In this work, we study the energy flow through anharmonic coupling of vibrational modes after excitation of gas-phase fluorobenzene with a multi-THz pump. We show that to predict the efficiency of anharmonic energy transfer, simple models that only include the anharmonic coupling coefficients and motion of modes at their resonant frequency are not adequate. The full motion of each mode is needed, including the time while the mode is being driven by the pump pulse, because all the frequencies present in the multi-THz pump contribute to the excitation of the non-resonantly excited vibrational modes. Additionally, the model gives us the insight that modes with either A1 or B2 symmetry are more actively involved in anharmonic coupling because these modes have more symmetry-allowed energy transfer pathways.

1.
V.
Bernshtein
and
I.
Oref
, “
Gateway modes for collisional energy transfer between benzene and Ar
,”
J. Phys. Chem. A
105
,
10646
10650
(
2001
).
2.
J. A.
Johnson
,
K.
Kim
,
M.
Mayhew
,
D. G.
Mitchell
, and
E. T.
Sevy
, “
Rotationally resolved IR-diode laser studies of ground-state CO2 excited by collisions with vibrationally excited pyridine
,”
J. Phys. Chem. A
112
,
2543
2552
(
2008
).
3.
K.
Kim
,
A. M.
Johnson
,
A. L.
Powell
,
D. G.
Mitchell
, and
E. T.
Sevy
, “
High resolution IR diode laser study of collisional energy transfer between highly vibrationally excited monofluorobenzene and CO2: The effect of donor fluorination on strong collision energy transfer
,”
J. Chem. Phys.
141
,
234306
(
2014
).
4.
D. G.
Mitchell
,
A. M.
Johnson
,
J. A.
Johnson
,
K. A.
Judd
,
K.
Kim
,
M.
Mayhew
,
A. L.
Powell
, and
E. T.
Sevy
, “
Collisional relaxation of the three vibrationally excited difluorobenzene isomers by collisions with CO2: Effect of donor vibrational mode
,”
J. Phys. Chem. A
112
,
1157
1167
(
2008
).
5.
J.
Du
,
N. A.
Sassin
,
D. K.
Havey
,
K.
Hsu
, and
A. S.
Mullin
, “
Full state-resolved energy gain profiles of CO2 from collisions with highly vibrationally excited molecules. II. Energy-dependent pyrazine (E = 32 700 and 37 900 cm–1) relaxation
,”
J. Phys. Chem. A
117
,
12104
12115
(
2013
).
6.
D. K.
Havey
,
J.
Du
,
Q.
Liu
, and
A. S.
Mullin
, “
Full state-resolved energy gain profiles of CO2 (J = 2–80) from collisions of highly vibrationally excited molecules. 1. Relaxation of pyrazine (E = 37900 cm−1)
,”
J. Phys. Chem. A
114
,
1569
1580
(
2010
).
7.
J. R.
Barker
and
R. E.
Weston
, Jr.
, “
Collisional energy transfer probability Densities P(E, J; E′, J′) for monatomics colliding with large molecules
,”
J. Phys. Chem. A
114
,
10619
10633
(
2010
).
8.
G. W.
Flynn
,
C. S.
Parmenter
, and
A. M.
Wodtke
, “
Vibrational energy transfer
,”
J. Phys. Chem.
100
,
12817
12838
(
1996
).
9.
E. T.
Sevy
,
S. M.
Rubin
,
Z.
Lin
, and
G. W.
Flynn
, “
Translational and rotational excitation of the CO2(0000) vibrationless state in the collisional quenching of highly vibrationally excited 2-methylpyrazine: Kinetics and dynamics of large energy transfers
,”
J. Chem. Phys.
113
,
4912
4932
(
2000
).
10.
X.-h.
Cui
,
B.-x.
Mu
,
Y.-f.
Shen
, and
K.
Dai
, “
Vibrational relaxation and vibration-rotation energy transfer between highly vibrationally excited KH(X1Σ+, v = 14–21) and CO2
,”
J. Quant. Spectrosc. Radiat. Transfer
113
,
2081
2087
(
2012
).
11.
S.-y.
Wang
,
B.
Zhang
,
D.-h.
Zhu
,
K.
Dai
, and
Y.-f.
Shen
, “
Energy-dependence of vibrational relaxation between highly vibrationally excited KH (X1Σ+, ν″ = 14–23) and H2, and N2
,”
Spectrochim. Acta, Part A
96
,
517
525
(
2012
).
12.
C.-L.
Liu
,
H. C.
Hsu
,
Y. C.
Hsu
, and
C.-K.
Ni
, “
Energy transfer of highly vibrationally excited naphthalene. I. Translational collision energy dependence
,”
J. Chem. Phys.
127
,
104311
(
2007
).
13.
C.-L.
Liu
,
H. C.
Hsu
,
Y. C.
Hsu
, and
C.-K.
Ni
, “
Energy transfer of highly vibrationally excited naphthalene. II. Vibrational energy dependence and isotope and mass effects
,”
J. Chem. Phys.
128
,
124320
(
2008
).
14.
C.-L.
Liu
,
H. C.
Hsu
, and
C.-K.
Ni
, “
Energy transfer of highly vibrationally excited naphthalene. III. Rotational effects
,”
J. Chem. Phys.
128
,
164316
(
2008
).
15.
H. C.
Hsu
,
C.-L.
Liu
,
Y. C.
Hsu
, and
C.-K.
Ni
, “
Energy transfer of highly vibrationally excited 2-methylnaphthalene: Methylation effects
,”
J. Chem. Phys.
129
,
044301
(
2008
).
16.
Q.
Liu
,
J.
Du
,
D. K.
Havey
,
Z.
Li
,
E. M.
Miller
, and
A. S.
Mullin
, “
Alkylation effects on strong collisions of highly vibrationally excited alkylated pyridines with CO2
,”
J. Phys. Chem. A
111
,
4073
4080
(
2007
).
17.
E. M.
Miller
,
L.
Murat
,
N.
Bennette
,
M.
Hayes
, and
A. S.
Mullin
, “
Relaxation dynamics of highly vibrationally excited picoline isomers (Evib = 38 300 cm−1) with CO2: The role of state density in impulsive collisions
,”
J. Phys. Chem. A
110
,
3266
3272
(
2006
).
18.
M. S.
Elioff
,
M.
Fang
, and
A. S.
Mullin
, “
Erratum: “Methylation effects in state resolved quenching of highly vibrationally excited azabenzenes (Evib ∼38 500 cm−1). I. Collisions with water [J. Chem. Phys. 115, 6990 (2001)
],”
J. Chem. Phys.
,
117
,
6880
(
2002
).
19.
J.
Park
,
Z.
Li
,
A. S.
Lemoff
,
C.
Rossi
,
M. S.
Elioff
, and
A. S.
Mullin
, “
Energy-dependent quantum-state-resolved relaxation of highly vibrationally excited pyridine (Evib = 36 990−40 200 cm−1) through collisions with CO2
,”
J. Phys. Chem. A
106
,
3642
3650
(
2002
).
20.
R. G.
Gilbert
and
S. C.
Smith
,
Theory of Unimolecular and Recombination Reactions
(
Blackwell Scientific Publications
,
1990
).
21.
L.
Guo
,
W.
Wang
,
Y.
Liu
,
D.
Ma
,
C.
Xu
, and
Y.
Zhou
, “
Quasi-classical trajectory study of inelastic collision energy transfer between H2CO and H2 on a full-dimensional potential energy surface
,”
Chem. Phys. Lett.
781
,
139014
(
2021
).
22.
Y.
Liu
,
Y.
Huang
,
J.
Ma
, and
J.
Li
, “
Classical trajectory study of collision energy transfer between Ne and C2H2 on a full dimensional accurate potential energy surface
,”
J. Phys. Chem. A
122
,
1521
1530
(
2018
).
23.
J.
Chen
,
J.
Li
,
J. M.
Bowman
, and
H.
Guo
, “
Energy transfer between vibrationally excited carbon monoxide based on a highly accurate six-dimensional potential energy surface
,”
J. Chem. Phys.
153
,
054310
(
2020
).
24.
A.
Caracciolo
,
D.
Lu
,
N.
Balucani
,
G.
Vanuzzo
,
D.
Stranges
,
X.
Wang
,
J.
Li
,
H.
Guo
, and
P.
Casavecchia
, “
Combined experimental–theoretical study of the OH + CO → H + CO2 reaction dynamics
,”
J. Phys. Chem. Lett.
9
,
1229
1236
(
2018
).
25.
J.
Yuan
,
Z.
Duan
,
S.
Wang
,
J.
Liu
, and
K.
Han
, “
Significant effects of vibrational excitation of reactant in K + H2 → H + KH reaction based on a new neural network potential energy surface
,”
Phys. Chem. Chem. Phys.
20
,
20641
20649
(
2018
).
26.
J.
Li
,
J.
Chen
,
D. H.
Zhang
, and
H.
Guo
, “
Quantum and quasi-classical dynamics of the OH + CO → H + CO2 reaction on a new permutationally invariant neural network potential energy surface
,”
The J. Chem. Phys.
140
,
044327
(
2014
).
27.
J.
Ree
,
Y. H.
Kim
, and
H. K.
Shin
, “
Intramolecular vibrational energy redistribution in nucleobases: Excitation of NH stretching vibrations in adenine–uracil + H2O
,”
J. Chem. Phys.
156
,
204305
(
2022
).
28.
H. K.
Shin
, “
Influence of a methyl group on the unidirectional flow of vibrational energy in an adenine – Thymine base pair
,”
J. Phys. Chem. B
127
,
163
171
(
2023
).
29.
J.
Ree
,
K. C.
Ko
,
Y. H.
Kim
, and
H. K.
Shin
, “
Excitation of NH stretching modes in aromatic molecules: o-Toluidine and α-methylbenzylamine
,”
J. Phys. Chem. B
127
,
7276
7282
(
2023
).
30.
G.
Lendvay
, “
Gateway modes in the collisional energy transfer from highly vibrationally excited CS2
,”
J. Phys. Chem. A
101
,
9217
9223
(
1997
).
31.
D. C.
Clary
,
R. G.
Gilbert
,
V.
Bernshtein
, and
I.
Oref
, “
Mechanisms for supercollisions
,”
Faraday Discuss.
102
,
423
433
(
1995
).
32.
C. L.
Johnson
,
B. E.
Knighton
, and
J. A.
Johnson
, “
Distinguishing nonlinear terahertz excitation pathways with two-dimensional spectroscopy
,”
Phys. Rev. Lett.
122
,
073901
(
2019
).
33.
D. M.
Juraschek
and
S. F.
Maehrlein
, “
Sum-frequency ionic Raman scattering
,”
Phys. Rev. B
97
,
174302
(
2018
).
34.
A.
Sell
,
A.
Leitenstorfer
, and
R.
Huber
, “
Phase-locked generation and field-resolved detection of widely tunable terahertz pulses with amplitudes exceeding 100 MV/cm
,”
Opt. Lett.
33
,
2767
2769
(
2008
).
35.
F.
Junginger
,
A.
Sell
,
O.
Schubert
,
B.
Mayer
,
D.
Brida
,
M.
Marangoni
,
G.
Cerullo
,
A.
Leitenstorfer
, and
R.
Huber
, “
Single-cycle multiterahertz transients with peak fields above 10 MV/cm
,”
Opt. Lett.
35
,
2645
2647
(
2010
).
36.
I. M.
Bayanov
,
R.
Danielius
,
P.
Heinz
, and
A.
Seilmeier
, “
Intense subpicosecond pulses tunable between 4 μm and 20 μm generated by an all-solid-state laser system
,”
Opt. Commun.
113
,
99
104
(
1994
).
37.
A.
Pashkin
,
F.
Junginger
,
B.
Mayer
,
C.
Schmidt
,
O.
Schubert
,
D.
Brida
,
R.
Huber
, and
A.
Leitenstorfer
, “
Quantum physics with ultrabroadband and intense terahertz pulses
,”
IEEE J. Sel. Top. Quantum Electron.
19
,
8401608
(
2013
).
38.
S.
Maehrlein
,
A.
Paarmann
,
M.
Wolf
, and
T.
Kampfrath
, “
Terahertz sum-frequency excitation of a Raman-active phonon
,”
Phys. Rev. Lett.
119
,
127402
(
2017
).
39.
B.
Mayer
,
C.
Schmidt
,
A.
Grupp
,
J.
Bühler
,
J.
Oelmann
,
R. E.
Marvel
,
R. F.
Haglund
,
T.
Oka
,
D.
Brida
,
A.
Leitenstorfer
, and
A.
Pashkin
, “
Tunneling breakdown of a strongly correlated insulating state in VO2 induced by intense multiterahertz excitation
,”
Phys. Rev. B
91
,
235113
(
2015
).
40.
D.
Sidler
and
P.
Hamm
, “
A Feynman diagram description of the 2D-Raman-THz response of amorphous ice
,”
J. Chem. Phys.
153
,
044502
(
2020
).
41.
B.
Sertcan
,
S. J.
Mousavi
,
M.
Iannuzzi
, and
P.
Hamm
, “
Low-frequency anharmonic couplings in crystalline bromoform: Theory
,”
J. Chem. Phys.
158
,
014203
(
2023
).
42.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
,
G. E.
Scuseria
,
M. A.
Robb
,
J. R.
Cheeseman
,
G.
Scalmani
,
V.
Barone
,
G. A.
Petersson
,
H.
Nakatsuji
,
X.
Li
,
M.
Caricato
,
A. V.
Marenich
,
J.
Bloino
,
B. G.
Janesko
,
R.
Gomperts
,
B.
Mennucci
,
H. P.
Hratchian
,
J. V.
Ortiz
,
A. F.
Izmaylov
,
J. L.
Sonnenberg
,
D.
Williams-Young
,
F.
Ding
,
F.
Lipparini
,
F.
Egidi
,
J.
Goings
,
B.
Peng
,
A.
Petrone
,
T.
Henderson
,
D.
Ranasinghe
,
V. G.
Zakrzewski
,
J.
Gao
,
N.
Rega
,
G.
Zheng
,
W.
Liang
,
M.
Hada
,
M.
Ehara
,
K.
Toyota
,
R.
Fukuda
,
J.
Hasegawa
,
M.
Ishida
,
T.
Nakajima
,
Y.
Honda
,
O.
Kitao
,
H.
Nakai
,
T.
Vreven
,
K.
Throssell
,
J. A.
Montgomery
, Jr.
,
J. E.
Peralta
,
F.
Ogliaro
,
M. J.
Bearpark
,
J. J.
Heyd
,
E. N.
Brothers
,
K. N.
Kudin
,
V. N.
Staroverov
,
T. A.
Keith
,
R.
Kobayashi
,
J.
Normand
,
K.
Raghavachari
,
A. P.
Rendell
,
J. C.
Burant
,
S. S.
Iyengar
,
J.
Tomasi
,
M.
Cossi
,
J. M.
Millam
,
M.
Klene
,
C.
Adamo
,
R.
Cammi
,
J. W.
Ochterski
,
R. L.
Martin
,
K.
Morokuma
,
O.
Farkas
,
J. B.
Foresman
, and
D. J.
Fox
,
Gaussian 16, Revision B.01
,
Gaussian, Inc.
,
Wallingford CT
,
2016
.
43.
B. C.
Pein
,
N.-H.
Seong
, and
D. D.
Dlott
, “
Vibrational energy relaxation of liquid aryl-halides X-C6H5 (X = F, Cl, Br, I)
,”
J. Phys. Chem. A
114
,
10500
10507
(
2010
).
You do not currently have access to this content.