A complex interplay of structural, electronic, and vibrational degrees of freedom underpins the fate of molecular excited states. Organic assemblies exhibit a myriad of excited-state decay processes, such as symmetry-breaking charge separation (SB-CS), excimer (EX) formation, singlet fission, and energy transfer. Recent studies of cofacial and slip-stacked perylene-3,4:9,10-bis(dicarboximide) (PDI) multimers demonstrate that slight variations in core substituents and H- or J-type aggregation can determine whether the system follows an SB-CS pathway or an EX one. However, questions regarding the relative importance of structural properties and molecular vibrations in driving the excited-state dynamics remain. Here, we use a combination of two-dimensional electronic spectroscopy, femtosecond stimulated Raman spectroscopy, and quantum chemistry computations to compare the photophysics of two PDI dimers. The dimer with 1,7-bis(pyrrolidin-1′-yl) substituents (5PDI2) undergoes ultrafast SB-CS from a photoexcited mixed state, while the dimer with bis-1,7-(3′,5′-di-t-butylphenoxy) substituents (PPDI2) rapidly forms an EX state. Examination of their quantum beating features reveals that SB-CS in 5PDI2 is driven by the collective vibronic coupling of two or more excited-state vibrations. In contrast, we observe signatures of low-frequency vibrational coherence transfer during EX formation by PPDI2, which aligns with several previous studies. We conclude that key electronic and structural differences between 5PDI2 and PPDI2 determine their markedly different photophysics.

1.
T.
Kim
,
W.
Kim
,
O.
Vakuliuk
,
D. T.
Gryko
, and
D.
Kim
, “
Two-step charge separation passing through the partial charge-transfer state in a molecular dyad
,”
J. Am. Chem. Soc.
142
,
1564
1573
(
2020
).
2.
C.
Lin
,
T.
Kim
,
J. D.
Schultz
,
R. M.
Young
, and
M. R.
Wasielewski
, “
Accelerating symmetry-breaking charge separation in a perylenediimide trimer through a vibronically coherent dimer intermediate
,”
Nat. Chem.
14
,
786
793
(
2022
).
3.
S.
Kang
,
T.
Kim
,
Y.
Hong
,
F.
Würthner
, and
D.
Kim
, “
Charge-delocalized state and coherent vibrational dynamics in rigid PBI H-aggregates
,”
J. Am. Chem. Soc.
143
,
9825
9833
(
2021
).
4.
C. E.
Ramirez
,
S.
Chen
,
N. E.
Powers-Riggs
,
I.
Schlesinger
,
R. M.
Young
, and
M. R.
Wasielewski
, “
Symmetry-breaking charge separation in the solid state: Tetra(phenoxy)perylenediimide polycrystalline films
,”
J. Am. Chem. Soc.
142
,
18243
18250
(
2020
).
5.
A. F.
Coleman
,
M.
Chen
,
J.
Zhou
,
J.
Shin
,
Y.
Wu
,
R. M.
Young
, and
M. R.
Wasielewski
, “
Reversible symmetry-breaking charge separation in a series of perylenediimide cyclophanes
,”
J. Phys. Chem. C
124
,
10408
(
2020
).
6.
P.
Spenst
,
R. M.
Young
,
M. R.
Wasielewski
, and
F.
Würthner
, “
Guest and solvent modulated photo-driven charge separation and triplet generation in a perylene bisimide cyclophane
,”
Chem. Sci.
7
,
5428
5434
(
2016
).
7.
P.
Spenst
and
F.
Würthner
, “
A perylene bisimide cyclophane as a ‘turn-on’ and ‘turn-off’ fluorescence probe
,”
Angew. Chem., Int. Ed.
54
,
10165
10168
(
2015
).
8.
Y.
Hong
,
F.
Schlosser
,
W.
Kim
,
F.
Würthner
, and
D.
Kim
, “
Ultrafast symmetry-breaking charge separation in a perylene bisimide dimer enabled by vibronic coupling and breakdown of adiabaticity
,”
J. Am. Chem. Soc.
144
,
15539
15548
(
2022
).
9.
F. C.
Spano
, “
Symmetry-breaking charge separation and null aggregates
,”
J. Phys. Chem. C
128
,
248
260
(
2024
).
10.
R. E.
Cook
,
B. T.
Phelan
,
R. J.
Kamire
,
M. B.
Majewski
,
R. M.
Young
, and
M. R.
Wasielewski
, “
Excimer formation and symmetry-breaking charge transfer in cofacial perylene dimers
,”
J. Phys. Chem. A
121
,
1607
1615
(
2017
).
11.
K. E.
Brown
,
W. A.
Salamant
,
L. E.
Shoer
,
R. M.
Young
, and
M. R.
Wasielewski
, “
Direct observation of ultrafast excimer formation in covalent perylenediimide dimers using near-infrared transient absorption spectroscopy
,”
J. Phys. Chem. Lett.
5
,
2588
2593
(
2014
).
12.
E. A.
Margulies
,
L. E.
Shoer
,
S. W.
Eaton
, and
M. R.
Wasielewski
, “
Excimer formation in cofacial and slip-stacked perylene-3,4:9,10-bis(dicarboximide) dimers on a redox-inactive triptycene scaffold
,”
Phys. Chem. Chem. Phys.
16
,
23735
23742
(
2014
).
13.
A. L.
Bialas
and
F. C.
Spano
, “
A Holstein–Peierls approach to excimer spectra: The evolution from vibronically structured to unstructured emission
,”
J. Phys. Chem. C
126
,
4067
4081
(
2022
).
14.
Y.
Hong
,
J.
Kim
,
W.
Kim
,
C.
Kaufmann
,
H.
Kim
,
F.
Würthner
, and
D.
Kim
, “
Efficient multiexciton state generation in charge-transfer-coupled perylene bisimide dimers via structural control
,”
J. Am. Chem. Soc.
142
,
7845
7857
(
2020
).
15.
T.
Kim
,
C.
Lin
,
J. D.
Schultz
,
R. M.
Young
, and
M. R.
Wasielewski
, “
π-stacking-dependent vibronic couplings drive excited-state dynamics in perylenediimide assemblies
,”
J. Am. Chem. Soc.
144
,
11386
11396
(
2022
).
16.
R. M.
Young
and
M. R.
Wasielewski
, “
Mixed electronic states in molecular dimers: Connecting singlet fission, excimer formation, and symmetry-breaking charge transfer
,”
Acc. Chem. Res.
53
,
1957
1968
(
2020
).
17.
E.
Thyrhaug
,
R.
Tempelaar
,
M. J. P.
Alcocer
,
K.
Zidek
,
D.
Bina
,
J.
Knoester
,
T. L. C.
Jansen
, and
D.
Zigmantas
, “
Identification and characterization of diverse coherences in the Fenna–Matthews–Olson complex
,”
Nat. Chem.
10
,
780
786
(
2018
).
18.
J.
Kim
,
T. C.
Nguyen-Phan
,
A. T.
Gardiner
,
R. J.
Cogdell
,
G. D.
Scholes
, and
M.
Cho
, “
Low-frequency vibronic mixing modulates the excitation energy flow in bacterial light-harvesting complex II
,”
J. Phys. Chem. Lett.
12
,
6292
6298
(
2021
).
19.
J. C.
Dean
,
T.
Mirkovic
,
Z. S. D.
Toa
,
D. G.
Oblinsky
, and
G. D.
Scholes
, “
Vibronic enhancement of algae light harvesting
,”
Chem
1
,
858
872
(
2016
).
20.
E. A.
Arsenault
,
A. J.
Schile
,
D. T.
Limmer
, and
G. R.
Fleming
, “
Vibronic coupling in energy transfer dynamics and two-dimensional electronic–vibrational spectra
,”
J. Chem. Phys.
155
,
054201
(
2021
).
21.
E. A.
Arsenault
,
Y.
Yoneda
,
M.
Iwai
,
K. K.
Niyogi
, and
G. R.
Fleming
, “
Vibronic mixing enables ultrafast energy flow in light-harvesting complex II
,”
Nat. Commun.
11
,
1460
(
2020
).
22.
R.
Pandya
,
R. Y. S.
Chen
,
A.
Cheminal
,
T.
Thomas
,
A.
Thampi
,
A.
Tanoh
,
J.
Richter
,
R.
Shivanna
,
F.
Deschler
,
C.
Schnedermann
, and
A.
Rao
, “
Observation of vibronic-coupling-mediated energy transfer in light-harvesting nanotubes stabilized in a solid-state matrix
,”
J. Phys. Chem. Lett.
9
,
5604
5611
(
2018
).
23.
V.
Tiwari
and
D. M.
Jonas
, “
Electronic energy transfer through non-adiabatic vibrational–electronic resonance. II. 1D spectra for a dimer
,”
J. Chem. Phys.
148
,
084308
(
2018
).
24.
V.
Tiwari
,
W. K.
Peters
, and
D. M.
Jonas
, “
Electronic energy transfer through non-adiabatic vibrational–electronic resonance. I. Theory for a dimer
,”
J. Chem. Phys.
147
,
154308
(
2017
).
25.
V.
Tiwari
,
W. K.
Peters
, and
D. M.
Jonas
, “
Electronic resonance with anticorrelated pigment vibrations drives photosynthetic energy transfer outside the adiabatic framework
,”
Proc. Natl. Acad. Sci. U. S. A.
110
,
1203
1208
(
2013
).
26.
A.
Chenu
,
N.
Christensson
,
H. F.
Kauffmann
, and
T.
Mancal
, “
Enhancement of vibronic and ground-state vibrational coherences in 2D spectra of photosynthetic complexes
,”
Sci. Rep.
3
,
2029
(
2013
).
27.
S. M.
Falke
,
C. A.
Rozzi
,
D.
Brida
,
M.
Maiuri
et al, “
Coherent ultrafast charge transfer in an organic photovoltaic blend
,”
Science
344
,
1001
1005
(
2014
).
28.
A.
De Sio
and
C.
Lienau
, “
Vibronic coupling in organic semiconductors for photovoltaics
,”
Phys. Chem. Chem. Phys.
19
,
18813
18830
(
2017
).
29.
S. R.
Rather
,
B.
Fu
,
B.
Kudisch
, and
G. D.
Scholes
, “
Interplay of vibrational wavepackets during an ultrafast electron transfer reaction
,”
Nat. Chem.
13
,
70
76
(
2021
).
30.
J. D.
Schultz
,
J. Y.
Shin
,
M.
Chen
,
J. P.
O’Connor
,
R. M.
Young
,
M. A.
Ratner
, and
M. R.
Wasielewski
, “
Influence of vibronic coupling on ultrafast singlet fission in a linear terrylenediimide dimer
,”
J. Am. Chem. Soc.
143
,
2049
2058
(
2021
).
31.
A. A.
Bakulin
,
S. E.
Morgan
,
T. B.
Kehoe
,
M. W. B.
Wilson
,
A. W.
Chin
,
D.
Zigmantas
,
D.
Egorova
, and
A.
Rao
, “
Real-time observation of multiexcitonic states in ultrafast singlet fission using coherent 2D electronic spectroscopy
,”
Nat. Chem.
8
,
16
23
(
2016
).
32.
H.-G.
Duan
,
A.
Jha
,
X.
Li
,
V.
Tiwari
,
H.
Ye
,
P. K.
Nayak
,
X.-L.
Zhu
,
Z.
Li
,
T. J.
Martinez
,
M.
Thorwart
, and
R. J. D.
Miller
, “
Intermolecular vibrations mediate ultrafast singlet fission
,”
Sci. Adv.
6
,
eabb0052
(
2020
).
33.
R.
Tempelaar
and
D. R.
Reichman
, “
Vibronic exciton theory of singlet fission. III. How vibronic coupling and thermodynamics promote rapid triplet generation in pentacene crystals
,”
J. Chem. Phys.
148
,
244701
(
2018
).
34.
R.
Tempelaar
and
D. R.
Reichman
, “
Vibronic exciton theory of singlet fission. I. Linear absorption and the anatomy of the correlated triplet pair state
,”
J. Chem. Phys.
146
,
174703
(
2017
).
35.
R.
Tempelaar
and
D. R.
Reichman
, “
Vibronic exciton theory of singlet fission. II. Two-dimensional spectroscopic detection of the correlated triplet pair state
,”
J. Chem. Phys.
146
,
174704
(
2017
).
36.
K.
Miyata
,
Y.
Kurashige
,
K.
Watanabe
,
T.
Sugimoto
,
S.
Takahashi
,
S.
Tanaka
,
J.
Takeya
,
T.
Yanai
, and
Y.
Matsumoto
, “
Coherent singlet fission activated by symmetry breaking
,”
Nat. Chem.
9
,
983
989
(
2017
).
37.
S.
Patra
,
A.
Sahu
, and
V.
Tiwari
, “
Effective normal modes identify vibrational motions which maximally promote vibronic mixing in excitonically coupled aggregates
,”
J. Chem. Phys.
154
,
111106
(
2021
).
38.
J. M.
Giaimo
,
A. V.
Gusev
, and
M. R.
Wasielewski
, “
Excited-state symmetry breaking in cofacial and linear dimers of a green perylenediimide chlorophyll analogue leading to ultrafast charge separation
,”
J. Am. Chem. Soc.
124
,
8530
8531
(
2002
).
39.
T.
van der Boom
,
R. T.
Hayes
,
Y.
Zhao
,
P. J.
Bushard
,
E. A.
Weiss
, and
M. R.
Wasielewski
, “
Charge transport in photofunctional nanoparticles self-assembled from zinc 5,10,15,20-tetrakis(perylenediimide)porphyrin building blocks
,”
J. Am. Chem. Soc.
124
,
9582
9590
(
2002
).
40.
M. J.
Ahrens
,
L. E.
Sinks
,
B.
Rybtchinski
,
W.
Liu
,
B. A.
Jones
,
J. M.
Giaimo
,
A. V.
Gusev
,
A. J.
Goshe
,
D. M.
Tiede
, and
M. R.
Wasielewski
, “
Self-assembly of supramolecular light-harvesting arrays from covalent multi-chromophore perylene-3,4:9,10-bis(dicarboximide) building blocks
,”
J. Am. Chem. Soc.
126
,
8284
8294
(
2004
).
41.
F. D.
Fuller
and
J. P.
Ogilvie
, “
Experimental implementations of two-dimensional Fourier transform electronic spectroscopy
,”
Annu. Rev. Phys. Chem.
66
,
667
690
(
2015
).
42.
S.
Biswas
,
J.
Kim
,
X.
Zhang
, and
G. D.
Scholes
, “
Coherent two-dimensional and broadband electronic spectroscopies
,”
Chem. Rev.
122
,
4257
4321
(
2022
).
43.
A.
Halpin
,
P. J.
Johnson
,
R.
Tempelaar
,
R. S.
Murphy
,
J.
Knoester
,
T. L.
Jansen
, and
R. J.
Miller
, “
Two-dimensional spectroscopy of a molecular dimer unveils the effects of vibronic coupling on exciton coherences
,”
Nat. Chem.
6
,
196
201
(
2014
).
44.
J. C.
Dean
and
G. D.
Scholes
, “
Coherence spectroscopy in the condensed phase: Insights into molecular structure, environment, and interactions
,”
Acc. Chem. Res.
50
,
2746
2755
(
2017
).
45.
V. R.
Policht
,
A.
Niedringhaus
,
R.
Willow
,
P. D.
Laible
,
D. F.
Bocian
,
C.
Kirmaier
,
D.
Holten
,
T.
Mančal
, and
J. P.
Ogilvie
, “
Hidden vibronic and excitonic structure and vibronic coherence transfer in the bacterial reaction center
,”
Sci. Adv.
8
,
eabk0953
(
2022
).
46.
J. M.
Giaimo
,
J. V.
Lockard
,
L. E.
Sinks
,
A. M.
Scott
,
T. M.
Wilson
, and
M. R.
Wasielewski
, “
Excited singlet states of covalently bound, cofacial dimers and trimers of perylene-3,4:9,10-bis(dicarboximide)s
,”
J. Phys. Chem. A
112
,
2322
2330
(
2008
).
47.
A.
Mandal
,
M.
Chen
,
E.
Foszcz
,
J. D.
Schultz
,
N. M.
Kearns
,
R. M.
Young
,
M. T.
Zanni
, and
M. R.
Wasielewski
, “
Two-dimensional electronic spectroscopy reveals excitation energy-dependent state mixing during singlet fission in a terrylenediimide dimer
,”
J. Am. Chem. Soc.
140
,
17907
17914
(
2018
).
48.
J. D.
Schultz
,
A. F.
Coleman
,
A.
Mandal
,
J. Y.
Shin
,
M. A.
Ratner
,
R. M.
Young
, and
M. R.
Wasielewski
, “
Steric interactions impact vibronic and vibrational coherences in perylenediimide cyclophanes
,”
J. Phys. Chem. Lett.
10
,
7498
7504
(
2019
).
49.
A. C.
Jones
,
M. B.
Kunz
,
I.
Tigges-Green
, and
M. T.
Zanni
, “
Dual spectral phase and diffraction angle compensation of a broadband AOM 4-f pulse-shaper for ultrafast spectroscopy
,”
Opt. Express
27
,
37236
37247
(
2019
).
50.
Z.
Zhang
,
K. L.
Wells
,
E. W. J.
Hyland
, and
H.-S.
Tan
, “
Phase-cycling schemes for pump–probe beam geometry two-dimensional electronic spectroscopy
,”
Chem. Phys. Lett.
550
,
156
161
(
2012
).
51.
J. A.
Myers
,
K. L.
Lewis
,
P. F.
Tekavec
, and
J. P.
Ogilvie
, “
Two-color two-dimensional Fourier transform electronic spectroscopy with a pulse-shaper
,”
Opt. Express
16
,
17420
17428
(
2008
).
52.
A.
Mandal
,
J. D.
Schultz
,
Y.-L.
Wu
,
A. F.
Coleman
,
R. M.
Young
, and
M. R.
Wasielewski
, “
Transient two-dimensional electronic spectroscopy: Coherent dynamics at arbitrary times along the reaction coordinate
,”
J. Phys. Chem. Lett.
10
,
3509
3515
(
2019
).
53.
R. M.
Young
,
S. M.
Dyar
,
J. C.
Barnes
,
M.
Juricek
,
J. F.
Stoddart
,
D. T.
Co
, and
M. R.
Wasielewski
, “
Ultrafast conformational dynamics of electron transfer in ExBox4+ ⊂ perylene
,”
J. Phys. Chem. A
117
,
12438
12448
(
2013
).
54.
K. E.
Brown
,
B. S.
Veldkamp
,
D. T.
Co
, and
M. R.
Wasielewski
, “
Vibrational dynamics of a perylene-perylenediimide donor–acceptor dyad probed with femtosecond stimulated Raman spectroscopy
,”
J. Phys. Chem. Lett.
3
,
2362
2366
(
2012
).
55.
Y.
Shao
,
Z.
Gan
,
E.
Epifanovsky
,
A. T. B.
Gilbert
,
M.
Wormit
,
J.
Kussmann
,
A. W.
Lange
,
A.
Behn
,
J.
Deng
,
X.
Feng
,
D.
Ghosh
,
M.
Goldey
,
P. R.
Horn
,
L. D.
Jacobson
,
I.
Kaliman
,
R. Z.
Khaliullin
,
T.
Kuś
,
A.
Landau
,
J.
Liu
,
E. I.
Proynov
,
Y. M.
Rhee
,
R. M.
Richard
,
M. A.
Rohrdanz
,
R. P.
Steele
,
E. J.
Sundstrom
,
H. L.
Woodcock
,
P. M.
Zimmerman
,
D.
Zuev
,
B.
Albrecht
,
E.
Alguire
,
B.
Austin
,
G. J. O.
Beran
,
Y. A.
Bernard
,
E.
Berquist
,
K.
Brandhorst
,
K. B.
Bravaya
,
S. T.
Brown
,
D.
Casanova
,
C.-M.
Chang
,
Y.
Chen
,
S. H.
Chien
,
K. D.
Closser
,
D. L.
Crittenden
,
M.
Diedenhofen
,
R. A.
DiStasio
,
H.
Do
,
A. D.
Dutoi
,
R. G.
Edgar
,
S.
Fatehi
,
L.
Fusti-Molnar
,
A.
Ghysels
,
A.
Golubeva-Zadorozhnaya
,
J.
Gomes
,
M. W. D.
Hanson-Heine
,
P. H. P.
Harbach
,
A. W.
Hauser
,
E. G.
Hohenstein
,
Z. C.
Holden
,
T.-C.
Jagau
,
H.
Ji
,
B.
Kaduk
,
K.
Khistyaev
,
J.
Kim
,
J.
Kim
,
R. A.
King
,
P.
Klunzinger
,
D.
Kosenkov
,
T.
Kowalczyk
,
C. M.
Krauter
,
K. U.
Lao
,
A. D.
Laurent
,
K. V.
Lawler
,
S. V.
Levchenko
,
C. Y.
Lin
,
F.
Liu
,
E.
Livshits
,
R. C.
Lochan
,
A.
Luenser
,
P.
Manohar
,
S. F.
Manzer
,
S.-P.
Mao
,
N.
Mardirossian
,
A. V.
Marenich
,
S. A.
Maurer
,
N. J.
Mayhall
,
E.
Neuscamman
,
C. M.
Oana
,
R.
Olivares-Amaya
,
D. P.
O’Neill
,
J. A.
Parkhill
,
T. M.
Perrine
,
R.
Peverati
,
A.
Prociuk
,
D. R.
Rehn
,
E.
Rosta
,
N. J.
Russ
,
S. M.
Sharada
,
S.
Sharma
,
D. W.
Small
,
A.
Sodt
,
T.
Stein
,
D.
Stück
,
Y.-C.
Su
,
A. J. W.
Thom
,
T.
Tsuchimochi
,
V.
Vanovschi
,
L.
Vogt
,
O.
Vydrov
,
T.
Wang
,
M. A.
Watson
,
J.
Wenzel
,
A.
White
,
C. F.
Williams
,
J.
Yang
,
S.
Yeganeh
,
S. R.
Yost
,
Z.-Q.
You
,
I. Y.
Zhang
,
X.
Zhang
,
Y.
Zhao
,
B. R.
Brooks
,
G. K. L.
Chan
,
D. M.
Chipman
,
C. J.
Cramer
,
W. A.
Goddard
,
M. S.
Gordon
,
W. J.
Hehre
,
A.
Klamt
,
H. F.
Schaefer
,
M. W.
Schmidt
,
C. D.
Sherrill
,
D. G.
Truhlar
,
A.
Warshel
,
X.
Xu
,
A.
Aspuru-Guzik
,
R.
Baer
,
A. T.
Bell
,
N. A.
Besley
,
J.-D.
Chai
,
A.
Dreuw
,
B. D.
Dunietz
,
T. R.
Furlani
,
S. R.
Gwaltney
,
C.-P.
Hsu
,
Y.
Jung
,
J.
Kong
,
D. S.
Lambrecht
,
W.
Liang
,
C.
Ochsenfeld
,
V. A.
Rassolov
,
L. V.
Slipchenko
,
J. E.
Subotnik
,
T.
Van Voorhis
,
J. M.
Herbert
,
A. I.
Krylov
,
P. M. W.
Gill
, and
M.
Head-Gordon
, “
Advances in molecular quantum chemistry contained in the Q-Chem 4 program package
,”
Mol. Phys.
113
,
184
215
(
2015
).
56.
N. J.
Hestand
and
F. C.
Spano
, “
Expanded theory of H- and J-molecular aggregates: The effects of vibronic coupling and intermolecular charge transfer
,”
Chem. Rev.
118
,
7069
7163
(
2018
).
57.
M.
Kasha
,
H. R.
Rawls
, and
M.
Ashraf El-Bayoumi
, “
The exciton model in molecular spectroscopy
,”
Pure Appl. Chem.
11
,
371
392
(
1965
).
58.
N. J.
Hestand
and
F. C.
Spano
, “
Molecular aggregate photophysics beyond the Kasha model: Novel design principles for organic materials
,”
Acc. Chem. Res.
50
,
341
350
(
2017
).
59.
K.
Kistler
,
C.
Pochas
,
H.
Yamagata
,
S.
Matsika
, and
F.
Spano
, “
Absorption, circular dichroism, and photoluminescence in perylene diimide bichromophores: Polarization-dependent H- and J-aggregate behavior
,”
J. Phys. Chem. B
116
,
77
86
(
2012
).
60.
E. F.
Valeev
,
V.
Coropceanu
,
D. A.
da Silva Filho
,
S.
Salman
, and
J.-L.
Brédas
, “
Effect of electronic polarization on charge-transport parameters in molecular organic semiconductors
,”
J. Am. Chem. Soc.
128
,
9882
9886
(
2006
).
61.
N. J.
Hestand
and
F. C.
Spano
, “
Interference between Coulombic and CT-mediated couplings in molecular aggregates: H- to J-aggregate transformation in perylene-based π-stacks
,”
J. Chem. Phys.
143
,
244707
(
2015
).
62.
C.
Kaufmann
,
D.
Bialas
,
M.
Stolte
, and
F.
Würthner
, “
Discrete π-stacks of perylene bisimide dyes within folda-dimers: Insight into long- and short-range exciton coupling
,”
J. Am. Chem. Soc.
140
,
9986
(
2018
).
63.
T.
Kim
,
Y.
Feng
,
J. P.
O’Connor
,
J. F.
Stoddart
,
R. M.
Young
, and
M. R.
Wasielewski
, “
Coherent vibronic wavepackets show structure-directed charge flow in host–guest donor–acceptor complexes
,”
J. Am. Chem. Soc.
145
,
8389
8400
(
2023
).
64.
J. M.
Fisher
,
J. P.
O’Connor
,
P. J.
Brown
,
T.
Kim
,
E. R.
Lorenzo
,
R. M.
Young
, and
M. R.
Wasielewski
, “
Two-dimensional electronic spectroscopy reveals vibrational modes coupled to charge transfer in a Julolidine–BODIPY dyad
,”
J. Phys. Chem. A
127
,
2946
2957
(
2023
).
65.
Y.
Hong
,
W.
Kim
,
T.
Kim
,
C.
Kaufmann
,
H.
Kim
,
F.
Würthner
, and
D.
Kim
, “
Real‐time observation of structural dynamics triggering excimer formation in a perylene bisimide folda‐dimer by ultrafast time‐domain Raman spectroscopy
,”
Angew. Chem., Int. Ed.
61
,
e202114474
(
2022
).
66.
L.
Wang
,
G. B.
Griffin
,
A.
Zhang
,
F.
Zhai
,
N. E.
Williams
,
R. F.
Jordan
, and
G. S.
Engel
, “
Controlling quantum-beating signals in 2D electronic spectra by packing synthetic heterodimers on single-walled carbon nanotubes
,”
Nat. Chem.
9
,
219
225
(
2017
).
67.
J.
Cao
,
R. J.
Cogdell
,
D. F.
Coker
,
H.-G.
Duan
,
J.
Hauer
,
U.
Kleinekathöfer
,
T. L. C.
Jansen
,
T.
Mančal
,
R. J. D.
Miller
,
J. P.
Ogilvie
,
V. I.
Prokhorenko
,
T.
Renger
,
H.-S.
Tan
,
R.
Tempelaar
,
M.
Thorwart
,
E.
Thyrhaug
,
S.
Westenhoff
, and
D.
Zigmantas
, “
Quantum biology revisited
,”
Sci. Adv.
6
,
eaaz4888
(
2020
).
68.
V.
Butkus
,
D.
Zigmantas
,
L.
Valkunas
, and
D.
Abramavicius
, “
Vibrational vs electronic coherences in 2D spectrum of molecular systems
,”
Chem. Phys. Lett.
545
,
40
43
(
2012
).
69.
J. D.
Schultz
,
T.
Kim
,
J. P.
O’Connor
,
R. M.
Young
, and
M. R.
Wasielewski
, “
Coupling between harmonic vibrations influences quantum beating signatures in two-dimensional electronic spectra
,”
J. Phys. Chem. C
126
,
120
131
(
2022
).
70.
J. C.
Dean
,
S. R.
Rather
,
D. G.
Oblinsky
,
E.
Cassette
,
C. C.
Jumper
, and
G. D.
Scholes
, “
Broadband transient absorption and two-dimensional electronic spectroscopy of methylene blue
,”
J. Phys. Chem. A
119
,
9098
9108
(
2015
).
71.
C. A.
Farfan
and
D. B.
Turner
, “
Interference among multiple vibronic modes in two-dimensional electronic spectroscopy
,”
Mathematics
8
,
157
(
2020
).
72.
Y.
Song
,
S. N.
Clafton
,
R. D.
Pensack
,
T. W.
Kee
, and
G. D.
Scholes
, “
Vibrational coherence probes the mechanism of ultrafast electron transfer in polymer–fullerene blends
,”
Nat. Commun.
5
,
4933
(
2014
).
73.
J. S.
Higgins
,
M. A.
Allodi
,
L. T.
Lloyd
,
J. P.
Otto
,
S. H.
Sohail
,
R. G.
Saer
,
R. E.
Wood
,
S. C.
Massey
,
P.-C.
Ting
,
R. E.
Blankenship
, and
G. S.
Engel
, “
Redox conditions correlated with vibronic coupling modulate quantum beats in photosynthetic pigment–protein complexes
,”
Proc. Natl. Acad. Sci. U. S. A.
118
,
e2112817118
(
2021
).
74.
J. M.
Alzola
,
N. A.
Tcyrulnikov
,
P. J.
Brown
,
T. J.
Marks
,
M. R.
Wasielewski
, and
R. M.
Young
, “
Symmetry-breaking charge separation in phenylene-bridged perylenediimide dimers
,”
J. Phys. Chem. A
125
,
7633
7643
(
2021
).
75.
W.
Kim
,
T.
Kim
,
S.
Kang
,
Y.
Hong
,
F.
Würthner
, and
D.
Kim
, “
Tracking structural evolution during symmetry-breaking charge separation in quadrupolar perylene bisimide with time-resolved impulsive stimulated Raman spectroscopy
,”
Angew. Chem., Int. Ed.
59
,
8571
(
2020
).
You do not currently have access to this content.