Depletion interactions are thought to significantly contribute to the organization of intracellular structures in the crowded cytosol. The strength of depletion interactions depends on physical parameters such as the depletant number density and the depletant size ratio. Cells are known to dynamically regulate these two parameters by varying the copy number of proteins of a wide distribution of sizes. However, mammalian cells are also known to keep the total protein mass density remarkably constant, to within 0.5% throughout the cell cycle. We thus ask how the strength of depletion interactions varies when the total depletant mass is held fixed, a.k.a. fixed-mass depletion. We answer this question via scaling arguments, as well as by studying depletion effects on networks of reconstituted semiflexible actin in silico and in vitro. We examine the maximum strength of the depletion interaction potential U as a function of q, the size ratio between the depletant and the matter being depleted. We uncover a scaling relation Uqζ for two cases: fixed volume fraction φ and fixed mass density ρ. For fixed volume fraction, we report ζ < 0. For the fixed mass density case, we report ζ > 0, which suggests that the depletion interaction strength increases as the depletant size ratio is increased. To test this prediction, we prepared our filament networks at fixed mass concentrations with varying sizes of the depletant molecule poly(ethylene glycol) (PEG). We characterize the depletion interaction strength in our simulations via the mesh size. In experiments, we observe two distinct actin network morphologies, which we call weakly bundled and strongly bundled. We identify a mass concentration where different PEG depletant sizes lead to weakly bundled or strongly bundled morphologies. For these conditions, we find that the mesh size and intra-bundle spacing between filaments across the different morphologies do not show significant differences, while the dynamic light scattering relaxation time and storage modulus between the two states do show significant differences. Our results demonstrate the ability to tune actin network morphology and mechanics by controlling depletant size and give insights into depletion interaction mechanisms under the fixed-depletant-mass constraint relevant to living cells.

1.
J.
Alvarado
,
B. M.
Mulder
, and
G. H.
Koenderink
, “
Alignment of nematic and bundled semiflexible polymers in cell-sized confinement
,”
Soft Matter
10
,
2354
2364
(
2014
).
2.
H. N. W.
Lekkerkerker
and
R.
Tuinier
,
Colloids and the Depletion Interaction
(
Springer
,
Dordrecht
,
2011
).
3.
D.
Marenduzzo
,
K.
Finan
, and
P. R.
Cook
, “
The depletion attraction: An underappreciated force driving cellular organization
,”
J. Cell Biol.
175
,
681
686
(
2006
).
4.
H. N. W.
Lekkerkerker
and
R.
Tuinier
, “
Phase transitions of hard spheres plus colloids
,” in
Colloids and the Depletion Interaction
, edited by
H. N. W.
Lekkerkerker
and
R.
Tuinier
(
Springer
,
Dordrecht, Netherlands
,
2011
), pp.
177
195
.
5.
A. M.
Green
et al, “
Depletion-driven assembly of polymer-coated nanocrystals
,”
J. Phys. Chem. C
126
,
19507
19518
(
2022
).
6.
T.
Schilling
,
S.
Jungblut
, and
M. A.
Miller
, “
Depletion-induced percolation in networks of nanorods
,”
Phys. Rev. Lett.
98
,
108303
(
2007
).
7.
G. H.
Lai
et al, “
Self-organized gels in DNA/F-actin mixtures without crosslinkers: Networks of induced nematic domains with tunable density
,”
Phys. Rev. Lett.
101
,
218303
(
2008
).
8.
C.
Zhang
,
P. G.
Shao
,
J. A.
van Kan
, and
J. R. C.
van der Maarel
, “
Macromolecular crowding induced elongation and compaction of single DNA molecules confined in a nanochannel
,”
Proc. Natl. Acad. Sci. U. S. A.
106
,
16651
16656
(
2009
).
9.
T.
Sanchez
,
D. T. N.
Chen
,
S. J.
DeCamp
,
M.
Heymann
, and
Z.
Dogic
, “
Spontaneous motion in hierarchically assembled active matter
,”
Nature
491
,
431
434
(
2012
).
10.
G. E.
Neurohr
and
A.
Amon
, “
Relevance and regulation of cell density
,”
Trends Cell Biol.
30
,
213
225
(
2020
).
11.
E. S.
Chhabra
and
H. N.
Higgs
, “
The many faces of actin: Matching assembly factors with cellular structures
,”
Nat. Cell Biol.
9
,
1110
1121
(
2007
).
12.
R.
Dominguez
and
K. C.
Holmes
, “
Actin structure and function
,”
Annu. Rev. Biophys.
40
,
169
186
(
2011
).
13.
S.
Tojkander
,
G.
Gateva
, and
P.
Lappalainen
, “
Actin stress fibers—Assembly, dynamics and biological roles
,”
J. Cell Sci.
125
,
1855
1864
(
2012
).
14.
J. R.
Bartles
,
L.
Zheng
,
A.
Li
,
A.
Wierda
, and
B.
Chen
, “
Small espin: A third actin-bundling protein and potential forked protein ortholog in brush border microvilli
,”
J. Cell Biol.
143
,
107
119
(
1998
).
15.
N.
Castaneda
et al, “
Cations modulate actin bundle mechanics, assembly dynamics, and structure
,”
J. Phys. Chem. B
122
,
3826
3835
(
2018
).
16.
T. E.
Angelini
,
H.
Liang
,
W.
Wriggers
, and
G. C. L.
Wong
, “
Like-charge attraction between polyelectrolytes induced by counterion charge density waves
,”
Proc. Natl. Acad. Sci. U. S. A.
100
,
8634
8637
(
2003
).
17.
J. X.
Tang
,
T.
Ito
,
T.
Tao
,
P.
Traub
, and
P. A.
Janmey
, “
Opposite effects of electrostatics and steric exclusion on bundle formation by F-actin and other filamentous polyelectrolytes
,”
Biochemistry
36
,
12600
12607
(
1997
).
18.
R.
Uribe
and
D.
Jay
, “
A review of actin binding proteins: New perspectives
,”
Mol. Biol. Rep.
36
,
121
125
(
2009
).
19.
N.
Elkhatib
et al, “
Fascin plays a role in stress fiber organization and focal adhesion disassembly
,”
Curr. Biol.
24
,
1492
1499
(
2014
).
20.
D. S.
Courson
and
R. S.
Rock
, “
Actin cross-link assembly and disassembly mechanics for α-actinin and fascin
,”
J. Biol. Chem.
285
,
26350
26357
(
2010
).
21.
T. P.
Stossel
et al, “
Filamins as integrators of cell mechanics and signalling
,”
Nat. Rev. Mol. Cell Biol.
2
,
138
145
(
2001
).
22.
K. M.
Schmoller
,
O.
Lieleg
, and
A. R.
Bausch
, “
Structural and viscoelastic properties of actin/filamin networks: Cross-linked versus bundled networks
,”
Biophys. J.
97
,
83
89
(
2009
).
23.
A. W. C.
Lau
,
A.
Prasad
, and
Z.
Dogic
, “
Condensation of isolated semi-flexible filaments driven by depletion interactions
,”
Europhys. Lett.
87
,
48006
(
2009
).
24.
M.
Hosek
and
J. X.
Tang
, “
Polymer-induced bundling of F actin and the depletion force
,”
Phys. Rev. E
69
,
051907
(
2004
).
25.
S.
Köhler
,
O.
Lieleg
, and
A. R.
Bausch
, “
Rheological characterization of the bundling transition in F-actin solutions induced by methylcellulose
,”
PLoS One
3
,
e2736
(
2008
).
26.
P.-G. de.
Gennes
,
Scaling Concepts in Polymer Physics
(
Cornell University Press
,
1979
).
27.
A. P.
Minton
, “
The influence of macromolecular crowding and macromolecular confinement on biochemical reactions in physiological media
,”
J. Biol. Chem.
276
,
10577
10580
(
2001
).
28.
R.
Tharmann
,
M. M. A. E.
Claessens
, and
A. R.
Bausch
, “
Micro- and macrorheological properties of actin networks effectively cross-linked by depletion forces
,”
Biophys. J.
90
,
2622
2627
(
2006
).
29.
S.
Asakura
and
F.
Oosawa
, “
On interaction between two bodies immersed in a solution of macromolecules
,”
J. Chem. Phys.
22
,
1255
1256
(
1954
).
30.
K.
Binder
,
P.
Virnau
, and
A.
Statt
, “
Perspective: The Asakura Oosawa model: A colloid prototype for bulk and interfacial phase behavior
,”
J. Chem. Phys.
141
,
140901
(
2014
).
31.
A. A.
Louis
,
P. G.
Bolhuis
,
E. J.
Meijer
, and
J. P.
Hansen
, “
Polymer induced depletion potentials in polymer-colloid mixtures
,”
J. Chem. Phys.
117
,
1893
1907
(
2002
).
32.
A. A.
Louis
,
R.
Finken
, and
J.-P.
Hansen
, “
The structure of colloid-polymer mixtures
,”
Europhys. Lett.
46
,
741
(
1999
).
33.
S.
Krüger
,
H.-J.
Mögel
,
M.
Wahab
, and
P.
Schiller
, “
Depletion force between anisometric colloidal particles
,”
Langmuir
27
,
646
650
(
2011
).
34.
F.
Gittes
,
B.
Mickey
,
J.
Nettleton
, and
J.
Howard
, “
Flexural rigidity of microtubules and actin filaments measured from thermal fluctuations in shape
,”
J. Cell Biol.
120
,
923
934
(
1993
).
35.
A.
Ott
,
M.
Magnasco
,
A.
Simon
, and
A.
Libchaber
, “
Measurement of the persistence length of polymerized actin using fluorescence microscopy
,”
Phys. Rev. E
48
,
R1642
R1645
(
1993
).
36.
P. B.
Moore
,
H. E.
Huxley
, and
D. J.
DeRosier
, “
Three-dimensional reconstruction of F-actin, thin filaments and decorated thin filaments
,”
J. Mol. Biol.
50
,
279
292
(
1970
).
37.
J. A.
Spudich
,
H. E.
Huxley
, and
J. T.
Finch
, “
Regulation of skeletal muscle contraction: II. Structural studies of the interaction of the tropomyosin-troponin complex with actin
,”
J. Mol. Biol.
72
,
619
632
(
1972
).
38.
P.
Nelson
,
Biological Physics
(
W. H. Freeman
,
2003
), Updated Edition.
39.
J. D.
Weeks
,
D.
Chandler
, and
H. C.
Andersen
, “
Role of repulsive forces in determining the equilibrium structure of simple liquids
,”
J. Chem. Phys.
54
,
5237
5247
(
1971
).
40.
F.
Cavanna
and
J.
Alvarado
, “
Quantification of the mesh structure of bundled actin filaments
,”
Soft Matter
17
,
5034
5043
(
2021
).
41.
A.
Fernandez-Nieves
and
A. M.
Puertas
,
Fluids, Colloids and Soft Materials: An Introduction to Soft Matter Physics
(
John Wiley & Sons
,
2016
).
42.
M. Y.
Tsang
et al, “
Controlled sequential assembly of metal-organic polyhedra into colloidal gels with high chemical complexity
,”
Small Struct.
3
,
2100197
(
2022
).
43.
Y.
Tseng
,
K. M.
An
, and
D.
Wirtz
, “
Microheterogeneity controls the rate of gelation of actin filament networks
,”
J. Biol. Chem.
277
,
18143
18150
(
2002
).
44.
J.
Alvarado
,
L.
Cipelletti
, and
G. H.
Koenderink
, “
Uncovering the dynamic precursors to motor-driven contraction of active gels
,”
Soft Matter
15
,
8552
8565
(
2019
).
45.
L.
Wu
et al, “
Förster resonance energy transfer (FRET)-based small-molecule sensors and imaging agents
,”
Chem. Soc. Rev.
49
,
5110
5139
(
2020
).
46.
W. T.
Snead
et al, “
Membrane fission by protein crowding
,”
Proc. Natl. Acad. Sci. U. S. A.
114
,
E3258
E3267
(
2017
).
47.
J. R.
Houser
,
C. C.
Hayden
,
D.
Thirumalai
, and
J. C.
Stachowiak
, “
A Förster resonance energy transfer-based sensor of steric pressure on membrane surfaces
,”
J. Am. Chem. Soc.
142
,
20796
20805
(
2020
).
48.
S. S.
Vogel
,
B. W.
van der Meer
, and
P. S.
Blank
, “
Estimating the distance separating fluorescent protein FRET pairs
,”
Methods
66
,
131
138
(
2014
).
49.
M. V.
Sataric
,
D. L.
Sekulic
, and
B. M.
Sataric
, “
Actin filaments as the fast pathways for calcium ions involved in auditory processes
,”
J. Biosci.
40
,
549
559
(
2015
).
50.
M. L.
Gardel
et al, “
Scaling of F-actin network rheology to probe single filament elasticity and dynamics
,”
Phys. Rev. Lett.
93
,
188102
(
2004
).
51.
J. H.
Shin
,
M. L.
Gardel
,
L.
Mahadevan
,
P.
Matsudaira
, and
D. A.
Weitz
, “
Relating microstructure to rheology of a bundled and cross-linked F-actin network in vitro
,”
Proc. Natl. Acad. Sci. U. S. A.
101
,
9636
9641
(
2004
).
52.
J. X.
Tang
,
P. A.
Janmey
,
T. P.
Stossel
, and
T.
Ito
, “
Thiol oxidation of actin produces dimers that enhance the elasticity of the F-actin network
,”
Biophys. J.
76
,
2208
2215
(
1999
).
53.
O.
Esue
,
Y.
Tseng
, and
D.
Wirtz
, “
Mechanical shear can accelerate the gelation of actin filament networks
,”
Phys. Rev. Lett.
95
,
048301
(
2005
).
54.
R. H.
Ewoldt
,
M. T.
Johnston
, and
L. M.
Caretta
, “
Experimental challenges of shear rheology: How to avoid bad data
,” in
Complex Fluids in Biological Systems: Experiment, Theory, and Computation
, edited by
S. E.
Spagnolie
(
Springer
,
New York
,
2015
), pp.
207
241
.
55.
S.
Kirinčič
and
C.
Klofutar
, “
Viscosity of aqueous solutions of poly(ethylene glycol)s at 298.15 K
,”
Fluid Phase Equilib.
155
,
311
325
(
1999
).
56.
L.
He
and
B.
Niemeyer
, “
A novel correlation for protein diffusion coefficients based on molecular weight and radius of gyration
,”
Biotechnol. Prog.
19
,
544
548
(
2003
).
57.
L.
Hong
and
J.
Lei
, “
Scaling law for the radius of gyration of proteins and its dependence on hydrophobicity
,”
J. Polym. Sci., Part B: Polym. Phys.
47
,
207
214
(
2009
).
58.
S. C.
Weber
,
A. J.
Spakowitz
, and
J. A.
Theriot
, “
Nonthermal ATP-dependent fluctuations contribute to the in vivo motion of chromosomal loci
,”
Proc. Natl. Acad. Sci. U. S. A.
109
,
7338
7343
(
2012
).
59.
R. J.
Ellis
, “
Macromolecular crowding: Obvious but underappreciated
,”
Trends Biochem. Sci.
26
,
597
604
(
2001
).
60.
D.
Marenduzzo
,
C.
Micheletti
, and
P. R.
Cook
, “
Entropy-driven genome organization
,”
Biophys. J.
90
,
3712
3721
(
2006
).
61.
T. T.
Falzone
,
M.
Lenz
,
D. R.
Kovar
, and
M. L.
Gardel
, “
Assembly kinetics determine the architecture of α-actinin crosslinked F-actin networks
,”
Nat. Commun.
3
,
861
(
2012
).
62.
E.
Farge
and
A. C.
Maggs
, “
Dynamic scattering from semiflexible polymers
,”
Macromolecules
26
,
5041
5044
(
1993
).
63.
R.
Götter
,
K.
Kroy
,
E.
Frey
,
M.
Bärmann
, and
E.
Sackmann
, “
Dynamic light scattering from semidilute actin solutions: A study of hydrodynamic screening, filament bending stiffness, and the effect of tropomyosin/troponin-binding
,”
Macromolecules
29
,
30
36
(
1996
).
64.
K.
Kroy
and
E.
Frey
, “
Dynamic scattering from solutions of semiflexible polymers
,”
Phys. Rev. E
55
,
3092
3101
(
1997
).
65.
M. M. A. E.
Claessens
,
M.
Bathe
,
E.
Frey
, and
A. R.
Bausch
, “
Actin-binding proteins sensitively mediate F-actin bundle stiffness
,”
Nat. Mater.
5
,
748
753
(
2006
).
66.
G. M.
Grason
and
R. F.
Bruinsma
, “
Chirality and equilibrium biopolymer bundles
,”
Phys. Rev. Lett.
99
,
098101
(
2007
).
67.
N. S.
Gov
, “
Packing defects and the width of biopolymer bundles
,”
Phys. Rev. E
78
,
011916
(
2008
).
68.
B.-Y.
Ha
and
A. J.
Liu
, “
Effect of non-pairwise-additive interactions on bundles of rodlike polyelectrolytes
,”
Phys. Rev. Lett.
81
,
1011
1014
(
1998
).
69.
X.
Chen
,
S.
Roeters
,
F.
Cavanna
,
J.
Alvarado
, and
C.
Baiz
, “
Crowding alters F-actin secondary structure and hydration
,”
Commun. Biol.
6
,
900
(
2023
).
70.
R.
Cheng
et al, “
Protein–polymer mixtures in the colloid limit: Aggregation, sedimentation, and crystallization
,”
J. Chem. Phys.
155
,
114901
(
2021
).
71.
B.
Sung
,
H. H.
Wensink
, and
E.
Grelet
, “
Depletion-driven morphological transitions in hexagonal crystallites of virus rods
,”
Soft Matter
15
,
9520
9527
(
2019
).
72.
Z.
Dogic
and
S.
Fraden
, “
Development of model colloidal liquid crystals and the kinetics of the isotropic–smectic transition
,”
Philos. Trans. R. Soc., A
359
,
997
1015
(
2001
).
73.
M.
Adams
,
Z.
Dogic
,
S. L.
Keller
, and
S.
Fraden
, “
Entropically driven microphase transitions in mixtures of colloidal rods and spheres
,”
Nature
393
,
349
352
(
1998
).
74.
Z.
Dogic
and
S.
Fraden
, “
Phase behavior of rod-like viruses and virus–sphere mixtures
,” in
Soft Matter
(
John Wiley & Sons, Ltd.
,
2005
), Vol.
1–86
.
75.
N.
Kazem
,
C.
Majidi
, and
C. E.
Maloney
, “
Gelation and mechanical response of patchy rods
,”
Soft Matter
11
,
7877
7887
(
2015
).
76.
M. G.
Noro
and
D.
Frenkel
, “
Extended corresponding-states behavior for particles with variable range attractions
,”
J. Chem. Phys.
113
,
2941
2944
(
2000
).
77.
R. J.
Baxter
, “
Percus–Yevick equation for hard spheres with surface adhesion
,”
J. Chem. Phys.
49
,
2770
2774
(
1968
).
78.
M.
López de Haro
et al, “
Virial coefficients and demixing in the Asakura–Oosawa model
,”
J. Chem. Phys.
142
,
014902
(
2015
).
79.
Y.
Shin
and
C. P.
Brangwynne
, “
Liquid phase condensation in cell physiology and disease
,”
Science
357
,
eaaf4382
(
2017
).
80.
D. R.
Scheff
et al, “
Actin filament alignment causes mechanical hysteresis in cross-linked networks
,”
Soft Matter
17
,
5499
5507
(
2021
).
81.
M.
Preciado López
et al, “
Chapter seventeen—In vitro reconstitution of dynamic microtubules interacting with actin filament networks
,” in
Methods in Enzymology
, edited by
R. D.
Vale
(
Academic Press
,
2014
), Vol.
540
, pp.
301
320
.
82.
S.
Bhattacharjee
, “
DLS and zeta potential—What they are and what they are not?
,”
J. Controlled Release
235
,
337
351
(
2016
).
83.
K.
Guo
,
J.
Shillcock
, and
R.
Lipowsky
, “
Self-assembly of actin monomers into long filaments: Brownian dynamics simulations
,”
J. Chem. Phys.
131
,
015102
(
2009
).
You do not currently have access to this content.