Organic–inorganic hybrid perovskite quantum wells exhibit electronic structures with properties intermediate between those of inorganic semiconductors and molecular crystals. In these systems, periodic layers of organic spacer molecules occupy the interstitial spaces between perovskite sheets, thereby confining electronic excitations to two dimensions. Here, we investigate spectroscopic line broadening mechanisms for phonons coupled to excitons in lead-iodide layered perovskites with phenyl ethyl ammonium (PEA) and azobenzene ethyl ammonium (AzoEA) spacer cations. Using a modified Elliot line shape analysis for the absorbance and photoluminescence spectra, polaron binding energies of 11.2 and 17.5 meV are calculated for (PEA)2PbI4 and (AzoEA)2PbI4, respectively. To determine whether the polaron stabilization processes influence the dephasing mechanisms of coupled phonons, five-pulse coherent Raman spectroscopies are applied to the two systems under electronically resonant conditions. The prominence of inhomogeneous line broadening mechanisms detected in (AzoEA)2PbI4 suggests that thermal fluctuations involving the deformable organic phase broaden the distributions of phonon frequencies within the quantum wells. In addition, our data indicate that polaron stabilization primarily involves photoinduced reorganization of the organic phases for both systems, whereas the impulsively excited phonons represent less than 10% of the total polaron binding energy. The signal generation mechanisms associated with our fifth-order coherent Raman experiments are explored with a perturbative model in which cumulant expansions are used to account for time-coincident vibrational dephasing and polaron stabilization processes.

1.
P. Y.
Yu
and
M.
Cardona
,
Fundamentals of Semiconductors
(
Springer-Verlag
,
Berlin
,
2010
).
2.
H.
Haug
and
S. W.
Koch
,
Quantum Theory of the Optical and Electronic Properties of Semiconductors
(
World Scientific
,
Singapore
,
2009
).
3.
M.
Fox
,
Optical Properties of Solids
(
Oxford University Press
,
Oxford
,
2010
).
4.
D. D.
Smith
,
R. D.
Mead
, and
A. H.
Zewail
,
Chem. Phys. Lett.
50
(
3
),
358
363
(
1977
).
5.
J. P.
Lemaistre
and
A.
Blumen
, in
Structure and Dynamics of Molecular Systems
, edited by
R.
Daudel
,
J. P.
Korb
,
J. P.
Lemaistre
, and
J.
Maruani
(
Springer
,
Dordrecht, Netherlands
,
1985
), pp.
101
117
.
6.
M.
Pope
and
C. E.
Swenberg
,
Electronic Processes in Organic Crystals and Polymers
(
Oxford University Press
,
Oxford
,
1999
).
7.
S.
Tretiak
,
K.
Igumenshchev
, and
V.
Chernyak
,
Phys. Rev. B
71
(
3
),
033201
(
2005
).
8.
9.
V.
Coropceanu
,
J.
Cornil
,
D. A.
da Silva Filho
,
Y.
Olivier
,
R.
Silbey
, and
J.-L.
Brédas
,
Chem. Rev.
107
(
4
),
926
952
(
2007
).
10.
R.
Ghosh
and
F. C.
Spano
,
Acc. Chem. Res.
53
(
10
),
2201
2211
(
2020
).
11.
H.
van Amerongen
,
R.
van Grondelle
, and
L.
Valkunas
,
Photosynthetic Excitons
(
World Scientific
,
2000
).
12.
D.
Abramavicius
,
B.
Palmieri
,
D. V.
Voronine
,
F.
Šanda
, and
S.
Mukamel
,
Chem. Rev.
109
(
6
),
2350
2408
(
2009
).
13.
F.
Fassioli
,
R.
Dinshaw
,
P. C.
Arpin
, and
G. D.
Scholes
,
J. R. Soc. Interface
11
(
92
),
20130901
(
2014
).
14.
B.
Saparov
and
D. B.
Mitzi
,
Chem. Rev.
116
(
7
),
4558
4596
(
2016
).
15.
L. M.
Herz
,
J. Phys. Chem. Lett.
9
(
23
),
6853
6863
(
2018
).
16.
Z.
Guo
,
J.
Wang
, and
W.-J.
Yin
,
Energy Environ. Sci.
15
(
2
),
660
671
(
2022
).
17.
K.
Miyata
,
D.
Meggiolaro
,
M. T.
Trinh
,
P. P.
Joshi
,
E.
Mosconi
,
S. C.
Jones
,
F.
De Angelis
, and
X. Y.
Zhu
,
Sci. Adv.
3
(
8
),
e1701217
(
2017
).
18.
A.
Forde
and
D.
Kilin
,
J. Chem. Theory Comput.
17
(
11
),
7224
7236
(
2021
).
19.
W.
Chu
,
W. A.
Saidi
,
J.
Zhao
, and
O. V.
Prezhdo
,
Angew. Chem., Int. Ed.
59
(
16
),
6435
6441
(
2020
).
20.
T.
Ishihara
,
J.
Takahashi
, and
T.
Goto
,
Solid State Commun.
69
(
9
),
933
936
(
1989
).
21.
T.
Ishihara
,
X.
Hong
,
J.
Ding
, and
A. V.
Nurmikko
,
Surf. Sci.
267
(
1–3
),
323
326
(
1992
).
22.
C. C.
Stoumpos
,
D. H.
Cao
,
D. J.
Clark
,
J.
Young
,
J. M.
Rondinelli
,
J. I.
Jang
,
J. T.
Hupp
, and
M. G.
Kanatzidis
,
Chem. Mater.
28
(
8
),
2852
2867
(
2016
).
23.
J.
Yin
,
H.
Li
,
D.
Cortecchia
,
C.
Soci
, and
J.-L.
Brédas
,
ACS Energy Lett.
2
(
2
),
417
423
(
2017
).
24.
D. B.
Straus
and
C. R.
Kagan
,
J. Phys. Chem. Lett.
9
(
6
),
1434
1447
(
2018
).
25.
M. D.
Smith
,
E. J.
Crace
,
A.
Jaffe
, and
H. I.
Karunadasa
,
Annu. Rev. Mater. Res.
48
(
1
),
111
136
(
2018
).
26.
L.
Mao
,
C. C.
Stoumpos
, and
M. G.
Kanatzidis
,
J. Am. Chem. Soc.
141
(
3
),
1171
1190
(
2019
).
27.
A. O.
El-Ballouli
,
O. M.
Bakr
, and
O. F.
Mohammed
,
J. Phys. Chem. Lett.
11
(
14
),
5705
5718
(
2020
).
28.
J.
Sun
,
K.
Wang
,
K.
Ma
,
J. Y.
Park
,
Z.-Y.
Lin
,
B. M.
Savoie
, and
L.
Dou
,
J. Am. Chem. Soc.
145
(
38
),
20694
20715
(
2023
).
29.
J. C.
Blancon
,
A. V.
Stier
,
H.
Tsai
,
W.
Nie
,
C. C.
Stoumpos
,
B.
Traoré
,
L.
Pedesseau
,
M.
Kepenekian
,
F.
Katsutani
,
G. T.
Noe
,
J.
Kono
,
S.
Tretiak
,
S. A.
Crooker
,
C.
Katan
,
M. G.
Kanatzidis
,
J. J.
Crochet
,
J.
Even
, and
A. D.
Mohite
,
Nat. Commun.
9
(
1
),
2254
(
2018
).
30.
O.
Yaffe
,
A.
Chernikov
,
Z. M.
Norman
,
Y.
Zhong
,
A.
Velauthapillai
,
A.
van der Zande
,
J. S.
Owen
, and
T. F.
Heinz
,
Phys. Rev. B
92
(
4
),
045414
(
2015
).
31.
S.
Hurtado Parra
,
D. B.
Straus
,
B. T.
Fichera
,
N.
Iotov
,
C. R.
Kagan
, and
J. M.
Kikkawa
,
ACS Nano
16
(
12
),
21259
21265
(
2022
).
32.
D.
Ghosh
,
E.
Welch
,
A. J.
Neukirch
,
A.
Zakhidov
, and
S.
Tretiak
,
J. Phys. Chem. Lett.
11
(
9
),
3271
3286
(
2020
).
33.
W.
Tao
,
Y.
Zhang
, and
H.
Zhu
,
Acc. Chem. Res.
55
(
3
),
345
353
(
2022
).
34.
S.
Neutzner
,
F.
Thouin
,
D.
Cortecchia
,
A.
Petrozza
,
C.
Silva
, and
A. R.
Srimath Kandada
,
Phys. Rev. Mater.
2
(
6
),
064605
(
2018
).
35.
F.
Thouin
,
D. A.
Valverde-Chávez
,
C.
Quarti
,
D.
Cortecchia
,
I.
Bargigia
,
D.
Beljonne
,
A.
Petrozza
,
C.
Silva
, and
A. R.
Srimath Kandada
,
Nat. Mater.
18
(
4
),
349
356
(
2019
).
36.
A. R.
Srimath Kandada
and
C.
Silva
,
J. Phys. Chem. Lett.
11
(
9
),
3173
3184
(
2020
).
37.
C. M.
Mauck
,
A.
France-Lanord
,
A. C.
Hernandez Oendra
,
N. S.
Dahod
,
J. C.
Grossman
, and
W. A.
Tisdale
,
J. Phys. Chem. C
123
(
45
),
27904
27916
(
2019
).
38.
J.
Fu
,
M.
Li
,
A.
Solanki
,
Q.
Xu
,
Y.
Lekina
,
S.
Ramesh
,
Z. X.
Shen
, and
T. C.
Sum
,
Adv. Mater.
33
(
11
),
2006233
(
2021
).
39.
N. S.
Dahod
,
A.
France-Lanord
,
W.
Paritmongkol
,
J. C.
Grossman
, and
W. A.
Tisdale
,
J. Chem. Phys.
153
(
4
),
044710
(
2020
).
40.
S.
Mukamel
,
Principles of Nonlinear Optical Spectroscopy
(
Oxford University Press
,
New York
,
1995
).
41.
A.
Nitzan
,
Chemical Dynamics in Condensed Phases: Relaxation, Transfer, and Reactions in Condensed Molecular Systems
(
Oxford University Press
,
2014
).
42.
T.
Buckup
and
M.
Motzkus
,
Annu. Rev. Phys. Chem.
65
(
1
),
39
57
(
2014
).
43.
Z.
Guo
,
B. P.
Molesky
,
T. P.
Cheshire
, and
A. M.
Moran
,
J. Chem. Phys.
143
(
12
),
124202
(
2015
).
44.
D. T.
Valley
,
D. P.
Hoffman
, and
R. A.
Mathies
,
Phys. Chem. Chem. Phys.
17
(
14
),
9231
9240
(
2015
).
45.
B. P.
Molesky
,
Z.
Guo
,
T. P.
Cheshire
, and
A. M.
Moran
,
J. Chem. Phys.
145
(
3
),
034203
(
2016
).
46.
B. P.
Molesky
,
Z.
Guo
,
T. P.
Cheshire
, and
A. M.
Moran
,
J. Chem. Phys.
145
(
18
),
180901
(
2016
).
47.
W. O.
Hutson
,
A. P.
Spencer
, and
E.
Harel
,
J. Phys. Chem. Lett.
7
(
18
),
3636
3640
(
2016
).
48.
Z.
Guo
,
B. P.
Molesky
,
T. P.
Cheshire
, and
A. M.
Moran
,
Top. Curr. Chem.
375
(
6
),
87
(
2017
).
49.
A. P.
Spencer
,
W. O.
Hutson
, and
E.
Harel
,
J. Phys. Chem. C
123
(
11
),
6303
6315
(
2019
).
50.
G.
Fumero
,
C.
Schnedermann
,
G.
Batignani
,
T.
Wende
,
M.
Liebel
,
G.
Bassolino
,
C.
Ferrante
,
S.
Mukamel
,
P.
Kukura
, and
T.
Scopigno
,
Phys. Rev. X
10
(
1
),
011051
(
2020
).
51.
Y.
Yoneda
and
H.
Kuramochi
,
J. Phys. Chem. A
127
(
24
),
5276
5286
(
2023
).
52.
M.
Biliroglu
,
G.
Findik
,
J.
Mendes
,
D.
Seyitliyev
,
L.
Lei
,
Q.
Dong
,
Y.
Mehta
,
V. V.
Temnov
,
F.
So
, and
K.
Gundogdu
,
Nat. Photonics
16
(
4
),
324
329
(
2022
).
53.
Y.
Tanimura
and
S.
Mukamel
,
J. Chem. Phys.
99
(
12
),
9496
9511
(
1993
).
54.
R. F.
Loring
and
S.
Mukamel
,
J. Chem. Phys.
83
(
5
),
2116
2128
(
1985
).
55.
T. l. C.
Jansen
,
J. G.
Snijders
, and
K.
Duppen
,
J. Chem. Phys.
113
(
1
),
307
311
(
2000
).
56.
S.
Palese
,
J. T.
Buontempo
,
Y.
Tanimura
,
S.
Mukamel
,
R. J. D.
Miller
, and
W. T.
Lotshaw
, paper presented at the
Ultrafast Phenomena
,
CA
,
1994
.
57.
J. E.
Ivanecky
and
J. C.
Wright
,
Chem. Phys. Lett.
206
(
5–6
),
437
444
(
1993
).
58.
D. J.
Ulness
,
J. C.
Kirkwood
, and
A. C.
Albrecht
,
J. Chem. Phys.
108
(
10
),
3897
3902
(
1998
).
59.
D. A.
Blank
,
L. J.
Kaufman
, and
G. R.
Fleming
,
J. Chem. Phys.
111
(
7
),
3105
3114
(
1999
).
60.
R. D.
Mehlenbacher
,
B.
Lyons
,
K. C.
Wilson
,
Y.
Du
, and
D. W.
McCamant
,
J. Chem. Phys.
131
(
24
),
244512
(
2009
).
61.
K. C.
Wilson
,
B.
Lyons
,
R.
Mehlenbacher
,
R.
Sabatini
, and
D. W.
McCamant
,
J. Chem. Phys.
131
(
21
),
214502
(
2009
).
62.
B.
Dunlap
,
K. C.
Wilson
, and
D. W.
McCamant
,
J. Phys. Chem. A
117
(
29
),
6205
6216
(
2013
).
63.
B. P.
Molesky
,
Z.
Guo
, and
A. M.
Moran
,
J. Chem. Phys.
142
(
21
),
212405
(
2015
).
64.
B. P.
Molesky
,
P. G.
Giokas
,
Z.
Guo
, and
A. M.
Moran
,
J. Chem. Phys.
141
(
11
),
114202
(
2014
).
65.
T. P.
Cheshire
and
A. M.
Moran
,
J. Chem. Phys.
151
(
10
),
104203
(
2019
).
66.
Y.
Tanimura
and
K.
Okumura
,
J. Chem. Phys.
106
(
6
),
2078
2095
(
1997
).
67.
M.
Stein
,
A.
Breit
,
T.
Fehrentz
,
T.
Gudermann
, and
D.
Trauner
,
Angew. Chem., Int. Ed.
52
(
37
),
9845
9848
(
2013
).
68.
M.
Schönberger
,
M.
Althaus
,
M.
Fronius
,
W.
Clauss
, and
D.
Trauner
,
Nat. Chem.
6
(
8
),
712
719
(
2014
).
69.
K.-z.
Du
,
Q.
Tu
,
X.
Zhang
,
Q.
Han
,
J.
Liu
,
S.
Zauscher
, and
D. B.
Mitzi
,
Inorg. Chem.
56
(
15
),
9291
9302
(
2017
).
70.
N.
Fillafer
,
T.
Seewald
,
L.
Schmidt-Mende
, and
S.
Polarz
,
Beilstein J. Nanotechnol.
11
,
466
479
(
2020
).
71.
A.
Shirakawa
and
T.
Kobayashi
,
Appl. Phys. Lett.
72
(
2
),
147
149
(
1998
).
72.
G.
Cerullo
and
S.
De Silvestri
,
Rev. Sci. Instrum.
74
(
1
),
1
18
(
2003
).
73.
E.
Riedle
,
M.
Beutter
,
S.
Lochbrunner
,
J.
Piel
,
S.
Schenkl
,
S.
Spörlein
, and
W.
Zinth
,
Appl. Phys. B
71
,
457
465
(
2000
).
74.
E.
van Veldhoven
,
C.
Khurmi
,
X.
Zhang
, and
M. A.
Berg
,
ChemPhysChem
8
(
12
),
1761
1765
(
2007
).
75.
C.
Khurmi
and
M. A.
Berg
,
J. Opt. Soc. Am. B
26
(
12
),
2357
2362
(
2009
).
76.
M. A.
Berg
,
Advances in Chemical Physics
(
John Wiley and Sons, Inc.
,
2012
), pp.
1
102
, https://onlinelibrary.wiley.com/doi/10.1002/9781118197714.ch1.
77.
L.
Lepetit
,
G.
Chériaux
, and
M.
Joffre
,
J. Opt. Soc. Am. B
12
(
12
),
2467
2474
(
1995
).
78.
A. A.
Maznev
,
K. A.
Nelson
, and
J. A.
Rogers
,
Opt. Lett.
23
(
16
),
1319
1321
(
1998
).
79.
G. D.
Goodno
and
R. J. D.
Miller
, paper presented at the
International Quantum Electronics Conference
,
San Francisco, CA
,
1998
.
80.
G. D.
Goodno
,
V.
Astinov
, and
R. J. D.
Miller
,
J. Phys. Chem. B
103
(
4
),
603
607
(
1999
).
81.
Q.-H.
Xu
,
Y.-Z.
Ma
, and
G. R.
Fleming
,
Chem. Phys. Lett.
338
(
4–6
),
254
262
(
2001
).
82.
J. D.
Hybl
,
A.
Albrecht Ferro
, and
D. M.
Jonas
,
J. Chem. Phys.
115
(
14
),
6606
6622
(
2001
).
83.
T.
Brixner
,
T.
Mančal
,
I. V.
Stiopkin
, and
G. R.
Fleming
,
J. Chem. Phys.
121
(
9
),
4221
4236
(
2004
).
84.
M. L.
Cowan
,
J. P.
Ogilvie
, and
R. J. D.
Miller
,
Chem. Phys. Lett.
386
(
1–3
),
184
189
(
2004
).
85.
A. M.
Moran
,
J. B.
Maddox
,
J. W.
Hong
,
J.
Kim
,
R. A.
Nome
,
G. C.
Bazan
,
S.
Mukamel
, and
N. F.
Scherer
,
J. Chem. Phys.
124
(
19
),
194904
(
2006
).
86.
B.
Wu
,
A.
Wang
,
J.
Fu
,
Y.
Zhang
,
C.
Yang
,
Y.
Gong
,
C.
Jiang
,
M.
Long
,
G.
Zhou
,
S.
Yue
,
W.
Ma
, and
X.
Liu
,
Sci. Adv.
9
(
39
),
eadi9347
(
2023
).
87.
W.
Tao
,
C.
Zhang
,
Q.
Zhou
,
Y.
Zhao
, and
H.
Zhu
,
Nat. Commun.
12
(
1
),
1400
(
2021
).
88.
A. B.
Myers
,
R. A.
Mathies
,
D. J.
Tannor
, and
E. J.
Heller
,
J. Chem. Phys.
77
(
8
),
3857
3866
(
1982
).
89.
A. M.
Kelley
,
J. Phys. Chem. A
103
(
35
),
6891
6903
(
1999
).
90.
J. L.
McHale
,
Molecular Spectroscopy
(
Prentice-Hall, Inc.
,
1999
).
91.
S. Y.
Lee
and
E. J.
Heller
,
J. Chem. Phys.
71
(
12
),
4777
4788
(
1979
).
92.
M. R.
Waterland
,
D.
Stockwell
, and
A. M.
Kelley
,
J. Chem. Phys.
114
(
14
),
6249
6258
(
2001
).
93.
R.
Venkatramani
and
S.
Mukamel
,
J. Chem. Phys.
117
(
24
),
11089
11101
(
2002
).
94.
N.
Demirdöven
,
M.
Khalil
,
O.
Golonzka
, and
A.
Tokmakoff
,
J. Phys. Chem. A
105
(
34
),
8025
8030
(
2001
).
95.
Y.
Zhang
and
M. A.
Berg
,
J. Chem. Phys.
115
(
9
),
4223
4230
(
2001
).
96.
M.
Cho
,
Chem. Rev.
108
(
4
),
1331
1418
(
2008
).
97.
K. J.
Kubarych
,
C. J.
Milne
,
S.
Lin
,
V.
Astinov
, and
R. J. D.
Miller
,
J. Chem. Phys.
116
(
5
),
2016
2042
(
2002
).
98.
G.
Zimmerman
,
L.-Y.
Chow
, and
U.-J.
Paik
,
J. Am. Chem. Soc.
80
(
14
),
3528
3531
(
1958
).
99.
M.
Kober-Czerny
,
S. G.
Motti
,
P.
Holzhey
,
B.
Wenger
,
J.
Lim
,
L. M.
Herz
, and
H. J.
Snaith
,
Adv. Funct. Mater.
32
(
36
),
2203064
(
2022
).
100.
H. A.
Nguyen
,
G.
Dixon
,
F. Y.
Dou
,
S.
Gallagher
,
S.
Gibbs
,
D. M.
Ladd
,
E.
Marino
,
J. C.
Ondry
,
J. P.
Shanahan
,
E. S.
Vasileiadou
,
S.
Barlow
,
D. R.
Gamelin
,
D. S.
Ginger
,
D. M.
Jonas
,
M. G.
Kanatzidis
,
S. R.
Marder
,
D.
Morton
,
C. B.
Murray
,
J. S.
Owen
,
D. V.
Talapin
,
M. F.
Toney
, and
B. M.
Cossairt
,
Chem. Rev.
123
(
12
),
7890
7952
(
2023
).
101.
Y.-Q.
Zhao
,
Q.-R.
Ma
,
B.
Liu
,
Z.-L.
Yu
,
J.
Yang
, and
M.-Q.
Cai
,
Nanoscale
10
(
18
),
8677
8688
(
2018
).
102.
M.
Dyksik
,
S.
Wang
,
W.
Paritmongkol
,
D. K.
Maude
,
W. A.
Tisdale
,
M.
Baranowski
, and
P.
Plochocka
,
J. Phys. Chem. Lett.
12
(
6
),
1638
1643
(
2021
).
103.
P. J.
Steinbach
,
K.
Chu
,
H.
Frauenfelder
,
J. B.
Johnson
,
D. C.
Lamb
,
G. U.
Nienhaus
,
T. B.
Sauke
, and
R. D.
Young
,
Biophys. J.
61
(
1
),
235
245
(
1992
).
104.
A. T. N.
Kumar
,
L.
Zhu
,
J. F.
Christian
,
A. A.
Demidov
, and
P. M.
Champion
,
J. Phys. Chem. B
105
(
32
),
7847
7856
(
2001
).
105.
V. A.
Lórenz-Fonfría
and
H.
Kandori
,
Appl. Spectrosc.
60
(
4
),
407
417
(
2006
).
106.
Z.
Ouyang
,
N.
Zhou
,
M. G.
McNamee
,
L.
Yan
,
O. F.
Williams
,
Z.
Gan
,
R.
Gao
,
W.
You
, and
A. M.
Moran
,
J. Chem. Phys.
156
(
8
),
084202
(
2021
).
107.
G.
Rainò
,
M. A.
Becker
,
M. I.
Bodnarchuk
,
R. F.
Mahrt
,
M. V.
Kovalenko
, and
T.
Stöferle
,
Nature
563
(
7733
),
671
675
(
2018
).
108.
K.
Kwac
and
M.
Cho
,
J. Phys. Chem. A
107
(
31
),
5903
5912
(
2003
).
109.
R. F.
Loring
,
Y. J.
Yan
, and
S.
Mukamel
,
J. Phys. Chem.
91
(
6
),
1302
1305
(
1987
).
110.
R. F.
Loring
,
Y. J.
Yan
, and
S.
Mukamel
,
J. Chem. Phys.
87
(
10
),
5840
5857
(
1987
).
111.
M.
Cho
,
H. M.
Vaswani
,
T.
Brixner
,
J.
Stenger
, and
G. R.
Fleming
,
J. Phys. Chem. B
109
(
21
),
10542
10556
(
2005
).
You do not currently have access to this content.