The population-averaged contact maps generated by the chromosome conformation capture technique provide important information about the average frequency of contact between pairs of chromatin loci as a function of the genetic distance between them. However, these datasets do not tell us anything about the joint statistics of simultaneous contacts between genomic loci in individual cells. This kind of statistical information can be extracted using the single-cell Hi-C method, which is capable of detecting a large fraction of simultaneous contacts within a single cell, as well as through modern methods of fluorescent labeling and super-resolution imaging. Motivated by the prospect of the imminent availability of relevant experimental data, in this work, we theoretically model the joint statistics of pairs of contacts located along a line perpendicular to the main diagonal of the single-cell contact map. The analysis is performed within the framework of an ideal polymer model with quenched disorder of random loops, which, as previous studies have shown, allows us to take into account the influence of the loop extrusion process on the conformational properties of interphase chromatin.

1.
M.
Ganji
,
I. A.
Shaltiel
,
S.
Bisht
,
E.
Kim
,
A.
Kalichava
,
C. H.
Haering
, and
C.
Dekker
, “
Real-time imaging of DNA loop extrusion by condensin
,”
Science
360
,
102
(
2018
).
2.
S.
Golfier
,
T.
Quail
,
H.
Kimura
, and
J.
Brugués
, “
Cohesin and condensin extrude DNA loops in a cell cycle-dependent manner
,”
eLife
9
,
e53885
(
2020
).
3.
M.
Kong
,
E. E.
Cutts
,
D.
Pan
,
F.
Beuron
,
T.
Kaliyappan
,
C.
Xue
,
E. P.
Morris
,
A.
Musacchio
,
A.
Vannini
, and
E. C.
Greene
, “
Human condensin I and II drive extensive ATP-dependent compaction of nucleosome-bound DNA
,”
Mol. cell
79
,
99
(
2020
).
4.
I. F.
Davidson
,
B.
Bauer
,
D.
Goetz
,
W.
Tang
,
G.
Wutz
, and
J.-M.
Peters
, “
DNA loop extrusion by human cohesin
,”
Science
366
,
1338
(
2019
).
5.
Y.
Kim
,
Z.
Shi
,
H.
Zhang
,
I. J.
Finkelstein
, and
H.
Yu
, “
Human cohesin compacts DNA by loop extrusion
,”
Science
366
,
1345
(
2019
).
6.
J.-K.
Ryu
,
A. J.
Katan
,
E. O.
van der Sluis
,
T.
Wisse
,
R.
de Groot
,
C. H.
Haering
, and
C.
Dekker
, “
The condensin holocomplex cycles dynamically between open and collapsed states
,”
Nat. Struct. Mol. Biol.
27
,
1134
(
2020
).
7.
E. J.
Banigan
and
L. A.
Mirny
, “
Loop extrusion: Theory meets single-molecule experiments
,”
Curr. Opin. Cell Biol.
64
,
124
(
2020
).
8.
K.
Kimura
,
V. V.
Rybenkov
,
N. J.
Crisona
,
T.
Hirano
, and
N. R.
Cozzarelli
, “
13S condensin actively reconfigures DNA by introducing global positive writhe: Implications for chromosome condensation
,”
Cell
98
,
239
(
1999
).
9.
K.
Nasmyth
, “
Disseminating the genome: Joining, resolving, and separating sister chromatids during mitosis and meiosis
,”
Annu. Rev. Genet.
35
,
673
(
2001
).
10.
A.
Riggs
, “
DNA methylation and late replication probably aid cell memory, and type I DNA reeling could aid chromosome folding and enhancer function
,”
Philos. Trans. R. Soc. London, Ser. B
326
,
285
(
1990
).
11.
K. E.
Polovnikov
,
H. B.
Brandão
,
S.
Belan
,
B.
Slavov
,
M.
Imakaev
, and
L. A.
Mirny
, “
Crumpled polymer with loops recapitulates key features of chromosome organization
,”
Phys. Rev. X
13
,
041029
(
2023
).
12.
S.
Belan
and
D.
Starkov
, “
Influence of active loop extrusion on the statistics of triple contacts in the model of interphase chromosomes
,”
JETP Lett.
115
,
763
(
2022
).
13.
S.
Belan
and
V.
Parfenyev
, “
Footprints of loop extrusion in statistics of intra-chromosomal distances: An analytically solvable model
,”
J. Chem. Phys.
160
(
12
),
124901
(
2024
).
14.
B.
Slavov
and
K.
Polovnikov
, “
Intrachain distances in a crumpled polymer with random loops
,”
JETP Lett.
118
,
208
(
2023
).
15.
D. I.
Cattoni
,
A. M.
Cardozo Gizzi
,
M.
Georgieva
,
M.
Di Stefano
,
A.
Valeri
,
D.
Chamousset
,
C.
Houbron
,
S.
Déjardin
,
J.-B.
Fiche
,
I.
González
et al, “
Single-cell absolute contact probability detection reveals chromosomes are organized by multiple low-frequency yet specific interactions
,”
Nat. Commun.
8
,
1753
(
2017
).
16.
J.
Gassler
,
H. B.
Brandão
,
M.
Imakaev
,
I. M.
Flyamer
,
S.
Ladstätter
,
W. A.
Bickmore
,
J.-M.
Peters
,
L. A.
Mirny
, and
K.
Tachibana
, “
A mechanism of cohesin-dependent loop extrusion organizes zygotic genome architecture
,”
EMBO J.
36
,
3600
(
2017
).
17.
T.
Nagano
,
Y.
Lubling
,
T. J.
Stevens
,
S.
Schoenfelder
,
E.
Yaffe
,
W.
Dean
,
E. D.
Laue
,
A.
Tanay
, and
P.
Fraser
, “
Single-cell Hi-C reveals cell-to-cell variability in chromosome structure
,”
Nature
502
,
59
(
2013
).
18.
T. J.
Stevens
,
D.
Lando
,
S.
Basu
,
L. P.
Atkinson
,
Y.
Cao
,
S. F.
Lee
,
M.
Leeb
,
K. J.
Wohlfahrt
,
W.
Boucher
,
A.
O’Shaughnessy-Kirwan
et al, “
3D structures of individual mammalian genomes studied by single-cell Hi-C
,”
Nature
544
,
59
(
2017
).
19.
T.
Nagano
,
Y.
Lubling
,
E.
Yaffe
,
S. W.
Wingett
,
W.
Dean
,
A.
Tanay
, and
P.
Fraser
, “
Single-cell Hi-C for genome-wide detection of chromatin interactions that occur simultaneously in a single cell
,”
Nat. Protoc.
10
,
1986
(
2015
).
20.
V.
Ramani
,
X.
Deng
,
R.
Qiu
,
C.
Lee
,
C. M.
Disteche
,
W. S.
Noble
,
J.
Shendure
, and
Z.
Duan
, “
Sci-Hi-C: A single-cell Hi-C method for mapping 3D genome organization in large number of single cells
,”
Methods
170
,
61
(
2020
).
21.
A. A.
Galitsyna
and
M. S.
Gelfand
, “
Single-cell Hi-C data analysis: Safety in numbers
,”
Briefings Bioinf.
22
,
bbab316
(
2021
).
22.
P. I.
Kos
,
A. A.
Galitsyna
,
S. V.
Ulianov
,
M. S.
Gelfand
,
S. V.
Razin
, and
A. V.
Chertovich
, “
Perspectives for the reconstruction of 3D chromatin conformation using single cell Hi-C data
,”
PLoS Comput. Biol.
17
,
e1009546
(
2021
).
23.
R.
Zhang
,
T.
Zhou
, and
J.
Ma
, “
Multiscale and integrative single-cell Hi-C analysis with Higashi
,”
Nat. Biotechnol.
40
,
254
(
2022
).
24.
H. D.
Ou
,
S.
Phan
,
T. J.
Deerinck
,
A.
Thor
,
M. H.
Ellisman
, and
C. C.
O’shea
, “
ChromEMT: Visualizing 3D chromatin structure and compaction in interphase and mitotic cells
,”
Science
357
,
eaag0025
(
2017
).
25.
B.
Bintu
,
L. J.
Mateo
,
J.-H.
Su
,
N. A.
Sinnott-Armstrong
,
M.
Parker
,
S.
Kinrot
,
K.
Yamaya
,
A. N.
Boettiger
, and
X.
Zhuang
, “
Super-resolution chromatin tracing reveals domains and cooperative interactions in single cells
,”
Science
362
,
eaau1783
(
2018
).
26.
G.
Nir
,
I.
Farabella
,
C.
Pérez Estrada
,
C. G.
Ebeling
,
B. J.
Beliveau
,
H. M.
Sasaki
,
S. D.
Lee
,
S. C.
Nguyen
,
R. B.
McCole
,
S.
Chattoraj
et al, “
Walking along chromosomes with super-resolution imaging, contact maps, and integrative modeling
,”
PLoS Genet.
14
,
e1007872
(
2018
).
27.
A.
Boettiger
and
S.
Murphy
, “
Advances in chromatin imaging at kilobase-scale resolution
,”
Trends Genet.
36
,
273
(
2020
).
28.
R.
Kempfer
and
A.
Pombo
, “
Methods for mapping 3D chromosome architecture
,”
Nat. Rev. Genet.
21
,
207
(
2020
).
29.
J.-H.
Su
,
P.
Zheng
,
S. S.
Kinrot
,
B.
Bintu
, and
X.
Zhuang
, “
Genome-scale imaging of the 3D organization and transcriptional activity of chromatin
,”
Cell
182
,
1641
(
2020
).
30.
M.
Liu
,
Y.
Lu
,
B.
Yang
,
Y.
Chen
,
J. S.
Radda
,
M.
Hu
,
S. G.
Katz
, and
S.
Wang
, “
Multiplexed imaging of nucleome architectures in single cells of mammalian tissue
,”
Nat. Commun.
11
,
2907
(
2020
).
31.
L.
Xie
and
Z.
Liu
, “
Single-cell imaging of genome organization and dynamics
,”
Mol. Syst. Biol.
17
,
e9653
(
2021
).
32.
Y.
Li
,
A.
Eshein
,
R. K.
Virk
,
A.
Eid
,
W.
Wu
,
J.
Frederick
,
D.
VanDerway
,
S.
Gladstein
,
K.
Huang
,
A. R.
Shim
et al, “
Nanoscale chromatin imaging and analysis platform bridges 4D chromatin organization with molecular function
,”
Sci. Adv.
7
,
eabe4310
(
2021
).
33.
M.
Gabriele
,
H. B.
Brandão
,
S.
Grosse-Holz
,
A.
Jha
,
G. M.
Dailey
,
C.
Cattoglio
,
T.-H. S.
Hsieh
,
L.
Mirny
,
C.
Zechner
, and
A. S.
Hansen
, “
Dynamics of CTCF- and cohesin-mediated chromatin looping revealed by live-cell imaging
,”
Science
376
,
496
(
2022
).
34.
G.
Fudenberg
,
N.
Abdennur
,
M.
Imakaev
,
A.
Goloborodko
, and
L. A.
Mirny
, “
Emerging evidence of chromosome folding by loop extrusion
,”
Cold Spring Harbor Symp. Quant. Biol.
82
,
45
55
(
2017
).
35.
A.
Goloborodko
,
J. F.
Marko
, and
L. A.
Mirny
, “
Chromosome compaction by active loop extrusion
,”
Biophys. J.
110
,
2162
(
2016
).
36.
A. Y.
Grosberg
and
A.
Khokhlov
,
Statistical Physics of Macromolecules
(
AIP Press
,
Woodbury, NY
,
1994
).
37.
L.-X.
Zhang
and
A.
Xia
, “
Probability of triple contacts in polymer chains
,”
Eur. Polym. J.
37
,
1263
(
2001
).
38.
J.
Nuebler
,
G.
Fudenberg
,
M.
Imakaev
,
N.
Abdennur
, and
L.
Mirny
, “
Chromatin organization by an interplay of loop extrusion and compartmental segregation
,”
Proc. Natl. Acad. Sci. U. S. A.
115
,
30a
(
2018
).
39.
A.
Hafner
and
A.
Boettiger
, “
The spatial organization of transcriptional control
,”
Nat. Rev. Genet.
24
,
53
(
2022
).
You do not currently have access to this content.