Theories of small systems play an important role in the fundamental understanding of finite size effects in statistical mechanics, as well as the validation of molecular simulation results as no computer can simulate fluids in the thermodynamic limit. Previously, a shell particle was included in the isothermal–isobaric ensemble in order to resolve an ambiguity in the resulting partition function. The shell particle removed either redundant volume states or redundant translational degrees of freedom of the system and yielded quantitative differences from traditional simulations in this ensemble. In this work, we investigate the effect of including a shell particle in the canonical, grand canonical, and Gibbs ensembles. For systems comprised of a pure component ideal gas, analytical expressions for various thermodynamic properties are obtained. We also derive the Metropolis Monte Carlo simulation acceptance criteria for these ensembles with shell particles, and the results of the simulations of an ideal gas are in excellent agreement with the theoretical predictions. The system size dependence of various important ensemble averages is also analyzed.

1.
T. L.
Hill
,
An Introduction to Statistical Thermodynamics
(
Dover Publications
,
New York
,
1987
).
2.
N.
Metropolis
,
A. W.
Rosenbluth
,
M. N.
Rosenbluth
,
A. H.
Teller
, and
E.
Teller
,
J. Chem. Phys.
21
,
1087
(
1953
).
3.
M. P.
Allen
and
D. J.
Tildesley
,
Computer Simulation of Liquids
(
Clarendon Press
,
Oxford UK
,
1989
).
4.
D.
Frenkel
and
B.
Smit
,
Understanding Molecular Simulation: From Algorithms to Applications
(
Academic Press
,
2002
).
5.
A. Z.
Panagiotopoulos
,
Int. J. Thermophys.
15
,
1057
(
1994
).
6.
A. Z.
Panagiotopoulos
,
J. Chem. Phys.
116
,
3007
(
2002
).
7.
J. R.
Errington
,
Phys. Rev. E
67
,
012102
(
2003
).
8.
L. G.
MacDowell
,
V. K.
Shen
, and
J. R.
Errington
,
J. Chem. Phys.
125
,
034705
(
2006
).
9.
I.-C.
Yeh
and
G.
Hummer
,
J. Phys. Chem. B
108
,
15873
(
2004
).
10.
O. A.
Moultos
,
Y.
Zhang
,
I. N.
Tsimpanogiannis
,
I. G.
Economou
, and
E. J.
Maginn
,
J. Chem. Phys.
145
,
074109
(
2016
).
11.
S. H.
Jamali
,
R.
Hartkamp
,
C.
Bardas
,
J.
Söhl
,
T. J. H.
Vlugt
, and
O. A.
Moultos
,
J. Chem. Theory Comput.
14
,
5959
(
2018
).
12.
G.
Hummer
,
N.
Gronbech-Jensen
, and
M.
Neumann
,
J. Chem. Phys.
109
,
2791
(
1998
).
13.
J. M.
Young
and
A. Z.
Panagiotopoulos
,
J. Phys. Chem. B
122
,
3330
(
2018
).
14.
J. C.
Palmer
,
F.
Martelli
,
Y.
Liu
,
R.
Car
,
A. Z.
Panagiotopoulos
, and
P. G.
Debenedetti
,
Nature
510
,
385
(
2014
).
15.
E. A.
Guggenheim
,
J. Chem. Phys.
7
,
103
(
1939
).
16.
G. J. M.
Koper
and
H.
Reiss
,
J. Phys. Chem.
100
,
422
(
1996
).
17.
D. S.
Corti
and
G.
Soto-Campos
,
J. Chem. Phys.
108
,
7959
(
1998
).
18.
D. S.
Corti
,
Phys. Rev. E
64
,
016128
(
2001
).
19.
Z.
Li
and
D. S.
Corti
,
Mol. Simul.
44
,
1461
(
2018
).
20.
D. S.
Corti
,
Mol. Phys.
100
,
1887
(
2002
).
21.
M. J.
Uline
and
D. S.
Corti
,
Entropy
15
,
3941
(
2013
).
22.
K.-K.
Han
and
H. S.
Son
,
J. Chem. Phys.
115
,
7793
(
2001
).
23.
G. E.
Norman
and
V. S.
Filinov
,
High Temp.
7
,
216
(
1969
).
24.
D. J.
Adams
,
Mol. Phys.
29
,
307
(
1975
).
25.
A. Z.
Panagiotopoulos
,
Mol. Phys.
61
,
813
(
1987
).
26.
A. Z.
Panagiotopoulos
,
Mol. Phys.
62
,
701
(
1987
).
27.
A. Z.
Panagiotopoulos
,
Fluid Phase Equilib.
76
,
97
(
1992
).
28.
G.
Orkoulas
and
A. Z.
Panagiotopoulos
,
J. Chem. Phys.
101
,
1452
(
1994
).
29.
M. G.
Martin
and
J. I.
Siepmann
,
J. Phys. Chem. B
102
,
2569
(
1998
).
30.
T. R.
Josephson
,
P. J.
Dauenhauer
,
M.
Tsapatsis
, and
J. I.
Siepmann
,
J. Comput. Sci.
48
,
101267
(
2021
).
31.
J.
Recht
and
A.
Panagiotopoulos
,
Mol. Phys.
80
,
843
(
1993
).
32.
K. S.
Rane
and
J. R.
Errington
,
J. Phys. Chem. B
117
,
8018
(
2013
).
33.
E. W.
Weisstein
, Gamma Function (
2024
), https://mathworld.wolfram.com/GammaFunction.html
34.
D. S.
Corti
,
D.
Ohadi
,
R.
Fariello
, and
M. J.
Uline
,
J. Phys. Chem. B
127
,
3431
(
2023
).
35.
H.
Flyvbjerg
and
H. G.
Petersen
,
J. Chem. Phys.
91
,
461
(
1989
).
36.
B.
Smit
and
D.
Frenkel
,
Mol. Phys.
68
,
951
(
1989
).
37.
I. S.
Gradshteyn
and
I. M.
Ryzhik
,
Table of Integrals, Series, and Products
(
Academic Press Inc.
,
New York
,
1980
).
38.
E. W.
Weisstein
, Exponential Integral (
2024
), https://mathworld.wolfram.com/ExponentialIntegral.html
39.
G.
Grimmett
and
D. J. A.
Welsh
,
Probability: An Introduction
(
Oxford University Press
,
2014
).
You do not currently have access to this content.