We employ polymer integral equation theory to study a simplified model of semiflexible polymerized ionic liquids (PolyILs) that interact via hard core repulsions and short range screened Coulomb interactions. The multi-scale structure in real and Fourier space of PolyILs (ions chosen to mimic Li, Na, K, Br, PF6, and TFSI) are determined as a function of melt density, Coulomb interaction strength, and ion size. Comparisons with a homopolymer melt, a neutral polymer–solvent-like athermal mixture, and an atomic ionic liquid are carried out to elucidate the distinct manner that ions mediate changes of polymer packing, the role of excluded volume effects, and the influence of chain connectivity, respectively. The effect of Coulomb strength depends in a rich manner on ion size and density, reflecting the interplay of steric packing, ion adsorption, and charge layering. Ion-mediated bridging of monomers is found, which intensifies for larger ions. Intermediate range charge layering correlations are characterized by a many-body screening length that grows with PolyIL density, cooling, and Coulomb strength, in disagreement with Debye–Hückel theory, but in accord with experiments. Qualitative differences in the collective structure, including an ion-size-dependent bifurcation of the polymer structure factor peak and pair correlation function, are predicted. The monomer cage order parameter increases significantly, but its collective ion counterpart decreases, as ions become smaller. Such behaviors allow one to categorize PolyILs into two broad classes of small and large ions. Dynamical implications of the predicted structural results are qualitatively discussed.

1.
V.
Bocharova
and
A. P.
Sokolov
, “
Perspectives for polymer electrolytes: A view from fundamentals of ionic conductivity
,”
Macromolecules
53
(
11
),
4141
4157
(
2020
).
2.
S. D.
Jones
,
J.
Bamford
,
G. H.
Fredrickson
, and
R. A.
Segalman
, “
Decoupling ion transport and matrix dynamics to make high performance solid polymer electrolytes
,”
ACS Polymers Au
2
(
6
),
430
448
(
2022
).
3.
J.
Mindemark
,
M. J.
Lacey
,
T.
Bowden
, and
D.
Brandell
, “
Beyond PEO—Alternative host materials for Li+-conducting solid polymer electrolytes
,”
Prog. Polym. Sci.
81
,
114
143
(
2018
).
4.
K. S.
Ngai
,
S.
Ramesh
,
K.
Ramesh
, and
J. C.
Juan
, “
A review of polymer electrolytes: Fundamental, approaches and applications
,”
Ionics
22
,
1259
1279
(
2016
).
5.
D. T.
Hallinan
, Jr.
and
N. P.
Balsara
, “
Polymer electrolytes
,”
Annu. Rev. Mater. Res.
43
,
503
525
(
2013
).
6.
L.
Fan
,
S.
Wei
,
S.
Li
,
Q.
Li
, and
Y.
Lu
, “
Recent progress of the solid-state electrolytes for high-energy metal-based batteries
,”
Adv. Energy Mater.
8
(
11
),
1702657
(
2018
).
7.
H.
Zhang
,
C.
Li
,
M.
Piszcz
,
E.
Coya
,
T.
Rojo
,
L. M.
Rodriguez-Martinez
,
M.
Armand
, and
Z.
Zhou
, “
Single lithium-ion conducting solid polymer electrolytes: Advances and perspectives
,”
Chem. Soc. Rev.
46
(
3
),
797
815
(
2017
).
8.
V.
Ganesan
, “
Ion transport in polymeric ionic liquids: Recent developments and open questions
,”
Mol. Syst. Des. Eng.
4
(
2
),
280
293
(
2019
).
9.
E. W.
Stacy
,
C. P.
Gainaru
,
M.
Gobet
,
Z.
Wojnarowska
,
V.
Bocharova
,
S. G.
Greenbaum
, and
A. P.
Sokolov
, “
Fundamental limitations of ionic conductivity in polymerized ionic liquids
,”
Macromolecules
51
(
21
),
8637
8645
(
2018
).
10.
U. H.
Choi
,
Y.
Ye
,
D.
Salas de la Cruz
,
W.
Liu
,
K. I.
Winey
,
Y. A.
Elabd
,
J.
Runt
, and
R. H.
Colby
, “
Dielectric and viscoelastic responses of imidazolium-based ionomers with different counterions and side chain lengths
,”
Macromolecules
47
(
2
),
777
790
(
2014
).
11.
K. I. S.
Mongcopa
,
D. A.
Gribble
,
W. S.
Loo
,
M.
Tyagi
,
S. A.
Mullin
, and
N. P.
Balsara
, “
Segmental dynamics measured by quasi-elastic neutron scattering and ion transport in chemically distinct polymer electrolytes
,”
Macromolecules
53
(
7
),
2406
2411
(
2020
).
12.
A.
Marcolongo
and
N.
Marzari
, “
Ionic correlations and failure of Nernst-Einstein relation in solid-state electrolytes
,”
Phys. Rev. Mater.
1
(
2
),
025402
(
2017
).
13.
U. H.
Choi
,
A.
Mittal
,
T. L.
Price
, Jr.
,
M.
Lee
,
H. W.
Gibson
,
J.
Runt
, and
R. H.
Colby
, “
Molecular volume effects on the dynamics of polymerized ionic liquids and their monomers
,”
Electrochim. Acta
175
,
55
61
(
2015
).
14.
U. H.
Choi
,
A.
Mittal
,
T. L.
Price
, Jr
,
H. W.
Gibson
,
J.
Runt
, and
R. H.
Colby
, “
Polymerized ionic liquids with enhanced static dielectric constants
,”
Macromolecules
46
(
3
),
1175
1186
(
2013
).
15.
P.
Kuray
,
T.
Noda
,
A.
Matsumoto
,
C.
Iacob
,
T.
Inoue
,
M. A.
Hickner
, and
J.
Runt
, “
Ion transport in pendant and backbone polymerized ionic liquids
,”
Macromolecules
52
(
17
),
6438
6448
(
2019
).
16.
V.
Bocharova
,
Z.
Wojnarowska
,
P.-F.
Cao
,
Y.
Fu
,
R.
Kumar
,
B.
Li
,
V. N.
Novikov
,
S.
Zhao
,
A.
Kisliuk
,
T.
Saito
et al, “
Influence of chain rigidity and dielectric constant on the glass transition temperature in polymerized ionic liquids
,”
J. Phys. Chem. B
121
(
51
),
11511
11519
(
2017
).
17.
N. S.
Schauser
,
A.
Nikolaev
,
P. M.
Richardson
,
S.
Xie
,
K.
Johnson
,
E. M.
Susca
,
H.
Wang
,
R.
Seshadri
,
R. J.
Clément
,
J.
Read de Alaniz
, and
R. A.
Segalman
, “
Glass transition temperature and ion binding determine conductivity and lithium–ion transport in polymer electrolytes
,”
ACS Macro Lett.
10
(
1
),
104
109
(
2021
).
18.
A. L.
Agapov
and
A. P.
Sokolov
, “
Decoupling ionic conductivity from structural relaxation: A way to solid polymer electrolytes?
,”
Macromolecules
44
(
11
),
4410
4414
(
2011
).
19.
C. T.
Imrie
,
M. D.
Ingram
, and
G. S.
McHattie
, “
Ion transport in glassy polymer electrolytes
,”
J. Phys. Chem. B
103
(
20
),
4132
4138
(
1999
).
20.
J. R.
Sangoro
,
C.
Iacob
,
A. L.
Agapov
,
Y.
Wang
,
S.
Berdzinski
,
H.
Rexhausen
,
V.
Strehmel
,
C.
Friedrich
,
A. P.
Sokolov
, and
F.
Kremer
, “
Decoupling of ionic conductivity from structural dynamics in polymerized ionic liquids
,”
Soft Matter
10
(
20
),
3536
3540
(
2014
).
21.
H.
Sasabe
and
S.
Saito
, “
Relationship between ionic mobility and segmental mobility in polymers in the liquid state
,”
Polym. J.
3
(
5
),
624
630
(
1972
).
22.
F.
Fan
,
Y.
Wang
,
T.
Hong
,
M. F.
Heres
,
T.
Saito
, and
A. P.
Sokolov
, “
Ion conduction in polymerized ionic liquids with different pendant groups
,”
Macromolecules
48
(
13
),
4461
4470
(
2015
).
23.
Z.
Wojnarowska
,
H.
Feng
,
Y.
Fu
,
S.
Cheng
,
B.
Carroll
,
R.
Kumar
,
V. N.
Novikov
,
A. M.
Kisliuk
,
T.
Saito
,
N.-G.
Kang
et al, “
Effect of chain rigidity on the decoupling of ion motion from segmental relaxation in polymerized ionic liquids: Ambient and elevated pressure studies
,”
Macromolecules
50
(
17
),
6710
6721
(
2017
).
24.
S.
Zhao
,
S.
Song
,
Y.
Wang
,
J.
Keum
,
J.
Zhu
,
Y.
He
,
A. P.
Sokolov
, and
P.-F.
Cao
, “
Unraveling the role of neutral units for single-ion conducting polymer electrolytes
,”
ACS Appl. Mater. Interfaces
13
(
43
),
51525
51534
(
2021
).
25.
S. D.
Jones
,
H.
Nguyen
,
P. M.
Richardson
,
Y.-Q.
Chen
,
K. E.
Wyckoff
,
C. J.
Hawker
,
R. J.
Clément
,
G. H.
Fredrickson
, and
R. A.
Segalman
, “
Design of polymeric zwitterionic solid electrolytes with superionic lithium transport
,”
ACS Cent. Sci.
8
(
2
),
169
175
(
2022
).
26.
S.
Zhao
,
Y.
Zhang
,
H.
Pham
,
J.-M. Y.
Carrillo
,
B. G.
Sumpter
,
J.
Nanda
,
N. J.
Dudney
,
T.
Saito
,
A. P.
Sokolov
, and
P.-F.
Cao
, “
Improved single-ion conductivity of polymer electrolyte via accelerated segmental dynamics
,”
ACS Appl. Energy Mater.
3
(
12
),
12540
12548
(
2020
).
27.
W.
Mei
,
A. J.
Rothenberger
,
J. E.
Bostwick
,
J. M.
Rinehart
,
R. J.
Hickey
, and
R. H.
Colby
, “
Zwitterions raise the dielectric constant of soft materials
,”
Phys. Rev. Lett.
127
(
22
),
228001
(
2021
).
28.
K.
Kishimoto
,
T.
Suzawa
,
T.
Yokota
,
T.
Mukai
,
H.
Ohno
, and
T.
Kato
, “
Nano-segregated polymeric film exhibiting high ionic conductivities
,”
J. Am. Chem. Soc.
127
(
44
),
15618
15623
(
2005
).
29.
B. A.
Paren
,
R.
Raghunathan
,
I. J.
Knudson
,
J. L.
Freyer
,
L. M.
Campos
, and
K. I.
Winey
, “
Impact of building block structure on ion transport in cyclopropenium-based polymerized ionic liquids
,”
Polym. Chem.
10
(
22
),
2832
2839
(
2019
).
30.
N. S.
Schauser
,
P. M.
Richardson
,
A.
Nikolaev
,
P.
Cooke
,
G. A.
Kliegle
,
E. M.
Susca
,
K.
Johnson
,
H.
Wang
,
J.
Read de Alaniz
,
R.
Clément
, and
R. A.
Segalman
, “
Optimum in ligand density for conductivity in polymer electrolytes
,”
Mol. Syst. Des. Eng.
6
(
12
),
1025
1038
(
2021
).
31.
N. S.
Schauser
,
R.
Seshadri
, and
R. A.
Segalman
, “
Multivalent ion conduction in solid polymer systems
,”
Mol. Syst. Des. Eng.
4
(
2
),
263
279
(
2019
).
32.
E. B.
Trigg
and
K. I.
Winey
, “
Nanoscale layers in polymers to promote ion transport
,”
Mol. Syst. Des. Eng.
4
(
2
),
252
262
(
2019
).
33.
M.
Heres
,
T.
Cosby
,
E. U.
Mapesa
,
H.
Liu
,
S.
Berdzinski
,
V.
Strehmel
,
M.
Dadmun
,
S. J.
Paddison
, and
J.
Sangoro
, “
Ion transport in glassy polymerized ionic liquids: Unraveling the impact of the molecular structure
,”
Macromolecules
52
(
1
),
88
95
(
2018
).
34.
H. K.
Kashyap
,
H. V. R.
Annapureddy
,
F. O.
Raineri
, and
C. J.
Margulis
, “
How is charge transport different in ionic liquids and electrolyte solutions?
,”
J. Phys. Chem. B
115
(
45
),
13212
13221
(
2011
).
35.
H.
Liu
and
S. J.
Paddison
, “
Alkyl chain length dependence of backbone-to-backbone distance in polymerized ionic liquids: An atomistic simulation perspective on scattering
,”
Macromolecules
50
(
7
),
2889
2895
(
2017
).
36.
H.
Liu
and
S. J.
Paddison
, “
Direct comparison of atomistic molecular dynamics simulations and X-ray scattering of polymerized ionic liquids
,”
ACS Macro Lett.
5
(
4
),
537
543
(
2016
).
37.
S.
Mogurampelly
,
J. R.
Keith
, and
V.
Ganesan
, “
Mechanisms underlying ion transport in polymerized ionic liquids
,”
J. Am. Chem. Soc.
139
(
28
),
9511
9514
(
2017
).
38.
L. J.
Abbott
and
A. L.
Frischknecht
, “
Nanoscale structure and morphology of sulfonated polyphenylenes via atomistic simulations
,”
Macromolecules
50
(
3
),
1184
1192
(
2017
).
39.
J. R.
Keith
,
S.
Mogurampelly
,
B. K.
Wheatle
, and
V.
Ganesan
, “
Influence of side chain linker length on ion-transport properties of polymeric ionic liquids
,”
J. Polym. Sci., Part B: Polym. Phys.
55
(
23
),
1718
1723
(
2017
).
40.
J. R.
Keith
,
S.
Mogurampelly
,
F.
Aldukhi
,
B. K.
Wheatle
, and
V.
Ganesan
, “
Influence of molecular weight on ion-transport properties of polymeric ionic liquids
,”
Phys. Chem. Chem. Phys.
19
(
43
),
29134
29145
(
2017
).
41.
B. K.
Wheatle
,
N. A.
Lynd
, and
V.
Ganesan
, “
Effect of polymer polarity on ion transport: A competition between ion aggregation and polymer segmental dynamics
,”
ACS Macro Lett.
7
(
10
),
1149
1154
(
2018
).
42.
H.
Liu
,
X.
Luo
,
A. P.
Sokolov
, and
S. J.
Paddison
, “
Quantitative evidence of mobile ion hopping in polymerized ionic liquids
,”
J. Phys. Chem. B
125
(
1
),
372
381
(
2021
).
43.
B. K.
Wheatle
,
J. R.
Keith
,
S.
Mogurampelly
,
N. A.
Lynd
, and
V.
Ganesan
, “
Influence of dielectric constant on ionic transport in polyether-based electrolytes
,”
ACS Macro Lett.
6
(
12
),
1362
1367
(
2017
).
44.
Z.
Zhu
,
X.
Luo
, and
S. J.
Paddison
, “
Coarse-grained modeling of ion-containing polymers
,”
Chem. Rev.
122
(
12
),
10710
10745
(
2022
).
45.
X.
Luo
and
S. J.
Paddison
, “
Molecular dynamics simulations of ammonium-based acrylate polymerized ionic liquids
,”
J. Electrochem. Soc.
170
(
10
),
106502
(
2023
).
46.
X.
Luo
,
H.
Liu
, and
S. J.
Paddison
, “
Molecular dynamics simulations of polymerized ionic liquids: Mechanism of ion transport with different anions
,”
ACS Appl. Polym. Mater.
3
(
1
),
141
152
(
2020
).
47.
W.
Xiao
,
Q.
Yang
, and
S.
Zhu
, “
Comparing ion transport in ionic liquids and polymerized ionic liquids
,”
Sci. Rep.
10
(
1
),
7825
(
2020
).
48.
Z.
Yang
,
X.
Xu
,
J. F.
Douglas
, and
W.-S.
Xu
, “
Molecular dynamics investigation of the pressure dependence of glass formation in a charged polymer melt
,”
Macromolecules
56
(
11
),
4049
4064
(
2023
).
49.
D.
Ruan
and
D. S.
Simmons
, “
Roles of chain stiffness and segmental rattling in ionomer glass formation
,”
J. Polym. Sci., Part B: Polym. Phys.
53
(
20
),
1458
1469
(
2015
).
50.
Z.
Yang
,
X.
Xu
, and
W.-S.
Xu
, “
Influence of ionic interaction strength on glass formation of an ion-containing polymer melt
,”
Macromolecules
54
(
20
),
9587
9601
(
2021
).
51.
Y.
Fu
,
V.
Bocharova
,
M.
Ma
,
A. P.
Sokolov
,
B. G.
Sumpter
, and
R.
Kumar
, “
Effects of counterion size and backbone rigidity on the dynamics of ionic polymer melts and glasses
,”
Phys. Chem. Chem. Phys.
19
(
40
),
27442
27451
(
2017
).
52.
K.-H.
Shen
,
M.
Fan
, and
L. M.
Hall
, “
Molecular dynamics simulations of ion-containing polymers using generic coarse-grained models
,”
Macromolecules
54
(
5
),
2031
2052
(
2021
).
53.
K. S.
Schweizer
and
J. G.
Curro
, “
Integral equation theories of the structure, thermodynamics, and phase transitions of polymer fluids
,”
Adv. Chem. Phys.
98
,
1
142
(
1997
).
54.
C. M.
Evans
,
C. R.
Bridges
,
G. E.
Sanoja
,
J.
Bartels
, and
R. A.
Segalman
, “
Role of tethered ion placement on polymerized ionic liquid structure and conductivity: Pendant versus backbone charge placement
,”
ACS Macro Lett.
5
(
8
),
925
930
(
2016
).
55.
S.
Mirigian
and
K. S.
Schweizer
, “
Unified theory of activated relaxation in liquids over 14 decades in time
,”
J. Phys. Chem. Lett.
4
(
21
),
3648
3653
(
2013
).
56.
Y.
Zhou
,
B.
Mei
, and
K. S.
Schweizer
, “
Activated relaxation in supercooled monodisperse atomic and polymeric WCA fluids: Simulation and ECNLE theory
,”
J. Chem. Phys.
156
(
11
),
114901
(
2022
).
57.
Y.
Zhou
and
K. S.
Schweizer
, “
Local structure, thermodynamics, and phase behavior of asymmetric particle mixtures: Comparison between integral equation theories and simulation
,”
J. Chem. Phys.
150
(
21
),
214902
(
2019
).
58.
Y.
Zhou
,
B.
Mei
, and
K. S.
Schweizer
, “
Integral equation theory of thermodynamics, pair structure, and growing static length scale in metastable hard sphere and Weeks-Chandler-Andersen fluids
,”
Phys. Rev. E
101
(
4
),
042121
(
2020
).
59.
Y.
Zhou
,
B. M.
Yavitt
,
Z.
Zhou
,
V.
Bocharova
,
D.
Salatto
,
M. K.
Endoh
,
A. E.
Ribbe
,
A. P.
Sokolov
,
T.
Koga
, and
K. S.
Schweizer
, “
Bridging-controlled network microstructure and long-wavelength fluctuations in silica–Poly(2-vinylpyridine) nanocomposites: Experimental results and theoretical analysis
,”
Macromolecules
53
(
16
),
6984
6994
(
2020
).
60.
Y.
Zhou
and
K. S.
Schweizer
, “
PRISM theory of local structure and phase behavior of dense polymer nanocomposites: Improved closure approximation and comparison with simulation
,”
Macromolecules
53
(
22
),
9962
9972
(
2020
).
61.
R.
Kumar
,
B.
Lokitz
,
T. E.
Long
, and
B. G.
Sumpter
, “
Enhanced scattering induced by electrostatic correlations in concentrated solutions of salt-free dipolar and ionic polymers
,”
J. Chem. Phys.
149
(
16
),
163336
(
2018
).
62.
S.-J.
Xie
and
K. S.
Schweizer
, “
Nonuniversal coupling of cage scale hopping and collective elastic distortion as the origin of dynamic fragility diversity in glass-forming polymer liquids
,”
Macromolecules
49
(
24
),
9655
9664
(
2016
).
63.
B.
Mei
,
T.-W.
Lin
,
C. E.
Sing
, and
K. S.
Schweizer
, “
Self-consistent hopping theory of activated relaxation and diffusion of dilute penetrants in dense crosslinked polymer networks
,”
J. Chem. Phys.
158
(
18
),
184901
(
2023
).
64.
S.
Mirigian
and
K. S.
Schweizer
, “
Dynamical theory of segmental relaxation and emergent elasticity in supercooled polymer melts
,”
Macromolecules
48
(
6
),
1901
1913
(
2015
).
65.
B.
Mei
,
T.-W.
Lin
,
G. S.
Sheridan
,
C. M.
Evans
,
C. E.
Sing
, and
K. S.
Schweizer
, “
Structural relaxation and vitrification in dense cross-linked polymer networks: Simulation, theory, and experiment
,”
Macromolecules
55
(
10
),
4159
4173
(
2022
).
66.
B.
Mei
and
K. S.
Schweizer
, “
Penetrant shape effects on activated dynamics and selectivity in polymer melts and networks based on self-consistent cooperative hopping theory
,”
Soft Matter
19
(
45
),
8744
8763
(
2023
).
67.
A.
Ghosh
and
K. S.
Schweizer
, “
Microscopic theory of the effect of caging and physical bonding on segmental relaxation in associating copolymer liquids
,”
Macromolecules
53
(
11
),
4366
4380
(
2020
).
68.
B.
Mei
and
K. S.
Schweizer
, “
Activated penetrant dynamics in glass forming liquids: Size effects, decoupling, slaving, collective elasticity and correlation with matrix compressibility
,”
Soft Matter
17
(
9
),
2624
2639
(
2021
).
69.
B.
Mei
,
G. S.
Sheridan
,
C. M.
Evans
, and
K. S.
Schweizer
, “
Elucidation of the physical factors that control activated transport of penetrants in chemically complex glass-forming liquids
,”
Proc. Natl. Acad. Sci. U. S. A.
119
(
41
),
e2210094119
(
2022
).
70.
B.
Mei
,
Y.
Zhou
, and
K. S.
Schweizer
, “
Experimental test of a predicted dynamics–structure–thermodynamics connection in molecularly complex glass-forming liquids
,”
Proc. Natl. Acad. Sci. U. S. A.
118
(
18
),
e2025341118
(
2021
).
71.
B.
Mei
,
Y.
Zhou
, and
K. S.
Schweizer
, “
Experimental tests of a theoretically predicted noncausal correlation between dynamics and thermodynamics in glass-forming polymer melts
,”
Macromolecules
54
(
21
),
10086
10099
(
2021
).
72.
C.
Balzer
and
A. L.
Frischknecht
, “
Explicit polarization in coarse-grained simulations of ionomer melts
,”
Macromolecules
55
(
22
),
9980
9989
(
2022
).
73.
R. J. F. L. D. E.
Carvalho
and
R.
Evans
, “
The screened Coulomb (Yukawa) charged hard sphere binary fluid
,”
Mol. Phys.
92
(
2
),
211
228
(
1997
).
74.
A. P.
Copestake
and
R.
Evans
, “
Charge ordering and the structure of ionic liquids: Screened Coulomb versus Coulomb interionic potentials
,”
J. Phys. C: Solid State Phys.
15
(
24
),
4961
(
1982
).
75.
A. J.
Archer
,
P.
Hopkins
, and
R.
Evans
, “
Screening in Yukawa fluid mixtures
,”
Phys. Rev. E
74
(
1
),
010402
(
2006
).
76.
B.
Larsen
and
S. A.
Rogde
, “
Studies in statistical mechanics of Coulombic systems. IV. The screened-Coulomb charged hard sphere system and its relation to the restricted primitive model
,”
J. Chem. Phys.
72
(
4
),
2578
2586
(
1980
).
77.
B.
Larsen
and
S. A.
Rogde
, “
Studies in statistical mechanics of Coulombic systems. II. Ergodic problems in Monte Carlo simulations of the restricted primitive model
,”
J. Chem. Phys.
68
(
3
),
1309
1311
(
1978
).
78.
J. S.
Høye
and
L.
Blum
, “
Solution of the Yukawa closure of the Ornstein-Zernike equation
,”
J. Stat. Phys.
16
(
5
),
399
413
(
1977
).
79.
J. S.
Ho/ye
and
G.
Stell
, “
New self-consistent approximations for ionic and polar fluids
,”
J. Chem. Phys.
67
(
2
),
524
529
(
1977
).
80.
M. A.
Gebbie
,
H. A.
Dobbs
,
M.
Valtiner
, and
J. N.
Israelachvili
, “
Long-range electrostatic screening in ionic liquids
,”
Proc. Natl. Acad. Sci. U. S. A.
112
(
24
),
7432
7437
(
2015
).
81.
A. M.
Smith
,
A. A.
Lee
, and
S.
Perkin
, “
The electrostatic screening length in concentrated electrolytes increases with concentration
,”
J. Phys. Chem. Lett.
7
(
12
),
2157
2163
(
2016
).
82.
R.
Kumar
,
A. H.
Slim
,
A.
Faraone
,
J.-M. Y.
Carrillo
,
R.
Poling-Skutvik
,
M.
Muthukumar
,
A. B.
Marciel
, and
J. C.
Conrad
, “
Pivotal roles of triple screening-topological, electrostatic, and hydrodynamic-on dynamics in semidilute polyelectrolyte solutions
,”
Macromolecules
57
(
6
),
2888
2896
(
2024
).
83.
M.
Muthukumar
, “
Double screening in polyelectrolyte solutions: Limiting laws and crossover formulas
,”
J. Chem. Phys.
105
(
12
),
5183
5199
(
1996
).
84.
T. A.
Vilgis
and
R.
Borsali
, “
Mean-field theory of concentrated polyelectrolyte solutions: Statics and dynamics
,”
Phys. Rev. A
43
(
12
),
6857
6874
(
1991
).
85.
J. F.
Joanny
and
L.
Leibler
, “
Weakly charged polyelectrolytes in a poor solvent
,”
J. Phys.
51
(
6
),
545
557
(
1990
).
86.
V. Y.
Borue
and
I. Y.
Erukhimovich
, “
A statistical theory of weakly charged polyelectrolytes: Fluctuations, equation of state and microphase separation
,”
Macromolecules
21
(
11
),
3240
3249
(
1988
).
87.
J.-P.
Hansen
and
I. R.
McDonald
,
Theory of Simple Liquids: With Applications to Soft Matter
(
Academic Press
,
2013
).
88.
P.
Debye
and
E.
Hückel
, “
Zur theorie der elektrolyte. I. Gefrierpunktserniedrigung und verwandte erscheinunge (The theory of electrolytes. I. Lowering of freezing point and related phenomena)
,”
Phys. Z.
24
,
185
206
(
1923
).
89.
F. H.
Stillinger
and
R.
Lovett
, “
General restriction on the distribution of ions in electrolytes
,”
J. Chem. Phys.
49
(
5
),
1991
1994
(
1968
).
90.
F. H.
Stillinger
, Jr.
and
R.
Lovett
, “
Ion-pair theory of concentrated electrolytes. I. Basic concepts
,”
J. Chem. Phys.
48
(
9
),
3858
3868
(
1968
).
91.
J. G.
McDaniel
and
A.
Yethiraj
, “
Influence of electronic polarization on the structure of ionic liquids
,”
J. Phys. Chem. Lett.
9
(
16
),
4765
4770
(
2018
).
92.
A.
Ghosh
and
K. S.
Schweizer
, “
Microscopic theory of the influence of strong attractive forces on the activated dynamics of dense glass and gel forming fluids
,”
J. Chem. Phys.
151
(
24
),
244502
(
2019
).
93.
R.
Zhang
and
K. S.
Schweizer
, “
Correlated matrix-fluctuation-mediated activated transport of dilute penetrants in glass-forming liquids and suspensions
,”
J. Chem. Phys.
146
(
19
),
194906
(
2017
).
94.
O. L.
Anderson
and
D. A.
Stuart
, “
Calculation of activation energy of ionic conductivity in silica glasses by classical methods
,”
J. Am. Ceram. Soc.
37
(
12
),
573
580
(
1954
).
95.
L. M.
Hall
and
K. S.
Schweizer
, “
Impact of monomer sequence, composition and chemical heterogeneity on copolymer-mediated effective interactions between nanoparticles in melts
,”
Macromolecules
44
(
8
),
3149
3160
(
2011
).
96.
G.
Shi
and
K. S.
Schweizer
, “
Liquid state theory study of the phase behavior and macromolecular scale structure of model biomolecular condensates
,”
J. Chem. Phys.
159
(
4
),
044904
(
2023
).
97.
G.
Shi
and
K. S.
Schweizer
, “
Theory of the center-of-mass diffusion and viscosity of microstructured and variable sequence copolymer liquids
,”
Soft Matter
19
(
45
),
8893
8910
(
2023
).
You do not currently have access to this content.