Analysis of electron wavefunction is a key component of quantum chemistry investigations and is indispensable for the practical research of many chemical problems. After more than ten years of active development, the wavefunction analysis program Multiwfn has accumulated very rich functions, and its application scope has covered numerous aspects of theoretical chemical research, including charge distribution, chemical bond, electron localization and delocalization, aromaticity, intramolecular and intermolecular interactions, electronic excitation, and response property. This article systematically introduces the features and functions of the latest version of Multiwfn and provides many representative examples. Through this article, readers will be able to fully understand the characteristics and recognize the unique value of Multiwfn. The source code and precompiled executable files of Multiwfn, as well as the manual containing a detailed introduction to theoretical backgrounds and very rich tutorials, can all be downloaded for free from the Multiwfn website (http://sobereva.com/multiwfn).

1.
R. S.
Mulliken
, “
Electronic population analysis on LCAO-MO molecular wave functions. II. Overlap populations, bond orders, and covalent bond energies
,”
J. Chem. Phys.
23
,
1841
(
1955
).
2.
T.
Lu
and
F.
Chen
, “
Multiwfn: A multifunctional wavefunction analyzer
,”
J. Comput. Chem.
33
,
580
(
2012
).
3.
E. D.
Glendening
,
C. R.
Landis
, and
F.
Weinhold
, “
Natural bond orbital methods
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
2
,
1
(
2012
).
4.
R. L.
Martin
, “
Natural transition orbitals
,”
J. Chem. Phys.
118
,
4775
(
2003
).
5.
W.
Humphrey
,
A.
Dalke
, and
K.
Schulten
, “
VMD: Visual molecular dynamics
,”
J. Mol. Graphics
14
,
33
(
1996
).
6.
T.
Williams
and
C.
Kelley
, Gnuplot: An interactive plotting program,
2020
.
7.
T.
Lu
and
Q.
Chen
, “
Interaction region indicator: A simple real space function clearly revealing both chemical bonds and weak interactions
,”
Chem.-Methods
1
,
231
(
2021
).
8.
T. A.
Keith
and
M. J.
Frisch
, “
Subshell fitting of relativistic atomic core electron densities for use in QTAIM analyses of ECP-based wave functions
,”
J. Phys. Chem. A
115
,
12879
(
2011
).
9.
T.
Lu
and
Q.
Chen
, “
mwfn: A strict, concise and extensible format for electronic wavefunction storage and exchange
,” chemRxiv:2021-lt04f-v6 (
2020
).
10.
P.
Bultinck
,
R.
Ponec
, and
S.
Van Damme
, “
Multicenter bond indices as a new measure of aromaticity in polycyclic aromatic hydrocarbons
,”
J. Phys. Org. Chem.
18
,
706
(
2005
).
11.
Z.
Liu
,
T.
Lu
, and
Q.
Chen
, “
An sp-hybridized all-carboatomic ring, cyclo[18]carbon: Electronic structure, electronic spectrum, and optical nonlinearity
,”
Carbon
165
,
461
(
2020
).
12.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
,
G. E.
Scuseria
,
M. A.
Robb
,
J. R.
Cheeseman
,
G.
Scalmani
,
V.
Barone
,
G. A.
Petersson
,
H.
Nakatsuji
,
X.
Li
,
M.
Caricato
,
A. V.
Marenich
,
J.
Bloino
,
B. G.
Janesko
,
R.
Gomperts
,
B.
Mennucci
,
H. P.
Hratchian
,
J. V.
Ortiz
,
A. F.
Izmaylov
,
J. L.
Sonnenberg
,
Williams
,
F.
Ding
,
F.
Lipparini
,
F.
Egidi
,
J.
Goings
,
B.
Peng
,
A.
Petrone
,
T.
Henderson
,
D.
Ranasinghe
,
V. G.
Zakrzewski
,
J.
Gao
,
N.
Rega
,
G.
Zheng
,
W.
Liang
,
M.
Hada
,
M.
Ehara
,
K.
Toyota
,
R.
Fukuda
,
J.
Hasegawa
,
M.
Ishida
,
T.
Nakajima
,
Y.
Honda
,
O.
Kitao
,
H.
Nakai
,
T.
Vreven
,
K.
Throssell
,
J. A.
Montgomery
, Jr.
,
J. E.
Peralta
,
F.
Ogliaro
,
M. J.
Bearpark
,
J. J.
Heyd
,
E. N.
Brothers
,
K. N.
Kudin
,
V. N.
Staroverov
,
T. A.
Keith
,
R.
Kobayashi
,
J.
Normand
,
K.
Raghavachari
,
A. P.
Rendell
,
J. C.
Burant
,
S. S.
Iyengar
,
J.
Tomasi
,
M.
Cossi
,
J. M.
Millam
,
M.
Klene
,
C.
Adamo
,
R.
Cammi
,
J. W.
Ochterski
,
R. L.
Martin
,
K.
Morokuma
,
O.
Farkas
,
J. B.
Foresman
, and
D. J.
Fox
, Gaussian 16, A.03,
Wallingford, CT
,
2016
.
13.
F.
Neese
,
F.
Wennmohs
,
U.
Becker
, and
C.
Riplinger
, “
The ORCA quantum chemistry program package
,”
J. Chem. Phys.
152
,
224108
(
2020
).
14.
T. D.
Kühne
,
M.
Iannuzzi
,
M.
Del Ben
,
V. V.
Rybkin
,
P.
Seewald
,
F.
Stein
,
T.
Laino
,
R. Z.
Khaliullin
,
O.
Schütt
,
F.
Schiffmann
,
D.
Golze
,
J.
Wilhelm
,
S.
Chulkov
,
M. H.
Bani-Hashemian
,
V.
Weber
,
U.
Borštnik
,
M.
Taillefumier
,
A. S.
Jakobovits
,
A.
Lazzaro
,
H.
Pabst
,
T.
Müller
,
R.
Schade
,
M.
Guidon
,
S.
Andermatt
,
N.
Holmberg
,
G. K.
Schenter
,
A.
Hehn
,
A.
Bussy
,
F.
Belleflamme
,
G.
Tabacchi
,
A.
Glöß
,
M.
Lass
,
I.
Bethune
,
C. J.
Mundy
,
C.
Plessl
,
M.
Watkins
,
J.
VandeVondele
,
M.
Krack
, and
J.
Hutter
, “
CP2K: An electronic structure and molecular dynamics software package—Quickstep: Efficient and accurate electronic structure calculations
,”
J. Chem. Phys.
152
,
194103
(
2020
).
15.
G. M. J.
Barca
,
C.
Bertoni
,
L.
Carrington
,
D.
Datta
,
N.
De Silva
,
J. E.
Deustua
,
D. G.
Fedorov
,
J. R.
Gour
,
A. O.
Gunina
,
E.
Guidez
,
T.
Harville
,
S.
Irle
,
J.
Ivanic
,
K.
Kowalski
,
S. S.
Leang
,
H.
Li
,
W.
Li
,
J. J.
Lutz
,
I.
Magoulas
,
J.
Mato
,
V.
Mironov
,
H.
Nakata
,
B. Q.
Pham
,
P.
Piecuch
,
D.
Poole
,
S. R.
Pruitt
,
A. P.
Rendell
,
L. B.
Roskop
,
K.
Ruedenberg
,
T.
Sattasathuchana
,
M. W.
Schmidt
,
J.
Shen
,
L.
Slipchenko
,
M.
Sosonkina
,
V.
Sundriyal
,
A.
Tiwari
,
J. L.
Galvez Vallejo
,
B.
Westheimer
,
M.
Włoch
,
P.
Xu
,
F.
Zahariev
, and
M. S.
Gordon
, “
Recent developments in the general atomic and molecular electronic structure system
,”
J. Chem. Phys.
152
,
154102
(
2020
).
16.
E.
Aprà
,
E. J.
Bylaska
,
W. A.
de Jong
,
N.
Govind
,
K.
Kowalski
,
T. P.
Straatsma
,
M.
Valiev
,
H. J. J.
van Dam
,
Y.
Alexeev
,
J.
Anchell
,
V.
Anisimov
,
F. W.
Aquino
,
R.
Atta-Fynn
,
J.
Autschbach
,
N. P.
Bauman
,
J. C.
Becca
,
D. E.
Bernholdt
,
K.
Bhaskaran-Nair
,
S.
Bogatko
,
P.
Borowski
,
J.
Boschen
,
J.
Brabec
,
A.
Bruner
,
E.
Cauët
,
Y.
Chen
,
G. N.
Chuev
,
C. J.
Cramer
,
J.
Daily
,
M. J. O.
Deegan
,
T. H.
Dunning
, Jr.
,
M.
Dupuis
,
K. G.
Dyall
,
G. I.
Fann
,
S. A.
Fischer
,
A.
Fonari
,
H.
Früchtl
,
L.
Gagliardi
,
J.
Garza
,
N.
Gawande
,
S.
Ghosh
,
K.
Glaesemann
,
A. W.
Götz
,
J.
Hammond
,
V.
Helms
,
E. D.
Hermes
,
K.
Hirao
,
S.
Hirata
,
M.
Jacquelin
,
L.
Jensen
,
B. G.
Johnson
,
H.
Jónsson
,
R. A.
Kendall
,
M.
Klemm
,
R.
Kobayashi
,
V.
Konkov
,
S.
Krishnamoorthy
,
M.
Krishnan
,
Z.
Lin
,
R. D.
Lins
,
R. J.
Littlefield
,
A. J.
Logsdail
,
K.
Lopata
,
W.
Ma
,
A. V.
Marenich
,
J.
Martin del Campo
,
D.
Mejia-Rodriguez
,
J. E.
Moore
,
J. M.
Mullin
,
T.
Nakajima
,
D. R.
Nascimento
,
J. A.
Nichols
,
P. J.
Nichols
,
J.
Nieplocha
,
A.
Otero-de-la-Roza
,
B.
Palmer
,
A.
Panyala
,
T.
Pirojsirikul
,
B.
Peng
,
R.
Peverati
,
J.
Pittner
,
L.
Pollack
,
R. M.
Richard
,
P.
Sadayappan
,
G. C.
Schatz
,
W. A.
Shelton
,
D. W.
Silverstein
,
D. M. A.
Smith
,
T. A.
Soares
,
D.
Song
,
M.
Swart
,
H. L.
Taylor
,
G. S.
Thomas
,
V.
Tipparaju
,
D. G.
Truhlar
,
K.
Tsemekhman
,
T.
Van Voorhis
,
Á.
Vázquez-Mayagoitia
,
P.
Verma
,
O.
Villa
,
A.
Vishnu
,
K. D.
Vogiatzis
,
D.
Wang
,
J. H.
Weare
,
M. J.
Williamson
,
T. L.
Windus
,
K.
Woliński
,
A. T.
Wong
,
Q.
Wu
,
C.
Yang
,
Q.
Yu
,
M.
Zacharias
,
Z.
Zhang
,
Y.
Zhao
, and
R. J.
Harrison
, “
NWChem: Past, present, and future
,”
J. Chem. Phys.
152
,
184102
(
2020
).
17.
H.-J.
Werner
,
P. J.
Knowles
,
F. R.
Manby
,
J. A.
Black
,
K.
Doll
,
A.
Heßelmann
,
D.
Kats
,
A.
Köhn
,
T.
Korona
,
D. A.
Kreplin
,
Q.
Ma
,
T. F.
Miller
III
,
A.
Mitrushchenkov
,
K. A.
Peterson
,
I.
Polyak
,
G.
Rauhut
, and
M.
Sibaev
, “
The Molpro quantum chemistry package
,”
J. Chem. Phys.
152
,
144107
(
2020
).
18.
J. M. H.
Olsen
,
S.
Reine
,
O.
Vahtras
,
E.
Kjellgren
,
P.
Reinholdt
,
K. O.
Hjorth Dundas
,
X.
Li
,
J.
Cukras
,
M.
Ringholm
,
E. D.
Hedegård
,
R.
Di Remigio
,
N. H.
List
,
R.
Faber
,
B. N.
Cabral Tenorio
,
R.
Bast
,
T. B.
Pedersen
,
Z.
Rinkevicius
,
S. P. A.
Sauer
,
K. V.
Mikkelsen
,
J.
Kongsted
,
S.
Coriani
,
K.
Ruud
,
T.
Helgaker
,
H. J. A.
Jensen
, and
P.
Norman
, “
Dalton project: A Python platform for molecular- and electronic-structure simulations of complex systems
,”
J. Chem. Phys.
152
,
214115
(
2020
).
19.
D. G. A.
Smith
,
L. A.
Burns
,
A. C.
Simmonett
,
R. M.
Parrish
,
M. C.
Schieber
,
R.
Galvelis
,
P.
Kraus
,
H.
Kruse
,
R.
Di Remigio
,
A.
Alenaizan
,
A. M.
James
,
S.
Lehtola
,
J. P.
Misiewicz
,
M.
Scheurer
,
R. A.
Shaw
,
J. B.
Schriber
,
Y.
Xie
,
Z. L.
Glick
,
D. A.
Sirianni
,
J. S.
O’Brien
,
J. M.
Waldrop
,
A.
Kumar
,
E. G.
Hohenstein
,
B. P.
Pritchard
,
B. R.
Brooks
,
H. F.
Schaefer
III
,
A. Y.
Sokolov
,
K.
Patkowski
,
A. E.
DePrince
III
,
U.
Bozkaya
,
R. A.
King
,
F. A.
Evangelista
,
J. M.
Turney
,
T. D.
Crawford
, and
C. D.
Sherrill
, “
PSI4 1.4: Open-source software for high-throughput quantum chemistry
,”
J. Chem. Phys.
152
,
184108
(
2020
).
20.
M.
Kállay
,
P. R.
Nagy
,
D.
Mester
,
Z.
Rolik
,
G.
Samu
,
J.
Csontos
,
J.
Csóka
,
P. B.
Szabó
,
L.
Gyevi-Nagy
,
B.
Hégely
,
I.
Ladjánszki
,
L.
Szegedy
,
B.
Ladóczki
,
K.
Petrov
,
M.
Farkas
,
P. D.
Mezei
, and
Á.
Ganyecz
, “
The MRCC program system: Accurate quantum chemistry from water to proteins
,”
J. Chem. Phys.
152
,
074107
(
2020
).
21.
E.
Epifanovsky
,
A. T. B.
Gilbert
,
X.
Feng
,
J.
Lee
,
Y.
Mao
,
N.
Mardirossian
,
P.
Pokhilko
,
A. F.
White
,
M. P.
Coons
,
A. L.
Dempwolff
,
Z.
Gan
,
D.
Hait
,
P. R.
Horn
,
L. D.
Jacobson
,
I.
Kaliman
,
J.
Kussmann
,
A. W.
Lange
,
K. U.
Lao
,
D. S.
Levine
,
J.
Liu
,
S. C.
McKenzie
,
A. F.
Morrison
,
K. D.
Nanda
,
F.
Plasser
,
D. R.
Rehn
,
M. L.
Vidal
,
Z.-Q.
You
,
Y.
Zhu
,
B.
Alam
,
B. J.
Albrecht
,
A.
Aldossary
,
E.
Alguire
,
J. H.
Andersen
,
V.
Athavale
,
D.
Barton
,
K.
Begam
,
A.
Behn
,
N.
Bellonzi
,
Y. A.
Bernard
,
E. J.
Berquist
,
H. G. A.
Burton
,
A.
Carreras
,
K.
Carter-Fenk
,
R.
Chakraborty
,
A. D.
Chien
,
K. D.
Closser
,
V.
Cofer-Shabica
,
S.
Dasgupta
,
M.
de Wergifosse
,
J.
Deng
,
M.
Diedenhofen
,
H.
Do
,
S.
Ehlert
,
P.-T.
Fang
,
S.
Fatehi
,
Q.
Feng
,
T.
Friedhoff
,
J.
Gayvert
,
Q.
Ge
,
G.
Gidofalvi
,
M.
Goldey
,
J.
Gomes
,
C. E.
González-Espinoza
,
S.
Gulania
,
A. O.
Gunina
,
M. W. D.
Hanson-Heine
,
P. H. P.
Harbach
,
A.
Hauser
,
M. F.
Herbst
,
M.
Hernández Vera
,
M.
Hodecker
,
Z. C.
Holden
,
S.
Houck
,
X.
Huang
,
K.
Hui
,
B. C.
Huynh
,
M.
Ivanov
,
Á.
Jász
,
H.
Ji
,
H.
Jiang
,
B.
Kaduk
,
S.
Kähler
,
K.
Khistyaev
,
J.
Kim
,
G.
Kis
,
P.
Klunzinger
,
Z.
Koczor-Benda
,
J. H.
Koh
,
D.
Kosenkov
,
L.
Koulias
,
T.
Kowalczyk
,
C. M.
Krauter
,
K.
Kue
,
A.
Kunitsa
,
T.
Kus
,
I.
Ladjánszki
,
A.
Landau
,
K. V.
Lawler
,
D.
Lefrancois
,
S.
Lehtola
,
R. R.
Li
,
Y.-P.
Li
,
J.
Liang
,
M.
Liebenthal
,
H.-H.
Lin
,
Y.-S.
Lin
,
F.
Liu
,
K.-Y.
Liu
,
M.
Loipersberger
,
A.
Luenser
,
A.
Manjanath
,
P.
Manohar
,
E.
Mansoor
,
S. F.
Manzer
,
S.-P.
Mao
,
A. V.
Marenich
,
T.
Markovich
,
S.
Mason
,
S. A.
Maurer
,
P. F.
McLaughlin
,
M. F. S. J.
Menger
,
J.-M.
Mewes
,
S. A.
Mewes
,
P.
Morgante
,
J. W.
Mullinax
,
K. J.
Oosterbaan
,
G.
Paran
,
A. C.
Paul
,
S. K.
Paul
,
F.
Pavošević
,
Z.
Pei
,
S.
Prager
,
E. I.
Proynov
,
Á.
Rák
,
E.
Ramos-Cordoba
,
B.
Rana
,
A. E.
Rask
,
A.
Rettig
,
R. M.
Richard
,
F.
Rob
,
E.
Rossomme
,
T.
Scheele
,
M.
Scheurer
,
M.
Schneider
,
N.
Sergueev
,
S. M.
Sharada
,
W.
Skomorowski
,
D. W.
Small
,
C. J.
Stein
,
Y.-C.
Su
,
E. J.
Sundstrom
,
Z.
Tao
,
J.
Thirman
,
G. J.
Tornai
,
T.
Tsuchimochi
,
N. M.
Tubman
,
S. P.
Veccham
,
O.
Vydrov
,
J.
Wenzel
,
J.
Witte
,
A.
Yamada
,
K.
Yao
,
S.
Yeganeh
,
S. R.
Yost
,
A.
Zech
,
I. Y.
Zhang
,
X.
Zhang
,
Y.
Zhang
,
D.
Zuev
,
A.
Aspuru-Guzik
,
A. T.
Bell
,
N. A.
Besley
,
K. B.
Bravaya
,
B. R.
Brooks
,
D.
Casanova
,
J.-D.
Chai
,
S.
Coriani
,
C. J.
Cramer
,
G.
Cserey
,
A. E.
DePrince
III
,
R. A.
DiStasio
, Jr.
,
A.
Dreuw
,
B. D.
Dunietz
,
T. R.
Furlani
,
W. A.
Goddard
III
,
S.
Hammes-Schiffer
,
T.
Head-Gordon
,
W. J.
Hehre
,
C.-P.
Hsu
,
T.-C.
Jagau
,
Y.
Jung
,
A.
Klamt
,
J.
Kong
,
D. S.
Lambrecht
,
W.
Liang
,
N. J.
Mayhall
,
C. W.
McCurdy
,
J. B.
Neaton
,
C.
Ochsenfeld
,
J. A.
Parkhill
,
R.
Peverati
,
V. A.
Rassolov
,
Y.
Shao
,
L. V.
Slipchenko
,
T.
Stauch
,
R. P.
Steele
,
J. E.
Subotnik
,
A. J. W.
Thom
,
A.
Tkatchenko
,
D. G.
Truhlar
,
T.
Van Voorhis
,
T. A.
Wesolowski
,
K. B.
Whaley
,
H. L.
Woodcock
III
,
P. M.
Zimmerman
,
S.
Faraji
,
P. M. W.
Gill
,
M.
Head-Gordon
,
J. M.
Herbert
, and
A. I.
Krylov
, “
Software for the frontiers of quantum chemistry: An overview of developments in the Q-Chem 5 package
,”
J. Chem. Phys.
155
,
084801
(
2021
).
22.
D. A.
Matthews
,
L.
Cheng
,
M. E.
Harding
,
F.
Lipparini
,
S.
Stopkowicz
,
T.-C.
Jagau
,
P. G.
Szalay
,
J.
Gauss
, and
J. F.
Stanton
, “
Coupled-cluster techniques for computational chemistry: The CFOUR program package
,”
J. Chem. Phys.
152
,
214108
(
2020
).
23.
C.
Bannwarth
,
E.
Caldeweyher
,
S.
Ehlert
,
A.
Hansen
,
P.
Pracht
,
J.
Seibert
,
S.
Spicher
, and
S.
Grimme
, “
Extended tight-binding quantum chemistry methods
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
11
,
e1493
(
2021
).
24.
T.
Verstraelen
,
W.
Adams
,
L.
Pujal
,
A.
Tehrani
,
B. D.
Kelly
,
L.
Macaya
,
F.
Meng
,
M.
Richer
,
R.
Hernández-Esparza
,
X. D.
Yang
,
M.
Chan
,
T. D.
Kim
,
M.
Cools-Ceuppens
,
V.
Chuiko
,
E.
Vöhringer-Martinez
,
P. W.
Ayers
, and
F.
Heidar-Zadeh
, “
IOData: A Python library for reading, writing, and converting computational chemistry file formats and generating input files
,”
J. Comput. Chem.
42
,
458
(
2021
).
25.
J.
Zhang
,
Z.
Pan
,
R.
Zhao
,
X.
Hou
,
X.
Zhang
,
Z.
Tang
,
Y.
Zhang
,
Y.
Wu
,
W.
Liu
, and
J.
Gao
,
Qbics: Quantum Biology, Informatics and Chemistry Server
(
Shenzhen Bay Laboratory
,
Shenzhen
,
2023
).
26.
P. J.
Stephens
,
F. J.
Devlin
,
C. F.
Chabalowski
, and
M. J.
Frisch
, “
Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields
,”
J. Phys. Chem.
98
,
11623
(
1994
).
27.
A.
Schäfer
,
C.
Huber
, and
R.
Ahlrichs
, “
Fully optimized contracted Gaussian basis sets of triple zeta valence quality for atoms Li to Kr
,”
J. Chem. Phys.
100
,
5829
(
1994
).
28.
F.
Weigend
and
R.
Ahlrichs
, “
Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy
,”
Phys. Chem. Chem. Phys.
7
,
3297
(
2005
).
29.
T. H.
Dunning
, Jr.
, “
Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen
,”
J. Chem. Phys.
90
,
1007
(
1989
).
30.
W.
Zou
,
Z.
Cai
,
J.
Wang
, and
K.
Xin
, “
An open library of relativistic core electron density function for the QTAIM analysis with pseudopotentials
,”
J. Comput. Chem.
39
,
1697
(
2018
).
31.
F. W.
Bader
,
Atoms in Molecules: A Quantum Theory
(
Oxford University Press
,
New York
,
1994
).
32.
T.
Lu
and
Q.
Chen
, “
Revealing molecular electronic structure via analysis of valence electron density
,”
Acta Phys.-Chim. Sin.
34
,
503
(
2018
).
33.
F. L.
Hirshfeld
, “
Bonded-atom fragments for describing molecular charge densities
,”
Theor. Chim. Acta
44
,
129
(
1977
).
34.
R. G.
Parr
and
W.
Yang
,
Density Functional Theory of Atoms and Molecules
(
Oxford University Press
,
New York
,
1989
).
35.
E. R.
Johnson
,
S.
Keinan
,
P.
Mori-Sánchez
,
J.
Contreras-García
,
A. J.
Cohen
, and
W.
Yang
, “
Revealing noncovalent interactions
,”
J. Am. Chem. Soc.
132
,
6498
(
2010
).
36.
T.
Lu
and
Q.
Chen
, “
Visualization analysis of weak interactions in chemical systems
,” in
Comprehensive Computational Chemistry
, edited by
E. D.
Jemmis
,
R. S.
Swathi
, and
P.
Popelier
(
Elsevier
,
2024
), Vol.
2
.
37.
R. F. W.
Bader
,
T. S.
Slee
,
D.
Cremer
, and
E.
Kraka
, “
Description of conjugation and hyperconjugation in terms of electron distributions
,”
J. Am. Chem. Soc.
105
,
5061
(
1983
).
38.
J. S.
Murray
and
P.
Politzer
, “
The electrostatic potential: An overview
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
1
,
153
(
2011
).
39.
N.
Mohan
and
C. H.
Suresh
, “
A molecular electrostatic potential analysis of hydrogen, halogen, and dihydrogen bonds
,”
J. Phys. Chem. A
118
,
1697
(
2014
).
40.
P.
Politzer
, “
Electrostatic potential–electronic density relationships in atoms
,”
J. Chem. Phys.
72
,
3027
(
1980
).
41.
T.
Lu
and
Q.
Chen
, “
van der Waals potential: An important complement to molecular electrostatic potential in studying intermolecular interactions
,”
J. Mol. Model.
26
,
315
(
2020
).
42.
Z.
Liu
,
X.
Wang
,
T.
Lu
,
J.
Wang
,
X.
Yan
,
Y.
Wu
, and
J.
Xu
, “
Molecular assembly with a figure-of-eight nanohoop as a strategy for the collection and stabilization of cyclo[18]carbon
,”
Phys. Chem. Chem. Phys.
25
,
16707
(
2023
).
43.
A. D.
Becke
and
K. E.
Edgecombe
, “
A simple measure of electron localization in atomic and molecular systems
,”
J. Chem. Phys.
92
,
5397
(
1990
).
44.
L.
Tian
and
C.
Fei-Wu
, “
Meaning and functional form of the electron localization function
,”
Acta Phys.-Chim. Sin.
27
,
2786
(
2011
).
45.
V.
Tsirelson
and
A.
Stash
, “
Determination of the electron localization function from electron density
,”
Chem. Phys. Lett.
351
,
142
(
2002
).
46.
F.
Feixas
,
E.
Matito
,
M.
Duran
,
M.
Solà
, and
B.
Silvi
, “
Electron localization function at the correlated level: A natural orbital formulation
,”
J. Chem. Theory Comput.
6
,
2736
(
2010
).
47.
H. L.
Schmider
and
A. D.
Becke
, “
Chemical content of the kinetic energy density
,”
J. Mol. Struct.: THEOCHEM
527
,
51
(
2000
).
48.
V.
Tsirelson
and
A.
Stash
, “
Analyzing experimental electron density with the localized-orbital locator
,”
Acta Crystallogr., Sect. B: Struct. Sci.
58
,
780
(
2002
).
49.
C.
Lefebvre
,
G.
Rubez
,
H.
Khartabil
,
J.-C.
Boisson
,
J.
Contreras-García
, and
E.
Hénon
, “
Accurately extracting the signature of intermolecular interactions present in the NCI plot of the reduced density gradient versus electron density
,”
Phys. Chem. Chem. Phys.
19
,
17928
(
2017
).
50.
T.
Lu
and
Q.
Chen
, “
Independent gradient model based on Hirshfeld partition: A new method for visual study of interactions in chemical systems
,”
J. Comput. Chem.
43
,
539
(
2022
).
51.
T.
Lu
and
Q.
Chen
, “
Erratum to ‘Independent gradient model based on Hirshfeld partition: A new method for visual study of interactions in chemical systems
,’” chemRxiv:2022-g1m34 (
2022
).
52.
C.
Gatti
, “
The source function descriptor as a tool to extract chemical information from theoretical and experimental electron densities
,”
Struct. Bonding
147
,
193
(
2012
).
53.
S.
Liu
,
C.
Rong
,
T.
Lu
, and
H.
Hu
, “
Identifying strong covalent interactions with Pauli energy
,”
J. Phys. Chem. A
122
,
3087
(
2018
).
54.
S.
Zhong
,
X.
He
,
S.
Liu
,
B.
Wang
,
T.
Lu
,
C.
Rong
, and
S.
Liu
, “
Toward density-based and simultaneous description of chemical bonding and noncovalent interactions with Pauli energy
,”
J. Phys. Chem. A
126
,
2437
(
2022
).
55.
P.
Politzer
,
J.
Murray
, and
F.
Bulat
, “
Average local ionization energy: A review
,”
J. Mol. Model.
16
,
1731
(
2010
).
56.
P.
Politzer
and
J. S.
Murray
, “
The average local ionization energy: Concepts and applications
,” in
Theoretical Aspects of Chemical Reactivity
, edited by
A.
Toro-Labbé
(
Elsevier Science
,
Amsterdam
,
2007
).
57.
P.
Sjoberg
,
J. S.
Murray
,
T.
Brinck
, and
P.
Politzer
, “
Average local ionization energies on the molecular surfaces of aromatic systems as guides to chemical reactivity
,”
Can. J. Chem.
68
,
1440
(
1990
).
58.
T.
Brinck
,
P.
Carlqvist
, and
J. H.
Stenlid
, “
Local electron attachment energy and its use for predicting nucleophilic reactions and halogen bonding
,”
J. Phys. Chem. A
120
,
10023
(
2016
).
59.
B.
Ehresmann
,
B.
Martin
,
A. H. C.
Horn
, and
T.
Clark
, “
Local molecular properties and their use in predicting reactivity
,”
J. Mol. Model.
9
,
342
(
2003
).
60.
R.
Pino-Rios
,
O.
Yañez
,
D.
Inostroza
,
L.
Ruiz
,
C.
Cardenas
,
P.
Fuentealba
, and
W.
Tiznado
, “
Proposal of a simple and effective local reactivity descriptor through a topological analysis of an orbital-weighted Fukui function
,”
J. Comput. Chem.
38
,
481
(
2017
).
61.
R.
Pino-Rios
,
D.
Inostroza
,
G.
Cárdenas-Jirón
, and
W.
Tiznado
, “
Orbital-weighted dual descriptor for the study of local reactivity of systems with (quasi-) degenerate states
,”
J. Phys. Chem. A
123
,
10556
(
2019
).
62.
E.
Espinosa
,
I.
Alkorta
,
J.
Elguero
, and
E.
Molins
, “
From weak to strong interactions: A comprehensive analysis of the topological and energetic properties of the electron density distribution involving X–H⋯F–Y systems
,”
J. Chem. Phys.
117
,
5529
(
2002
).
63.
S.
Liu
,
D.
Zhao
,
C.
Rong
,
T.
Lu
, and
S.
Liu
, “
Using Pauli energy to appraise the quality of approximate semilocal non-interacting kinetic energy density functionals
,”
J. Chem. Phys.
150
,
204106
(
2019
).
64.
P.
Macchi
,
D. M.
Proserpio
, and
A.
Sironi
, “
Experimental electron density in a transition metal dimer: Metal–metal and metal–ligand bonds
,”
J. Am. Chem. Soc.
120
,
13429
(
1998
).
65.
W.
Koch
and
M. C.
Holthausen
,
A Chemist’s Guide to Density Functional Theory
(
Wiley-VCH Verlag GmbH
,
Germany
,
2001
).
66.
C. A.
Coulson
and
A. H.
Neilson
, “
Electron correlation in the ground state of helium
,”
Proc. Phys. Soc.
78
,
831
(
1961
).
67.
R. J.
Boyd
and
C. A.
Coulson
, “
The Fermi hole in atoms
,”
J. Phys. B: At. Mol. Phys.
7
,
1805
(
1974
).
68.
J.
Kirkpatrick
,
B.
McMorrow
,
D. H.
Turban
,
A. L.
Gaunt
,
J. S.
Spencer
,
A. G.
Matthews
,
A.
Obika
,
L.
Thiry
,
M.
Fortunato
,
D.
Pfau
et al, “
Pushing the frontiers of density functionals by solving the fractional electron problem
,”
Science
374
,
1385
(
2021
).
69.
E.
Ramos-Cordoba
and
E.
Matito
, “
Local descriptors of dynamic and nondynamic correlation
,”
J. Chem. Theory Comput.
13
,
2705
(
2017
).
70.
X.
He
,
T.
Lu
,
C.
Rong
,
S.
Liu
,
P. W.
Ayers
, and
W.
Liu
, “
Topological analysis of information-theoretic quantities in density functional theory
,”
J. Chem. Phys.
159
,
054112
(
2023
).
71.
C.
Rong
,
T.
Lu
,
P. W.
Ayers
,
P. K.
Chattaraj
, and
S.
Liu
, “
Scaling properties of information-theoretic quantities in density functional reactivity theory
,”
Phys. Chem. Chem. Phys.
17
,
4977
(
2015
).
72.
C.
Rong
,
T.
Lu
,
P. K.
Chattaraj
, and
S.
Liu
, “
On the relationship among Ghosh-Berkowitz-Parr entropy, Shannon entropy and Fisher information
,”
Indian J. Chem.
53A
,
970
(
2014
).
73.
B.
Wang
,
D.
Zhao
,
T.
Lu
,
S.
Liu
, and
C.
Rong
, “
Quantifications and applications of relative Fisher information in density functional theory
,”
J. Phys. Chem. A
125
,
3802
(
2021
).
74.
S.
Liu
,
C.
Rong
,
Z.
Wu
, and
T.
Lu
, “
Rényi entropy, Tsallis entropy and Onicescu information energy in density functional reactivity theory
,”
Acta Phys.-Chim. Sin.
31
,
2057
(
2015
).
75.
M.
Molina-Espíritu
,
R. O.
Esquivel
,
J. C.
Angulo
,
J.
Antolín
,
C.
Iuga
, and
J. S.
Dehesa
, “
Information-theoretical analysis for the SN2 exchange reaction CH3Cl + F
,”
Int. J. Quantum Chem.
113
,
2589
(
2013
).
76.
S.
Liu
,
L.
Liu
,
D.
Yu
,
C.
Rong
, and
T.
Lu
, “
Steric charge
,”
Phys. Chem. Chem. Phys.
20
,
1408
(
2018
).
77.
V. G.
Tsirelson
,
A. I.
Stash
,
V. V.
Karasiev
, and
S.
Liu
, “
Pauli potential and Pauli charge from experimental electron density
,”
Comput. Theor. Chem.
1006
,
92
(
2013
).
78.
S.
Liu
,
C.
Rong
, and
T.
Lu
, “
Electronic forces as descriptors of nucleophilic and electrophilic regioselectivity and stereoselectivity
,”
Phys. Chem. Chem. Phys.
19
,
1496
(
2017
).
79.
B.
Niepötter
,
R.
Herbst-Irmer
,
D.
Kratzert
,
P. P.
Samuel
,
K. C.
Mondal
,
H. W.
Roesky
,
P.
Jerabek
,
G.
Frenking
, and
D.
Stalke
, “
Experimental charge density study of a silylone
,”
Angew. Chem., Int. Ed.
53
,
2766
(
2014
).
80.
P.
Ziesche
, “
Attempts toward a pair density functional theory
,”
Int. J. Quantum Chem.
60
,
1361
(
1996
).
81.
R.
McWeeny
,
Methods of Molecular Quantum Mechanics
(
Academic Press
,
London
,
1992
).
82.
P.
Geerlings
,
F. D.
Proft
, and
P. W.
Ayers
, “
Chapter 1: Chemical reactivity and the shape function
,”
Theor. Comput. Chem.
19
,
1
(
2007
).
83.
S. K.
Ghosh
,
M.
Berkowitz
, and
R. G.
Parr
, “
Transcription of ground-state density-functional theory into a local thermodynamics
,”
Proc. Natl. Acad. Sci. U. S. A.
81
,
8028
(
1984
).
84.
C.
Guo
,
X.
He
,
C.
Rong
,
T.
Lu
,
S.
Liu
, and
P. K.
Chattaraj
, “
Local temperature as a chemical reactivity descriptor
,”
J. Phys. Chem. Lett.
12
,
5623
(
2021
).
85.
S.
Jenkins
, “
Direct space representation of metallicity and structural stability in SiO solids
,”
J. Phys.: Condens. Matter
14
,
10251
(
2002
).
86.
S.
Jenkins
,
P. W.
Ayers
,
S. R.
Kirk
,
P.
Mori-Sánchez
, and
A.
Martín Pendás
, “
Bond metallicity of materials from real space charge density distributions
,”
Chem. Phys. Lett.
471
,
174
(
2009
).
87.
N.
Sablon
,
F.
De Proft
,
M.
Solà
, and
P.
Geerlings
, “
The linear response kernel of conceptual DFT as a measure of aromaticity
,”
Phys. Chem. Chem. Phys.
14
,
3960
(
2012
).
88.
D.-X.
Zhao
and
Z.-Z.
Yang
, “
Investigation of the distinction between van der Waals interaction and chemical bonding based on the PAEM-MO diagram
,”
J. Comput. Chem.
35
,
965
(
2014
).
89.
P.
de Silva
and
C.
Corminboeuf
, “
Simultaneous visualization of covalent and noncovalent interactions using regions of density overlap
,”
J. Chem. Theory Comput.
10
,
3745
(
2014
).
90.
H.
Jacobsen
, “
Bond descriptors based on kinetic energy densities reveal regions of slow electrons—Another look at aromaticity
,”
Chem. Phys. Lett.
582
,
144
(
2013
).
91.
A. A.
Astakhov
and
V. G.
Tsirelson
, “
Spatial localization of electron pairs in molecules using the Fisher information density
,”
Chem. Phys.
435
,
49
(
2014
).
92.
P.
de Silva
,
J.
Korchowiec
, and
T. A.
Wesolowski
, “
Revealing the bonding pattern from the molecular electron density using single exponential decay detector: An orbital-free alternative to the electron localization function
,”
ChemPhysChem
13
,
3462
(
2012
).
93.
S. R.
Gadre
and
P.
Balanarayan
, “
Atoms and molecules: A momentum space perspective
,” in
Chemical Reactivity Theory: A Density Functional View
, edited by
P. K.
Chattaraj
(
CRC Press
,
2009
).
94.
S.
Ito
,
T.
Minami
, and
M.
Nakano
, “
Diradical character based design for singlet fission of condensed-ring systems with 4nπ electrons
,”
J. Phys. Chem. C
116
,
19729
(
2012
).
95.
B. G.
Janesko
,
G.
Scalmani
, and
M. J.
Frisch
, “
How far do electrons delocalize?
,”
J. Chem. Phys.
141
,
144104
(
2014
).
96.
B. G.
Janesko
,
K. B.
Wiberg
,
G.
Scalmani
, and
M. J.
Frisch
, “
Electron delocalization range in atoms and on molecular surfaces
,”
J. Chem. Theory Comput.
12
,
3185
(
2016
).
97.
H. J.
Bohórquez
and
R. J.
Boyd
, “
A localized electrons detector for atomic and molecular systems
,”
Theor. Chem. Acc.
127
,
393
(
2010
).
98.
J.
Zhang
and
T.
Lu
, “
Efficient evaluation of electrostatic potential with computerized optimized code
,”
Phys. Chem. Chem. Phys.
23
,
20323
(
2021
).
99.
X.
Cao
,
C.
Rong
,
A.
Zhong
,
T.
Lu
, and
S.
Liu
, “
Molecular acidity: An accurate description with information-theoretic approach in density functional reactivity theory
,”
J. Comput. Chem.
39
,
117
(
2018
).
100.
F.
Weinhold
, “
Natural bond critical point analysis: Quantitative relationships between natural bond orbital-based and QTAIM-based topological descriptors of chemical bonding
,”
J. Comput. Chem.
33
,
2440
(
2012
).
101.
T.
Lu
and
F.
Chen
, “
Revealing the nature of intermolecular interaction and configurational preference of the nonpolar molecular dimers (H2)2, (N2)2, and (H2)(N2)
,”
J. Mol. Model.
19
,
5387
(
2013
).
102.
L.
Tian
and
C.
Fei-Wu
, “
Comparison of computational methods for atomic charges
,”
Acta Phys.-Chim. Sin.
28
,
1
(
2012
).
103.
T.
Lu
and
Q.
Chen
, “
Partial charges
,” in
Exploring Chemical Concepts Through Theory and Computation
, edited by
S.
Liu
(
Wiley-VCH GmbH
,
Weinheim
,
2024
).
104.
S. M.
Bachrach
, in
Reviews in Computational Chemistry
, edited by
K. B.
Lipkowitz
and
D. B.
Boyd
(
VCH Publishers
,
New York
,
1994
), Vol.
5
.
105.
K. B.
Wiberg
and
P. R.
Rablen
, “
Comparison of atomic charges derived via different procedures
,”
J. Comput. Chem.
14
,
1504
(
1993
).
106.
F.
Rong
,
L.
Tian
, and
C.
Fei-Wu
, “
Comparing methods for predicting the reactive site of electrophilic substitution
,”
Acta Phys.-Chim. Sin.
30
,
628
(
2014
).
107.
J.
Cao
,
Q.
Ren
,
F.
Chen
et al, “
Comparative study on the methods for predicting the reactive site of nucleophilic reaction
,”
Sci. China Chem.
58
,
1845
(
2015
).
108.
Z.
Xia-Yu
,
R.
Chun-Ying
,
L.
Tian
, and
L.
Shu-Bin
, “
Hirshfeld charge as a quantitative measure of electrophilicity and nucleophilicity: Nitrogen-containing systems
,”
Acta Phys.-Chim. Sin.
30
,
2055
(
2014
).
109.
A. R.
Leach
,
Molecular Modelling Principles and Applications
(
Pearson Education
,
Essex
,
2001
).
110.
J.
Gasteiger
and
M.
Marsili
, “
Iterative partial equalization of orbital electronegativity—A rapid access to atomic charges
,”
Tetrahedron
36
,
3219
(
1980
).
111.
W.
Wu
,
Z.
Wu
,
C.
Rong
,
T.
Lu
,
Y.
Huang
, and
S.
Liu
, “
Computational study of chemical reactivity using information-theoretic quantities from density functional reactivity theory for electrophilic aromatic substitution reactions
,”
J. Phys. Chem. A
119
,
8216
(
2015
).
112.
P.
Ros
and
G. C. A.
Schuit
, “
Molecular orbital calculations on copper chloride complexes
,”
Theor. Chim. Acta
4
,
1
(
1966
).
113.
E. W.
Stout
and
P.
Politzer
, “
An investigation of definitions of the charge on an atom in a molecule
,”
Theor. Chim. Acta
12
,
379
(
1968
).
114.
F. M.
Bickelhaupt
,
N. J. R.
van Eikema Hommes
,
C.
Fonseca Guerra
, and
E. J.
Baerends
, “
The carbon–lithium electron pair bond in (CH3Li)n (n = 1, 2, 4)
,”
Organometallics
15
,
2923
(
1996
).
115.
L. C.
Cusachs
and
P.
Politzer
, “
On the problem of defining the charge on an atom in a molecule
,”
Chem. Phys. Lett.
1
,
529
(
1968
).
116.
B. H.
Besler
,
K. M.
Merz
, Jr.
, and
P. A.
Kollman
, “
Atomic charges derived from semiempirical methods
,”
J. Comput. Chem.
11
,
431
(
1990
).
117.
C. M.
Breneman
and
K. B.
Wiberg
, “
Determining atom-centered monopoles from molecular electrostatic potentials. The need for high sampling density in formamide conformational analysis
,”
J. Comput. Chem.
11
,
361
(
1990
).
118.
C. I.
Bayly
,
P.
Cieplak
,
W.
Cornell
, and
P. A.
Kollman
, “
A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: The RESP model
,”
J. Phys. Chem.
97
,
10269
(
1993
).
119.
M.
Schauperl
,
P. S.
Nerenberg
,
H.
Jang
,
L.-P.
Wang
,
C. I.
Bayly
,
D. L.
Mobley
, and
M. K.
Gilson
, “
Non-bonded force field model with advanced restrained electrostatic potential charges (RESP2)
,”
Commun. Chem.
3
,
44
(
2020
).
120.
P.
Bultinck
,
C.
Van Alsenoy
,
P. W.
Ayers
, and
R.
Carbo-Dorca
, “
Critical analysis and extension of the Hirshfeld atoms in molecules
,”
J. Chem. Phys.
126
,
144111
(
2007
).
121.
A. D.
Becke
, “
A multicenter numerical integration scheme for polyatomic molecules
,”
J. Chem. Phys.
88
,
2547
(
1988
).
122.
T.
Lu
and
F.
Chen
, “
Bond order analysis based on the laplacian of electron density in fuzzy overlap space
,”
J. Phys. Chem. A
117
,
3100
(
2013
).
123.
T.
Verstraelen
,
S.
Vandenbrande
,
F.
Heidar-Zadeh
,
L.
Vanduyfhuys
,
V.
Van Speybroeck
,
M.
Waroquier
, and
P. W.
Ayers
, “
Minimal basis iterative stockholder: Atoms in molecules for force-field development
,”
J. Chem. Theory Comput.
12
,
3894
(
2016
).
124.
Z.
Jiroušková
,
R. S.
Vařeková
,
J.
Vaněk
, and
J.
Koča
, “
Software news and updates electronegativity equalization method: Parameterization and validation for organic molecules using the Merz-Kollman-Singh charge distribution scheme
,”
J. Comput. Chem.
30
,
1174
(
2009
).
125.
P.
Bultinck
,
W.
Langenaeker
,
P.
Lahorte
,
F.
De Proft
,
P.
Geerlings
,
C.
Van Alsenoy
, and
J. P.
Tollenaere
, “
The electronegativity equalization method II: Applicability of different atomic charge schemes
,”
J. Phys. Chem. A
106
,
7895
(
2002
).
126.
W. J.
Mortier
,
K.
Van Genechten
, and
J.
Gasteiger
, “
Electronegativity equalization: Application and parametrization
,”
J. Am. Chem. Soc.
107
,
829
(
1985
).
127.
J.
Gasteiger
and
M.
Marsili
, “
A new model for calculating atomic charges in molecules
,”
Tetrahedron Lett.
19
,
3181
(
1978
).
128.
T.
Lu
and
F.
Chen
, “
Atomic dipole moment corrected Hirshfeld population method
,”
J. Theor. Comput. Chem.
11
,
163
(
2012
).
129.
A. V.
Marenich
,
S. V.
Jerome
,
C. J.
Cramer
, and
D. G.
Truhlar
, “
Charge model 5: An extension of Hirshfeld population analysis for the accurate description of molecular interactions in gaseous and condensed phases
,”
J. Chem. Theory Comput.
8
,
527
(
2012
).
130.
L. S.
Dodda
,
J. Z.
Vilseck
,
J.
Tirado-Rives
, and
W. L.
Jorgensen
, “
1.14*CM1A-LBCC: Localized bond-charge corrected CM1A charges for condensed-phase simulations
,”
J. Phys. Chem. B
121
,
3864
(
2017
).
131.
R.
Nunes
,
D.
Vila-Viçosa
,
M.
Machuqueiro
, and
P. J.
Costa
, “
Biomolecular simulations of halogen bonds with a GROMOS force field
,”
J. Chem. Theory Comput.
14
,
5383
(
2018
).
132.
M. E.
Madjet
,
A.
Abdurahman
, and
T.
Renger
, “
Intermolecular Coulomb couplings from ab initio electrostatic potentials: Application to optical transitions of strongly coupled pigments in photosynthetic antennae and reaction centers
,”
J. Phys. Chem. B
110
,
17268
(
2006
).
133.
K.
Fukui
,
T.
Yonezawa
, and
H.
Shingu
, “
A molecular orbital theory of reactivity in aromatic hydrocarbons
,”
J. Chem. Phys.
20
,
722
(
1952
).
134.
T.
Lu
and
F.
Chen
, “
Calculation of molecular orbital composition
,”
Acta Chim. Sin.
69
,
2393
(
2011
).
135.
A. E.
Reed
and
F.
Weinhold
, “
Natural bond orbital analysis of near-Hartree–Fock water dimer
,”
J. Chem. Phys.
78
,
4066
(
1983
).
136.
I.
Mayer
, “
Charge, bond order and valence in the ab initio SCF theory
,”
Chem. Phys. Lett.
97
,
270
(
1983
).
137.
I.
Mayer
, “
Bond order and valence indices: A personal account
,”
J. Comput. Chem.
28
,
204
(
2007
).
138.
K. B.
Wiberg
, “
Application of the Pople-Santry-Segal CNDO method to the cyclopropylcarbinyl and cyclobutyl cation and to bicyclobutane
,”
Tetrahedron
24
,
1083
(
1968
).
139.
E.
Matito
,
J.
Poater
,
M.
Solà
,
M.
Duran
, and
P.
Salvador
, “
Comparison of the AIM delocalization index and the Mayer and fuzzy atom bond orders
,”
J. Phys. Chem. A
109
,
9904
(
2005
).
140.
I.
Mayer
and
P.
Salvador
, “
Overlap populations, bond orders and valences for ‘fuzzy’ atoms
,”
Chem. Phys. Lett.
383
,
368
(
2004
).
141.
S. I.
Gorelsky
, “
Complexes with a single metal–metal bond as a sensitive probe of quality of exchange-correlation functionals
,”
J. Chem. Theory Comput.
8
,
908
(
2012
).
142.
J.
Klein
,
H.
Khartabil
,
J.-C.
Boisson
,
J.
Contreras-García
,
J.-P.
Piquemal
, and
E.
Hénon
, “
New way for probing bond strength
,”
J. Phys. Chem. A
124
,
1850
(
2020
).
143.
M.
Giambiagi
,
M.
de Giambiagi
, and
K.
Mundim
, “
Definition of a multicenter bond index
,”
Struct. Chem.
1
,
423
(
1990
).
144.
X.
Wang
,
Z.
Liu
,
X.
Yan
,
T.
Lu
,
W.
Zheng
, and
W.
Xiong
, “
Bonding character, electron delocalization, and aromaticity of cyclo[18]carbon (C18) precursors, C18-(CO)n (n = 6, 4, and 2): Focusing on the effect of carbonyl (-CO) groups
,”
Chem. - Eur. J.
28
,
e202103815
(
2022
).
145.
F.
Feixas
,
J. O. C.
Jiménez-Halla
,
E.
Matito
,
J.
Poater
, and
M.
Solà
, “
A test to evaluate the performance of aromaticity descriptors in all-metal and semimetal clusters. An appraisal of electronic and magnetic indicators of aromaticity
,”
J. Chem. Theory Comput.
6
,
1118
(
2010
).
146.
X.
Fradera
,
M. A.
Austen
, and
R. F. W.
Bader
, “
The Lewis model and beyond
,”
J. Phys. Chem. A
103
,
304
(
1998
).
147.
E.
Matito
,
M.
Solà
,
P.
Salvador
, and
M.
Duran
, “
Electron sharing indexes at the correlated level. Application to aromaticity calculations
,”
Faraday Discuss.
135
,
325
(
2007
).
148.
J. L.
Casals-Sainz
,
A.
Fernández-Alarcón
,
E.
Francisco
,
A.
Costales
, and
Á.
Martín Pendás
, “
Bond order densities in real space
,”
J. Phys. Chem. A
124
,
339
(
2020
).
149.
M.
Menéndez
,
R.
Álvarez Boto
,
E.
Francisco
, and
Á.
Martín Pendás
, “
One-electron images in real space: Natural adaptive orbitals
,”
J. Comput. Chem.
36
,
833
(
2015
).
150.
Z.
Liu
,
T.
Lu
, and
Q.
Chen
, “
An sp-hybridized all-carboatomic ring, cyclo[18]carbon: Bonding character, electron delocalization, and aromaticity
,”
Carbon
165
,
468
(
2020
).
151.
F.
Jensen
,
Introduction to Computational Chemistry
(
John Wiley & Sons
,
West Sussex
,
2017
).
152.
T.
Lu
and
Q.
Chen
, “
Ultrastrong regulation effect of the electric field on the all-carboatomic ring cyclo[18]carbon
,”
ChemPhysChem
22
,
386
(
2021
).
153.
J.
Pipek
and
P. G.
Mezey
, “
A fast intrinsic localization procedure applicable for ab initio and semiempirical linear combination of atomic orbital wave functions
,”
J. Chem. Phys.
90
,
4916
(
1989
).
154.
J. M.
Foster
and
S. F.
Boys
, “
Canonical configurational interaction procedure
,”
Rev. Mod. Phys.
32
,
300
(
1960
).
155.
S.
Lehtola
and
H.
Jónsson
, “
Pipek–Mezey orbital localization using various partial charge estimates
,”
J. Chem. Theory Comput.
10
,
642
(
2014
).
156.
A. J. W.
Thom
,
E. J.
Sundstrom
, and
M.
Head-Gordon
, “
LOBA: A localized orbital bonding analysis to calculate oxidation states, with application to a model water oxidation catalyst
,”
Phys. Chem. Chem. Phys.
11
,
11297
(
2009
).
157.
T.
Lu
and
Q.
Chen
, “
A simple method of identifying π orbitals for non-planar systems and a protocol of studying π electronic structure
,”
Theor. Chem. Acc.
139
,
25
(
2020
).
158.
X.
Wang
,
Z.
Liu
,
J.
Wang
,
T.
Lu
,
W.
Xiong
,
X.
Yan
,
M.
Zhao
, and
M.
Orozco-Ic
, “
Electronic structure and aromaticity of an unusual cyclo[18]carbon precursor, C18Br6
,”
Chem. - Eur. J.
29
,
e202300348
(
2023
).
159.
Y.
Wu
,
Z.
Liu
,
T.
Lu
,
M.
Orozco-Ic
,
J.
Xu
,
X.
Yan
,
J.
Wang
, and
X.
Wang
, “
Exploring the aromaticity differences of isoelectronic species of cyclo[18]carbon (C18), B6C6N6, and B9N9: The role of carbon atoms as connecting bridges
,”
Inorg. Chem.
62
,
19986
(
2023
).
160.
S. N.
Steinmann
,
Y.
Mo
, and
C.
Corminboeuf
, “
How do electron localization functions describe π-electron delocalization?
,”
Phys. Chem. Chem. Phys.
13
,
20584
(
2011
).
161.
J. C.
Santos
,
J.
Andres
,
A.
Aizman
, and
P.
Fuentealba
, “
An aromaticity scale based on the topological analysis of the electron localization function including σ and π contributions
,”
J. Chem. Theory Comput.
1
,
83
(
2005
).
162.
R. J. F.
Berger
, “
Prediction of a cyclic helical oligoacetylene showing anapolar ring currents in the magnetic field
,”
Z. Naturforsch., B
67
,
1127
(
2012
).
163.
S.
Dapprich
and
G.
Frenking
, “
Investigation of donor-acceptor interactions: A charge decomposition analysis using fragment molecular orbitals
,”
J. Phys. Chem.
99
,
9352
(
1995
).
164.
M.
Xiao
and
T.
Lu
, “
Generalized charge decomposition analysis (GCDA) method
,”
J. Adv. Phys. Chem.
4
,
111
(
2015
).
165.
S. I.
Gorelsky
,
S.
Ghosh
, and
E. I.
Solomon
, “
Mechanism of N2O reduction by the μ4-S tetranuclear CuZ cluster of nitrous oxide reductase
,”
J. Am. Chem. Soc.
128
,
278
(
2005
).
166.
S.
Manzetti
,
T.
Lu
,
H.
Behzadi
,
M. D.
Estrafili
,
H.-L.
Thi Le
, and
H.
Vach
, “
Intriguing properties of unusual silicon nanocrystals
,”
RSC Adv.
5
,
78192
(
2015
).
167.
M. P.
Mitoraj
,
A.
Michalak
, and
T.
Ziegler
, “
A combined charge and energy decomposition scheme for bond analysis
,”
J. Chem. Theory Comput.
5
,
962
(
2009
).
168.
S.
Emamian
,
T.
Lu
,
H.
Kruse
, and
H.
Emamian
, “
Exploring nature and predicting strength of hydrogen bonds: A correlation analysis between atoms-in-molecules descriptors, binding energies, and energy components of symmetry-adapted perturbation theory
,”
J. Comput. Chem.
40
,
2868
(
2019
).
169.
C. H.
Suresh
and
S.
Anila
, “
Molecular electrostatic potential topology analysis of noncovalent interactions
,”
Acc. Chem. Res.
56
,
1884
(
2023
).
170.
B.
Silvi
and
A.
Savin
, “
Classification of chemical bonds based on topological analysis of electron localization functions
,”
Nature
371
,
683
(
1994
).
171.
J. C.
Santos
,
W.
Tiznado
,
R.
Contreras
, and
P.
Fuentealba
, “
σπ separation of the electron localization function and aromaticity
,”
J. Chem. Phys.
120
,
1670
(
2004
).
172.
J. A.
Platts
,
J.
Overgaard
,
C.
Jones
,
B. B.
Iversen
, and
A.
Stasch
, “
First experimental characterization of a non-nuclear attractor in a dimeric magnesium(I) compound
,”
J. Phys. Chem. A
115
,
194
(
2011
).
173.
L. M.
Scriven
,
K.
Kaiser
,
F.
Schulz
,
A. J.
Sterling
,
S. L.
Woltering
,
P.
Gawel
,
K. E.
Christensen
,
H. L.
Anderson
, and
L.
Gross
, “
Synthesis of cyclo[18]carbon via debromination of C18Br6
,”
J. Am. Chem. Soc.
142
,
12921
(
2020
).
174.
The Quantum Theory of Atoms in Molecules: From Solid State to DNA and Drug Design
, edited by
C. F.
Matta
and
R. J.
Boyd
(
Wiley-VCH Verlag GmbH & Co. KGaA
,
Weinheim
,
2007
).
175.
I. S.
Bushmarinov
,
K. A.
Lyssenko
, and
M. Y.
Antipin
, “
Atomic energy in the ‘Atoms in Molecules’ theory and its use for solving chemical problems
,”
Russ. Chem. Rev.
78
,
283
(
2009
).
176.
S.
Emamian
,
T.
Lu
,
L. R.
Domingo
,
L.
Heidarpoor Saremi
, and
M.
Ríos-Gutiérrez
, “
A molecular electron density theory study of the chemo- and regioselective [3 + 2] cycloaddition reactions between trifluoroacetonitrile N-oxide and thioketones
,”
Chem. Phys.
501
,
128
(
2018
).
177.
V.
Polo
,
J.
Andres
,
S.
Berski
,
L. R.
Domingo
, and
B.
Silvi
, “
Understanding reaction mechanisms in organic chemistry from catastrophe theory applied to the electron localization function topology
,”
J. Phys. Chem. A
112
,
7128
(
2008
).
178.
J.
Pilmé
and
J.-P.
Piquemal
, “
Advancing beyond charge analysis using the electronic localization function: Chemically intuitive distribution of electrostatic moments
,”
J. Comput. Chem.
29
,
1440
(
2008
).
179.
M.
Rahm
and
K. O.
Christe
, “
Quantifying the nature of lone pair domains
,”
ChemPhysChem
14
,
3714
(
2013
).
180.
W.
Tang
,
E.
Sanville
, and
G.
Henkelman
, “
A grid-based Bader analysis algorithm without lattice bias
,”
J. Phys.: Condens. Matter
21
,
084204
(
2009
).
181.
G.
Henkelman
,
A.
Arnaldsson
, and
H.
Jónsson
, “
A fast and robust algorithm for Bader decomposition of charge density
,”
Comput. Mater. Sci.
36
,
354
(
2006
).
182.
B.
Silvi
and
R. J.
Gillespie
, “
Chapter 6: The ELF topological analysis contribution to conceptual chemistry and phenomenological models
,” in
The Quantum Theory of Atoms in Molecules: From Solid State to DNA and Drug Design
, edited by
C. F.
Matta
and
R. J.
Boyd
(
Wiley-VCH Verlag GmbH & Co. KGaA
,
Weinheim
,
2007
).
183.
G.
Saleh
,
C.
Gatti
, and
L.
Lo Presti
, “
Energetics of non-covalent interactions from electron and energy density distributions
,”
Comput. Theor. Chem.
1053
,
53
(
2015
).
184.
J.
Contreras-García
,
W.
Yang
, and
E. R.
Johnson
, “
Analysis of hydrogen-bond interaction potentials from the electron density: Integration of noncovalent interaction regions
,”
J. Phys. Chem. A
115
,
12983
(
2011
).
185.
T.
Lu
and
F.
Chen
, “
Quantitative analysis of molecular surface based on improved Marching Tetrahedra algorithm
,”
J. Mol. Graphics Modell.
38
,
314
(
2012
).
186.
R. F. W.
Bader
,
M. T.
Carroll
,
J. R.
Cheeseman
, and
C.
Chang
, “
Properties of atoms in molecules: Atomic volumes
,”
J. Am. Chem. Soc.
109
,
7968
(
1987
).
187.
P.
Politzer
,
J.
Martinez
,
J. S.
Murray
, and
M. C.
Concha
, “
An electrostatic correction for improved crystal density predictions of energetic ionic compounds
,”
Mol. Phys.
108
,
1391
(
2010
).
188.
E. F. C.
Byrd
and
B. M.
Rice
, “
Improved prediction of heats of formation of energetic materials using quantum mechanical calculations
,”
J. Phys. Chem. A
110
,
1005
(
2006
).
189.
P.
Politzer
,
J. S.
Murray
, and
Z.
Peralta-Inga
, “
Molecular surface electrostatic potentials in relation to noncovalent interactions in biological systems
,”
Int. J. Quantum Chem.
85
,
676
(
2001
).
190.
J. S.
Murray
,
T.
Brinck
,
P.
Lane
,
K.
Paulsen
, and
P.
Politzer
, “
Statistically-based interaction indices derived from molecular surface electrostatic potentials: A general interaction properties function (GIPF)
,”
J. Mol. Struct.: THEOCHEM
307
,
55
(
1994
).
191.
J.
Sandoval-Lira
,
G.
Mondragón-Solórzano
,
L. I.
Lugo-Fuentes
, and
J.
Barroso-Flores
, “
Accurate estimation of pKb values for amino groups from surface electrostatic potential (VS,min) calculations: The isoelectric points of amino acids as a case study
,”
J. Chem. Inf. Model.
60
,
1445
(
2020
).
192.
Z.
Liu
,
T.
Lu
, and
Q.
Chen
, “
Intermolecular interaction characteristics of the all-carboatomic ring, cyclo[18]carbon: Focusing on molecular adsorption and stacking
,”
Carbon
171
,
514
(
2021
).
193.
S.
Manzetti
and
T.
Lu
, “
Alternant conjugated oligomers with tunable and narrow HOMO-LUMO gaps as sustainable nanowires
,”
RSC Adv.
3
,
25881
(
2013
).
194.
S.
Manzetti
and
T.
Lu
, “
The geometry and electronic structure of aristolochic acid: Possible implications for a frozen resonance
,”
J. Phys. Org. Chem.
26
,
473
(
2013
).
195.
P.
Politzer
,
J. S.
Murray
, and
M. C.
Concha
, “
The complementary roles of molecular surface electrostatic potentials and average local ionization energies with respect to electrophilic processes
,”
Int. J. Quantum Chem.
88
,
19
(
2002
).
196.
N.
Mehio
,
S.
Dai
, and
D.-e.
Jiang
, “
Quantum mechanical basis for kinetic diameters of small gaseous molecules
,”
J. Phys. Chem. A
118
,
1150
(
2014
).
197.
P.
Wu
,
R.
Chaudret
,
X.
Hu
, and
W.
Yang
, “
Noncovalent interaction analysis in fluctuating environments
,”
J. Chem. Theory Comput.
9
,
2226
(
2013
).
198.
M. A.
Spackman
and
D.
Jayatilaka
, “
Hirshfeld surface analysis
,”
CrystEngComm
11
,
19
(
2009
).
199.
F.
Zhou
,
Y.
Liu
,
Z.
Wang
,
T.
Lu
,
Q.
Yang
,
Y.
Liu
, and
B.
Zheng
, “
A new type of halogen bond involving multivalent astatine: An ab initio study
,”
Phys. Chem. Chem. Phys.
21
,
15310
(
2019
).
200.
Z.
Wang
,
Y.
Liu
,
B.
Zheng
,
F.
Zhou
,
Y.
Jiao
,
Y.
Liu
,
X.
Ding
, and
T.
Lu
, “
A theoretical investigation on Cu/Ag/Au bonding in XH2P⋯MY(X = H, CH3, F, CN, NO2; M = Cu, Ag, Au; Y = F, Cl, Br, I) complexes
,”
J. Chem. Phys.
148
,
194106
(
2018
).
201.
J. S.
Murray
and
P.
Politzer
, “
Interaction and polarization energy relationships in σ-hole and π-hole bonding
,”
Crystals
10
,
76
(
2020
).
202.
P.
Politzer
and
J. S.
Murray
, “
The electrostatic potential as a guide to molecular interactive behavior
,” in
Chemical Reactivity Theory: A Density Functional View
, edited by
P. K.
Chattaraj
(
CRC Press
,
Boca Raton
,
2009
).
203.
P.
Politzer
and
J. S.
Murray
, “
Molecular electrostatic potentials and chemical reactivity
,” in
Reviews in Computational Chemistry
, edited by
K. B.
Lipkowitz
and
D. B.
Boyd
(
John Wiley & Sons, Inc.
,
New York
,
1991
), Vol.
2
.
204.
P.
Sjoberg
and
P.
Politzer
, “
Use of the electrostatic potential at the molecular surface to interpret and predict nucleophilic processes
,”
J. Phys. Chem.
94
,
3959
(
1990
).
205.
R.
Sure
and
S.
Grimme
, “
Comprehensive benchmark of association (free) energies of realistic host–guest complexes
,”
J. Chem. Theory Comput.
11
,
3785
(
2015
).
206.
M.
Solà
, “
Why aromaticity is a suspicious concept? Why?
,”
Front. Chem.
5
,
22
(
2017
).
207.
M.
Giambiagi
,
M.
Segre de Giambiagi
,
C. D.
dos Santos Silva
, and
A.
Paiva de Figueiredo
, “
Multicenter bond indices as a measure of aromaticity
,”
Phys. Chem. Chem. Phys.
2
,
3381
(
2000
).
208.
E.
Matito
, “
An electronic aromaticity index for large rings
,”
Phys. Chem. Chem. Phys.
18
,
11839
(
2016
).
209.
C.
García-Fernández
,
E.
Sierda
,
M.
Abadía
,
B.
Bugenhagen
,
M. H.
Prosenc
,
R.
Wiesendanger
,
M.
Bazarnik
,
J. E.
Ortega
,
J.
Brede
,
E.
Matito
, and
A.
Arnau
, “
Exploring the relation between intramolecular conjugation and band dispersion in one-dimensional polymers
,”
J. Phys. Chem. C
121
,
27118
(
2017
).
210.
S.
Noorizadeh
and
E.
Shakerzadeh
, “
Shannon entropy as a new measure of aromaticity, Shannon aromaticity
,”
Phys. Chem. Chem. Phys.
12
,
4742
(
2010
).
211.
E.
Matito
,
P.
Salvador
,
M.
Duran
, and
M.
Solà
, “
Aromaticity measures from fuzzy-atom bond orders (FBO). The aromatic fluctuation (FLU) and the para-delocalization (PDI) indexes
,”
J. Phys. Chem. A
110
,
5108
(
2006
).
212.
D.
Yu
,
C.
Rong
,
T.
Lu
,
F.
De Proft
, and
S.
Liu
, “
Baird’s rule in substituted fulvene derivatives: An information-theoretic study on triplet-state aromaticity and antiaromaticity
,”
ACS Omega
3
,
18370
(
2018
).
213.
S. T.
Howard
and
T. M.
Krygowski
, “
Benzenoid hydrocarbon aromaticity in terms of charge density descriptors
,”
Can. J. Chem.
75
,
1174
(
1997
).
214.
T. M.
Krygowski
, “
Crystallographic studies of inter- and intramolecular interactions reflected in aromatic character of π-electron systems
,”
J. Chem. Inf. Comput. Sci.
33
,
70
(
1993
).
215.
S. I.
Kotelevskii
and
O. V.
Prezhdo
, “
Aromaticity indices revisited: Refinement and application to certain five-membered ring heterocycles
,”
Tetrahedron
57
,
5715
(
2001
).
216.
C. W.
Bird
, “
Heteroaromaticity. 8. The influence of N-oxide formation on heterocyclic aromaticity
,”
Tetrahedron
49
,
8441
(
1993
).
217.
S.
Klod
and
E.
Kleinpeter
, “
Ab initio calculation of the anisotropy effect of multiple bonds and the ring current effect of arenes–application in conformational and configurational analysis
,”
J. Chem. Soc., Perkin Trans. 2
2001
,
1893
.
218.
W. M.
Dudek
,
S.
Ostrowski
, and
J. C.
Dobrowolski
, “
On aromaticity of the aromatic α-amino acids and tuning of the NICS indices to find the aromaticity order
,”
J. Phys. Chem. A
126
,
3433
(
2022
).
219.
Z.
Liu
,
T.
Lu
,
S.
Hua
, and
Y.
Yu
, “
Aromaticity of Hückel and Möbius topologies involved in conformation conversion of macrocyclic [32]octaphyrin(1.0.1.0.1.0.1.0): Refined evidence from multiple visual criteria
,”
J. Phys. Chem. C
123
,
18593
(
2019
).
220.
H.
Fallah-Bagher-Shaidaei
,
C. S.
Wannere
,
C.
Corminboeuf
,
R.
Puchta
, and
P. v. R.
Schleyer
, “
Which NICS aromaticity index for planar π rings is best?
,”
Org. Lett.
8
,
863
(
2006
).
221.
J. J.
Torres-Vega
,
A.
Vásquez-Espinal
,
J.
Caballero
,
M. L.
Valenzuela
,
L.
Alvarez-Thon
,
E.
Osorio
, and
W.
Tiznado
, “
Minimizing the risk of reporting false aromaticity and antiaromaticity in inorganic heterocycles following magnetic criteria
,”
Inorg. Chem.
53
,
3579
(
2014
).
222.
D. Y.
Zubarev
and
A. I.
Boldyrev
, “
Developing paradigms of chemical bonding: Adaptive natural density partitioning
,”
Phys. Chem. Chem. Phys.
10
,
5207
(
2008
).
223.
D. Y.
Zubarev
and
A. I.
Boldyrev
, “
Deciphering chemical bonding in golden cages
,”
J. Phys. Chem. A
113
,
866
(
2009
).
224.
T.
Le Bahers
,
C.
Adamo
, and
I.
Ciofini
, “
A qualitative index of spatial extent in charge-transfer excitations
,”
J. Chem. Theory Comput.
7
,
2498
(
2011
).
225.
R. J.
Bartlett
, “
Coupled-cluster theory and its equation-of-motion extensions
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
2
,
126
(
2012
).
226.
C. A.
Guido
,
P.
Cortona
,
B.
Mennucci
, and
C.
Adamo
, “
On the metric of charge transfer molecular excitations: A simple chemical descriptor
,”
J. Chem. Theory Comput.
9
,
3118
(
2013
).
227.
M. J. G.
Peach
,
P.
Benfield
,
T.
Helgaker
, and
D. J.
Tozer
, “
Excitation energies in density functional theory: An evaluation and a diagnostic test
,”
J. Chem. Phys.
128
,
044118
(
2008
).
228.
M.
Campetella
,
F.
Maschietto
,
M. J.
Frisch
,
G.
Scalmani
,
I.
Ciofini
, and
C.
Adamo
, “
Charge transfer excitations in TDDFT: A ghost-hunter index
,”
J. Comput. Chem.
38
,
2151
(
2017
).
229.
X.
Wang
,
Z.
Liu
,
X.
Yan
,
T.
Lu
,
H.
Wang
,
W.
Xiong
, and
M.
Zhao
, “
Photophysical properties and optical nonlinearity of cyclo[18]carbon (C18) precursors, C18–(CO)n (n = 2, 4, and 6): Focusing on the effect of the carbonyl groups
,”
Phys. Chem. Chem. Phys.
24
,
7466
(
2022
).
230.
Z.
Liu
,
X.
Wang
,
T.
Lu
,
A.
Yuan
, and
X.
Yan
, “
Potential optical molecular switch: Lithium@cyclo[18]carbon complex transforming between two stable configurations
,”
Carbon
187
,
78
(
2022
).
231.
S.
Tretiak
and
S.
Mukamel
, “
Density matrix analysis and simulation of electronic excitations in conjugated and aggregated molecules
,”
Chem. Rev.
102
,
3171
(
2002
).
232.
T.
Lu
and
Q.
Chen
, “
Simple, efficient, and universal energy decomposition analysis method based on dispersion-corrected density functional theory
,”
J. Phys. Chem. A
127
,
7023
(
2023
).
233.
T.
Lu
,
Z.
Liu
, and
Q.
Chen
, “
Comment on ‘18 and 12—Member carbon rings (cyclo[n]carbons)—A density functional study
,’”
Mater. Sci. Eng.: B
273
,
115425
(
2021
).
234.
J.
Wang
,
R. M.
Wolf
,
J. W.
Caldwell
,
P. A.
Kollman
, and
D. A.
Case
, “
Development and testing of a general amber force field
,”
J. Comput. Chem.
25
,
1157
(
2004
).
235.
J.
Wang
,
P.
Cieplak
, and
P. A.
Kollman
, “
How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules?
,”
J. Comput. Chem.
21
,
1049
(
2000
).
236.
A. K.
Rappe
,
C. J.
Casewit
,
K. S.
Colwell
,
W. A.
Goddard
, and
W. M.
Skiff
, “
UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations
,”
J. Am. Chem. Soc.
114
,
10024
(
1992
).
237.
S.
Liu
, “
Steric effect: A quantitative description from density functional theory
,”
J. Chem. Phys.
126
,
244103
(
2007
).
238.
S.
Liu
, “
Origin and nature of bond rotation barriers: A unified view
,”
J. Phys. Chem. A
117
,
962
(
2013
).
239.
S.
Grimme
,
J.
Antony
,
S.
Ehrlich
, and
H.
Krieg
, “
A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu
,”
J. Chem. Phys.
132
,
154104
(
2010
).
240.
241.
L.
Baldinelli
,
F.
De Angelis
, and
G.
Bistoni
, “
Unraveling atomic contributions to the London dispersion energy: Insights into molecular recognition and reactivity
,”
J. Chem. Theory Comput.
20
,
1923
(
2024
).
242.
L.
Shu-Bin
, “
Conceptual density functional theory and some recent developments
,”
Acta Phys.-Chim. Sin.
25
,
590
(
2009
).
243.
P. K.
Chattaraj
,
U.
Sarkar
, and
D. R.
Roy
, “
Electrophilicity index
,”
Chem. Rev.
106
,
2065
(
2006
).
244.
P.
Geerlings
,
F.
De Proft
, and
W.
Langenaeker
, “
Conceptual density functional theory
,”
Chem. Rev.
103
,
1793
(
2003
).
245.
H.
Chermette
, “
Chemical reactivity indexes in density functional theory
,”
J. Comput. Chem.
20
,
129
(
1999
).
246.
T.
Lu
and
Q.
Chen
, “
Realization of conceptual density functional theory and information-theoretic approach in Multiwfn program
,” in
Conceptual Density Functional Theory
, edited by
S.
Liu
(
Wiley-VCH GmbH
,
Weinheim
,
2022
).
247.
R. G.
Parr
,
L. v.
Szentpály
, and
S.
Liu
, “
Electrophilicity index
,”
J. Am. Chem. Soc.
121
,
1922
(
1999
).
248.
G.
Hoffmann
,
V.
Tognetti
, and
L.
Joubert
, “
Electrophilicity indices and halogen bonds: Some new alternatives to the molecular electrostatic potential
,”
J. Phys. Chem. A
124
,
2090
(
2020
).
249.
S. F.
Figueredo
and
M. A.
Quintero
, “
Electrophilic descriptor from third-order Taylor expansion: The role of hyperhardness
,”
Int. J. Quantum Chem.
124
,
e27366
(
2024
).
250.
L. R.
Domingo
,
E.
Chamorro
, and
P.
Pérez
, “
Understanding the reactivity of captodative ethylenes in polar cycloaddition reactions. A theoretical study
,”
J. Org. Chem.
73
,
4615
(
2008
).
251.
R. G.
Parr
and
W.
Yang
, “
Density functional approach to the frontier-electron theory of chemical reactivity
,”
J. Am. Chem. Soc.
106
,
4049
(
1984
).
252.
C.
Cárdenas
,
W.
Tiznado
,
P. W.
Ayers
, and
P.
Fuentealba
, “
The Fukui potential and the capacity of charge and the global hardness of atoms
,”
J. Phys. Chem. A
115
,
2325
(
2011
).
253.
C.
Morell
,
A.
Grand
, and
A.
Toro-Labbé
, “
New dual descriptor for chemical reactivity
,”
J. Phys. Chem. A
109
,
205
(
2004
).
254.
J. I.
Martínez-Araya
, “
The dual descriptor potential
,”
J. Math. Chem.
62
,
1094
(
2024
).
255.
W.
Yang
and
R. G.
Parr
, “
Hardness, softness, and the Fukui function in the electronic theory of metals and catalysis
,”
Proc. Natl. Acad. Sci. U. S. A.
82
,
6723
(
1985
).
256.
J. I.
Martínez-Araya
, “
Why are the local hyper-softness and the local softness more appropriate local reactivity descriptors than the dual descriptor and the Fukui function, respectively?
,”
J. Math. Chem.
62
,
461
(
2024
).
257.
W.
Yang
and
W. J.
Mortier
, “
The use of global and local molecular parameters for the analysis of the gas-phase basicity of amines
,”
J. Am. Chem. Soc.
108
,
5708
(
1986
).
258.
R. K.
Roy
,
S.
Krishnamurti
,
P.
Geerlings
, and
S.
Pal
, “
Local softness and hardness based reactivity descriptors for predicting intra- and intermolecular reactivity sequences: Carbonyl compounds
,”
J. Phys. Chem. A
102
,
3746
(
1998
).
259.
J.
Oláh
,
C.
Van Alsenoy
, and
A. B.
Sannigrahi
, “
Condensed Fukui functions derived from stockholder charges: Assessment of their performance as local reactivity descriptors
,”
J. Phys. Chem. A
106
,
3885
(
2002
).
260.
B.
Wang
,
C.
Rong
,
P. K.
Chattaraj
, and
S.
Liu
, “
A comparative study to predict regioselectivity, electrophilicity and nucleophilicity with Fukui function and Hirshfeld charge
,”
Theor. Chem. Acc.
138
,
124
(
2019
).
261.
G.
Schüürmann
, “
QSAR analysis of the acute fish toxicity of organic phosphorothionates using theoretically derived molecular descriptors
,”
Environ. Toxicol. Chem.
9
,
417
(
1990
).
262.
G.
Schüürmann
, “
Quantitative structure-property relationships for the polarizability, solvatochromic parameters and lipophilicity
,”
Quant. Struct.-Act. Relat.
9
,
326
(
1990
).
263.
J. D. L.
Dutra
,
N. B. D.
Lima
,
R. O.
Freire
, and
A. M.
Simas
, “
Europium luminescence: Electronic densities and superdelocalizabilities for a unique adjustment of theoretical intensity parameters
,”
Sci. Rep.
5
,
13695
(
2015
).
264.
J. I.
Martínez-Araya
, “
A generalized operational formula based on total electronic densities to obtain 3D pictures of the dual descriptor to reveal nucleophilic and electrophilic sites accurately on closed-shell molecules
,”
J. Comput. Chem.
37
,
2279
(
2016
).
265.
J.
Sánchez-Márquez
,
D.
Zorrilla
,
V.
García
, and
M.
Fernández
, “
Introducing a new bond reactivity index: Philicities for natural bond orbitals
,”
J. Mol. Model.
24
,
25
(
2017
).
266.
Z.
Lin
,
T.
Lu
, and
X.-L.
Ding
, “
A theoretical investigation on doping superalkali for triggering considerable nonlinear optical properties of Si12C12 nanostructure
,”
J. Comput. Chem.
38
,
1574
(
2017
).
267.
Z.
Liu
,
X.
Wang
,
T.
Lu
,
X.
Yan
,
J.
Wang
,
Y.
Wu
,
J.
Xu
, and
Z.
Xie
, “
Theoretical design of a dual-motor nanorotator composed of all-carboatomic cyclo[18]carbon and a figure-of-eight carbon hoop
,”
Chem. Commun.
59
,
9770
(
2023
).
268.
J. K.
Nørskov
,
F.
Abild-Pedersen
,
F.
Studt
, and
T.
Bligaard
, “
Density functional theory in surface chemistry and catalysis
,”
Proc. Natl. Acad. Sci. U. S. A.
108
,
937
(
2011
).
269.
D. A.
Kislitsyn
,
C. F.
Gervasi
,
T.
Allen
,
P. K. B.
Palomaki
,
J. D.
Hackley
,
R.
Maruyama
, and
G. V.
Nazin
, “
Spatial mapping of sub-bandgap states induced by local nonstoichiometry in individual lead sulfide nanocrystals
,”
J. Phys. Chem. Lett.
5
,
3701
(
2014
).
270.
Y.
Ping
,
Y.
Li
,
F.
Gygi
, and
G.
Galli
, “
Tungsten oxide clathrates for water oxidation: A first principles study
,”
Chem. Mater.
24
,
4252
(
2012
).
271.
B.
Yang
,
H.
Xu
,
X.
Xu
, and
W.
Zheng
, “
Photoelectron spectroscopy and theoretical study of CrnSi15−n (n = 1–3): Effects of doping Cr atoms on the structural and magnetic properties
,”
J. Phys. Chem. A
122
,
9886
(
2018
).
272.
R.
Dronskowski
and
P. E.
Bloechl
, “
Crystal orbital Hamilton populations (COHP): Energy-resolved visualization of chemical bonding in solids based on density-functional calculations
,”
J. Phys. Chem.
97
,
8617
(
1993
).
273.
G. A.
Landrum
and
R.
Dronskowski
, “
The orbital origins of magnetism: From atoms to molecules to ferromagnetic alloys
,”
Angew. Chem., Int. Ed.
39
,
1560
(
2000
).
274.
H. F.
King
,
R. E.
Stanton
,
H.
Kim
,
R. E.
Wyatt
, and
R. G.
Parr
, “
Corresponding orbitals and the nonorthogonality problem in molecular quantum mechanics
,”
J. Chem. Phys.
47
,
1936
(
1967
).
275.
T.
Lu
, “
Simple, reliable, and universal metrics of molecular planarity
,”
J. Mol. Model.
27
,
263
(
2021
).
276.
J. L.
Brédas
, “
Relationship between band gap and bond length alternation in organic conjugated polymers
,”
J. Chem. Phys.
82
,
3808
(
1985
).
277.
J. L.
Bredas
,
R. R.
Chance
, and
R.
Silbey
, “
Theoretical study of charge transfer and bond alternation in doped polyacetylene
,”
J. Phys. Chem.
85
,
756
(
1981
).
278.
K.
Sasagane
,
F.
Aiga
, and
R.
Itoh
, “
Higher-order response theory based on the quasienergy derivatives: The derivation of the frequency-dependent polarizabilities and hyperpolarizabilities
,”
J. Chem. Phys.
99
,
3738
(
1993
).
279.
J. L.
Oudar
and
D. S.
Chemla
, “
Hyperpolarizabilities of the nitroanilines and their relations to the excited state dipole moment
,”
J. Chem. Phys.
66
,
2664
(
1977
).
280.
Z.
Liu
and
T.
Lu
, “
Controllable photophysical and nonlinear properties in conformation isomerization of macrocyclic [32]otaphyrin(1.0.1.0.1.0.1.0) involving Hückel and Möbius topologies
,”
J. Phys. Chem. C
124
,
845
(
2020
).
281.
M.
Nakano
,
I.
Shigemoto
,
S.
Yamada
, and
K.
Yamaguchi
, “
Size-consistent approach and density analysis of hyperpolarizability: Second hyperpolarizabilities of polymeric systems with and without defects
,”
J. Chem. Phys.
103
,
4175
(
1995
).
282.
H.-Y.
Wu
,
A.
Chaudhari
, and
S.-L.
Lee
, “
Theoretical studies on nonlinear optical properties of formaldehyde oligomers by ab initio and density functional theory methods
,”
J. Comput. Chem.
26
,
1543
(
2005
).
283.
A.
Tuer
,
S.
Krouglov
,
R.
Cisek
,
D.
Tokarz
, and
V.
Barzda
, “
Three-dimensional visualization of the first hyperpolarizability tensor
,”
J. Comput. Chem.
32
,
1128
(
2011
).
284.
Z.
Liu
,
T.
Lu
,
A.
Yuan
,
X.
Wang
,
Q.
Chen
, and
X.
Yan
, “
Remarkable size effect on photophysical and nonlinear optical properties of all-carboatomic rings, cyclo[18]carbon and its analogues
,”
Chem. - Asian J.
16
,
2267
(
2021
).
285.
S.
Hua
,
X.
Wang
,
Z.
Liu
,
T.
Lu
, and
M.
Zhao
, “
Effects of external field wavelength and solvation on the photophysical property and optical nonlinearity of 1,3-thiazolium-5-thiolates mesoionic compound
,”
Spectrochim. Acta, Part A
289
,
122227
(
2023
).
286.
J.
Hermann
,
R. A.
DiStasio
, Jr.
, and
A.
Tkatchenko
, “
First-principles models for van der Waals interactions in molecules and materials: Concepts, theory, and applications
,”
Chem. Rev.
117
,
4714
(
2017
).
287.
Z.
Liu
,
T.
Lu
, and
Q.
Chen
, “
Vibrational spectra and molecular vibrational behaviors of all-carboatomic rings, cyclo[18]carbon and its analogues
,”
Chem. - Asian J.
16
,
56
(
2021
).
288.
D.
Michalska
and
R.
Wysokiński
, “
The prediction of Raman spectra of platinum(II) anticancer drugs by density functional theory
,”
Chem. Phys. Lett.
403
,
211
(
2005
).
289.
L.
Belpassi
,
I.
Infante
,
F.
Tarantelli
, and
L.
Visscher
, “
The chemical bond between Au(I) and the noble gases. Comparative study of NgAuF and NgAu+ (Ng = Ar, Kr, Xe) by density functional and coupled cluster methods
,”
J. Am. Chem. Soc.
130
,
1048
(
2008
).
290.
D.
Bradley
,
C. P.
Branley
, and
M. D.
Peeks
, “
A straightforward method to quantify the electron-delocalizing ability of π-conjugated molecules
,”
Phys. Chem. Chem. Phys.
24
,
11486
(
2022
).
291.
J.
Tersoff
and
D. R.
Hamann
, “
Theory and application for the scanning tunneling microscope
,”
Phys. Rev. Lett.
50
,
1998
(
1983
).
292.
L. C.
Allen
,
D. A.
Egolf
,
E. T.
Knight
, and
C.
Liang
, “
Bond polarity index
,”
J. Phys. Chem.
94
,
5602
(
1990
).
293.
L. H.
Reed
and
L. C.
Allen
, “
Bond polarity index: Application to group electronegativity
,”
J. Phys. Chem.
96
,
157
(
1992
).
294.
J. F.
Gonthier
,
S. N.
Steinmann
,
L.
Roch
,
A.
Ruggi
,
N.
Luisier
,
K.
Severin
, and
C.
Corminboeuf
, “
π-depletion as a criterion to predict π-stacking ability
,”
Chem. Commun.
48
,
9239
(
2012
).
295.
F.
Fuster
and
B.
Silvi
, “
Does the topological approach characterize the hydrogen bond?
,”
Theor. Chim. Acta
104
,
13
(
2000
).
296.
M. E.
Alikhani
,
F.
Fuster
, and
B.
Silvi
, “
What can tell the topological analysis of ELF on hydrogen bonding?
,”
Struct. Chem.
16
,
203
(
2005
).
297.
C.
Rong
,
B.
Wang
,
D.
Zhao
, and
S.
Liu
, “
Information-theoretic approach in density functional theory and its recent applications to chemical problems
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
10
,
e1461
(
2020
).
298.
M.
Adrian-Scotto
,
G.
Mallet
, and
D.
Vasilescu
, “
Hydration of Mg++: A quantum DFT and ab initio HF study
,”
J. Mol. Struct.: THEOCHEM
728
,
231
(
2005
).
You do not currently have access to this content.