quantum dynamics
,”
Eur. Phys. J.: Spec. Top.
232
,
1847
1869
(
2023
).
17.
J. R.
Johansson
,
P. D.
Nation
, and
F.
Nori
, “
QuTiP 2: A Python framework for the dynamics of open quantum systems
,”
Comput. Phys. Commun.
184
,
1234
1240
(
2013
).
18.
H.-D.
Meyer
, “
Studying molecular quantum dynamics with the multiconfiguration time-dependent Hartree method: Multiconfiguration time-dependent Hartree
,”
WIREs Comput. Mol. Sci.
2
,
351
374
(
2012
).
19.
G.
Worth
, “
QUANTICS: A general purpose package for quantum molecular dynamics simulations
,”
Comput. Phys. Commun.
248
,
107040
(
2020
).
20.
G.
Worth
(
2019
). “
Quantics v1
,” Mendeley Data.
21.
F.
Ciccarello
,
S.
Lorenzo
,
V.
Giovannetti
, and
G. M.
Palma
, “
Quantum collision models: Open system dynamics from repeated interactions
,”
Phys. Rep.
954
,
1
70
(
2022
).
22.
A. D.
Somoza
,
O.
Marty
,
J.
Lim
,
S. F.
Huelga
, and
M. B.
Plenio
, “
Dissipation-Assisted matrix product factorization
,”
Phys. Rev. Lett.
123
,
100502
(
2019
).
23.
J.
Prior
,
A. W.
Chin
,
S. F.
Huelga
, and
M. B.
Plenio
, “
Efficient simulation of strong system-environment interactions
,”
Phys. Rev. Lett.
105
,
050404
(
2010
).
24.
M.
Woods
,
M.
Cramer
, and
M.
Plenio
, “
Simulating bosonic baths with error bars
,”
Phys. Rev. Lett.
115
,
130401
(
2015
).
25.
S.
Oviedo-Casado
,
J.
Prior
,
A.
Chin
,
R.
Rosenbach
,
S.
Huelga
, and
M.
Plenio
, “
Phase-dependent exciton transport and energy harvesting from thermal environments
,”
Phys. Rev. A
93
,
020102
(
2016
).
26.
F. A.
Schröder
and
A. W.
Chin
, “
Simulating open quantum dynamics with time-dependent variational matrix product states: Towards microscopic correlation of environment dynamics and reduced system evolution
,”
Phys. Rev. B
93
,
075105
(
2016
).
27.
F. A.
Schröder
,
D. H.
Turban
,
A. J.
Musser
,
N. D.
Hine
, and
A. W.
Chin
, “
Tensor network simulation of multi-environmental open quantum dynamics via machine learning and entanglement renormalisation
,”
Nat. Commun.
10
,
1062
(
2019
).
28.
D.
Tamascelli
,
A.
Smirne
,
J.
Lim
,
S. F.
Huelga
, and
M. B.
Plenio
, “
Efficient simulation of finite-temperature open quantum systems
,”
Phys. Rev. Lett.
123
,
090402
(
2019
).
29.
R.
Orus
, “
A practical introduction to tensor networks: Matrix product states and projected entangled pair states
,”
Ann. Phys.
349
,
117
158
(
2014
); arXiv: 1306.2164.
30.
J. C.
Bridgeman
and
C. T.
Chubb
, “
Hand-waving and interpretive dance: An introductory course on tensor networks
,”
J. Phys. A: Math. Theor.
50
,
223001
(
2017
); arXiv: 1603.03039.
31.
G.
Evenbly
, Tensors.net: Everything you need to begin your exciting journey into the world of tensor networks, Tensors.net.
32.
J.
Del Pino
,
F. A.
Schröder
,
A. W.
Chin
,
J.
Feist
, and
F. J.
Garcia-Vidal
, “
Tensor network simulation of polaron-polaritons in organic microcavities
,”
Phys. Rev. B
98
,
165416
(
2018
).
33.
A.
Riva
,
D.
Tamascelli
,
A. J.
Dunnett
, and
A. W.
Chin
, “
Thermal cycle and polaron formation in structured bosonic environments
,”
Phys. Rev. B
108
,
195138
(
2023
).
34.
A. J.
Dunnett
and
A. W.
Chin
, “
Matrix product state simulations of non-equilibrium steady states and transient heat flows in the two-bath spin-boson model at finite temperatures
,”
Entropy
23
,
77
(
2021
).
35.
A. J.
Dunnett
and
A. W.
Chin
, “
Simulating quantum vibronic dynamics at finite temperatures with many body wave functions at 0 K
,”
Front. Chem.
8
,
600731
(
2021
).
36.
A. J.
Dunnett
,
D.
Gowland
,
C. M.
Isborn
,
A. W.
Chin
, and
T. J.
Zuehlsdorff
, “
Influence of non-adiabatic effects on linear absorption spectra in the condensed phase: Methylene blue
,”
J. Chem. Phys.
155
,
144112
(
2021
); arXiv:2107.06587 [physics, physics:quant-ph].
37.
K. E.
Hunter
,
Y.
Mao
,
A. W.
Chin
, and
T. J.
Zuehlsdorff
, “
Environmentally driven symmetry breaking quenches dual fluorescence in proflavine
,”
J. Phys. Chem. Lett.
15
,
4623
4632
(
2024
).
38.
T.
Lacroix
,
A.
Dunnett
,
D.
Gribben
,
B. W.
Lovett
, and
A.
Chin
, “
Unveiling non-Markovian spacetime signaling in open quantum systems with long-range tensor network dynamics
,”
Phys. Rev. A
104
,
052204
(
2021
).
39.
T.
Lacroix
,
B. W.
Lovett
, and
A. W.
Chin
, “
From non-Markovian dissipation to spatiotemporal control of quantum nanodevices
,”
Quantum
8
,
1305
(
2024
).
40.
B.
Le Dé
,
S.
Huppert
,
R.
Spezia
, and
A. W.
Chin
, “
Extending non-perturbative simulation techniques for open-quantum systems to excited-state proton transfer and ultrafast non-adiabatic dynamics
,” arXiv: 2405.08693 (
2024
).
41.
N.
Lorenzoni
,
N.
Cho
,
J.
Lim
,
D.
Tamascelli
,
S. F.
Huelga
, and
M. B.
Plenio
, “
Systematic coarse graining of environments for the nonperturbative simulation of open quantum systems
,”
Phys. Rev. Lett.
132
,
100403
(
2024
).
42.
F.
Caycedo-Soler
,
A.
Mattioni
,
J.
Lim
,
T.
Renger
,
S. F.
Huelga
, and
M. B.
Plenio
, “
Exact simulation of pigment-protein complexes unveils vibronic renormalization of electronic parameters in ultrafast spectroscopy
,”
Nat. Commun.
13
,
2912
(
2022
).
43.
A. W.
Chin
,
J.
Prior
,
S. F.
Huelga
, and
M. B.
Plenio
, “
Generalized polaron ansatz for the ground state of the sub-Ohmic spin-boson model: An analytic theory of the localization transition
,”
Phys. Rev. Lett.
107
,
160601
(
2011
).
44.
Z.
Blunden-Codd
,
S.
Bera
,
B.
Bruognolo
,
N.-O.
Linden
,
A. W.
Chin
,
J.
von Delft
,
A.
Nazir
, and
S.
Florens
, “
Anatomy of quantum critical wave functions in dissipative impurity problems
,”
Phys. Rev. B
95
,
085104
(
2017
).
45.
T.
Nishi
and
K.
Yamanouchi
, “
Simulation of a spin-boson model by iterative optimization of a parametrized quantum circuit
,”
AVS Quantum Sci.
6
,
023801
(
2024
).
46.
J. D.
Guimarães
,
J.
Lim
,
M. I.
Vasilevskiy
,
S. F.
Huelga
, and
M. B.
Plenio
, “
Noise-assisted digital quantum simulation of open systems using partial probabilistic error cancellation
,”
PRX Quantum
4
,
040329
(
2023
).
47.
J. D.
Guimarães
,
M. I.
Vasilevskiy
, and
L. S.
Barbosa
, “
Digital quantum simulation of non-perturbative dynamics of open systems with orthogonal polynomials
,”
Quantum
8
,
1242
(
2024
).
48.
A. J.
Dunnett
,
T.
Lacroix
,
A.
Riva
, and
B.
Le Dé
(
2024
). “
shareloqs/MPSDynamics: v1.1
,” https://doi.org/10.5281/zenodo.11400776
49.
A.
Dunnett
, “
Tensor network approaches to open quantum systems at finite temperature with applications to spectroscopy
,” Ph.D. thesis,
Sorbonne Université
,
2021
.
50.
M.
Fishman
,
S. R.
White
, and
E. M.
Stoudenmire
, “
The ITensor software library for tensor network calculations
,”
SciPost Phys. Codebases
,
4
(
2022
).
51.
W.
Gautschi
, “
Algorithm 726: ORTHPOL–A package of routines for generating orthogonal polynomials and gauss-type quadrature rules
,”
ACM Trans. Math. Software
20
,
21
62
(
1994
).
52.
A. W.
Chin
,
A.
Rivas
,
S. F.
Huelga
, and
M. B.
Plenio
, “
Exact mapping between system-reservoir quantum models and semi-infinite discrete chains using orthogonal polynomials
,”
J. Math. Phys.
51
,
092109
(
2010
); arXiv: 1006.4507.
53.
J.
Haegeman
,
J. I.
Cirac
,
T. J.
Osborne
,
I.
Pižorn
,
H.
Verschelde
, and
F.
Verstraete
, “
Time-dependent variational principle for quantum lattices
,”
Phys. Rev. Lett.
107
,
070601
(
2011
).
54.
S.
Paeckel
,
T.
Köhler
,
A.
Swoboda
,
S. R.
Manmana
,
U.
Schollwöck
, and
C.
Hubig
, “
Time-evolution methods for matrix-product states
,”
Ann. Phys.
411
,
167998
(
2019
).
55.
A. J.
Dunnett
and
A. W.
Chin
, “
Efficient bond-adaptive approach for finite-temperature open quantum dynamics using the one-site time-dependent variational principle for matrix product states
,”
Phys. Rev. B
104
,
214302
(
2021
).
56.
L.
Devos
,
M. V.
Damme
,
J.
Haegeman
, and
Contributors
(
2023
). “
TensorOperations.jl
,” https://doi.org/10.5281/zenodo.3245496
57.
A. W.
Chin
,
J.
Prior
,
R.
Rosenbach
,
F.
Caycedo-Soler
,
S. F.
Huelga
, and
M. B.
Plenio
, “
The role of non-equilibrium vibrational structures in electronic coherence and recoherence in pigment–protein complexes
,”
Nat. Phys.
9
,
113
118
(
2013
).
58.
A. M.
Alvertis
,
F. A. Y. N.
Schröder
, and
A. W.
Chin
, “
Non-equilibrium relaxation of hot states in organic semiconductors: Impact of mode-selective excitation on charge transfer
,”
J. Chem. Phys.
151
,
084104
(
2019
).
59.
I.
De Vega
,
U.
Schollwöck
, and
F. A.
Wolf
, “
How to discretize a quantum bath for real-time evolution
,”
Phys. Rev. B
92
,
155126
(
2015
).
60.
A.-P.
Jauho
,
N. S.
Wingreen
, and
Y.
Meir
, “
Time-dependent transport in interacting and noninteracting resonant-tunneling systems
,”
Phys. Rev. B
50
,
5528
(
1994
).
61.
P. W.
Anderson
, “
Localized magnetic states in metals
,”
Phys. Rev.
124
,
41
53
(
1961
).
62.
L.
Kohn
and
G. E.
Santoro
, “
Efficient mapping for Anderson impurity problems with matrix product states
,”
Phys. Rev. B
104
,
014303
(
2021
).
63.
I.
de Vega
and
M.-C.
Bañuls
, “
Thermofield-based chain-mapping approach for open quantum systems
,”
Phys. Rev. A
92
,
052116
(
2015
).
64.
E.
Lambertson
,
D.
Bashirova
,
K. E.
Hunter
,
B.
Hansen
, and
T. J.
Zuehlsdorff
, “
Computing linear optical spectra of molecules in complex environments on graphics processing units using molecular dynamics simulations and tensor-network approaches
,” arXiv:2406.17994 [physics] (
2024
).
65.
A.
Nüßeler
,
D.
Tamascelli
,
A.
Smirne
,
J.
Lim
,
S. F.
Huelga
, and
M. B.
Plenio
, “
Fingerprint and universal Markovian closure of structured bosonic environments
,”
Phys. Rev. Lett.
129
,
140604
(
2022
).
You do not currently have access to this content.