Vibrational polaritons form in a planar Fabry–Pérot microcavity when a vibrational mode of a layer of molecules is near resonant with an infrared cavity mode. Here, dispersion relations of vibrational polaritons are studied when the molecular density distribution breaks the macroscopic translational symmetry along the cavity mirror plane. Both perturbative theory and numerical calculations show that, if a homogeneous in-plane molecular distribution is modulated by sinusoidal fluctuations, in addition to a pair of upper and lower polariton branches, a discrete number of side polariton branches may emerge in the polariton dispersion relation. Moreover, for a periodic Gaussian in-plane density distribution, only two, yet significantly broadened polariton branches exist in the spectra. This polariton linewidth broadening is caused by the scattering between cavity modes at neighboring in-plane frequencies due to the symmetry breaking, which is distinguished from known origins of polariton broadening such as the homogeneous broadening of molecules, the cavity loss, or the large energetic disorder of molecules. Associated with the broadened polariton branches, under the periodic Gaussian in-plane inhomogeneity, a significant number of the vibrational strong coupling eigenstates contain a non-zero contribution from the cavity photon mode at zero in-plane frequency, blurring the distinction between the bright and the dark modes. Looking forward, our theoretical investigation should facilitate the experimental exploration of vibrational polaritons with patterned in-plane molecular density distributions.

1.
C.
Weisbuch
,
M.
Nishioka
,
A.
Ishikawa
, and
Y.
Arakawa
, “
Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity
,”
Phys. Rev. Lett.
69
,
3314
3317
(
1992
).
2.
X.
Zhang
,
C.-L.
Zou
,
L.
Jiang
, and
H. X.
Tang
, “
Strongly coupled magnons and cavity microwave photons
,”
Phys. Rev. Lett.
113
,
156401
(
2014
).
3.
A.
Shalabney
,
J.
George
,
J.
Hutchison
,
G.
Pupillo
,
C.
Genet
, and
T. W.
Ebbesen
, “
Coherent coupling of molecular resonators with a microcavity mode
,”
Nat. Commun.
6
,
5981
(
2015
).
4.
J. P.
Long
and
B. S.
Simpkins
, “
Coherent coupling between a molecular vibration and Fabry–Perot optical cavity to give hybridized states in the strong coupling limit
,”
ACS Photonics
2
,
130
136
(
2015
).
5.
A. D.
Wright
,
J. C.
Nelson
, and
M. L.
Weichman
, “
Rovibrational polaritons in gas-phase methane
,”
J. Am. Chem. Soc.
145
,
5982
5987
(
2023
).
6.
R.
Chikkaraddy
,
B.
de Nijs
,
F.
Benz
,
S. J.
Barrow
,
O. A.
Scherman
,
E.
Rosta
,
A.
Demetriadou
,
P.
Fox
,
O.
Hess
, and
J. J.
Baumberg
, “
Single-molecule strong coupling at room temperature in plasmonic nanocavities
,”
Nature
535
,
127
130
(
2016
).
7.
R.
Damari
,
O.
Weinberg
,
D.
Krotkov
,
N.
Demina
,
K.
Akulov
,
A.
Golombek
,
T.
Schwartz
, and
S.
Fleischer
, “
Strong coupling of collective intermolecular vibrations in organic materials at terahertz frequencies
,”
Nat. Commun.
10
,
3248
(
2019
).
8.
A.
Canales
,
D. G.
Baranov
,
T. J.
Antosiewicz
, and
T.
Shegai
, “
Abundance of cavity-free polaritonic states in resonant materials and nanostructures
,”
J. Chem. Phys.
154
,
024701
(
2021
); arXiv:2010.07727.
9.
D.
Yoo
,
F.
de León-Pérez
,
M.
Pelton
,
I.-H.
Lee
,
D. A.
Mohr
,
M. B.
Raschke
,
J. D.
Caldwell
,
L.
Martín-Moreno
, and
S.-H.
Oh
, “
Ultrastrong plasmon–phonon coupling via epsilon-near-zero nanocavities
,”
Nat. Photonics
15
,
125
130
(
2021
); arXiv:2003.00136.
10.
H.
Deng
,
H.
Haug
, and
Y.
Yamamoto
, “
Exciton-polariton Bose–Einstein condensation
,”
Rev. Mod. Phys.
82
,
1489
1537
(
2010
).
11.
I.
Carusotto
and
C.
Ciuti
, “
Quantum fluids of light
,”
Rev. Mod.Phys.
85
,
299
366
(
2013
); arXiv:2211.10980.
12.
V. M.
Agranovich
,
M.
Litinskaia
, and
D. G.
Lidzey
, “
Cavity polaritons in microcavities containing disordered organic semiconductors
,”
Phys. Rev. B
67
,
085311
(
2003
).
13.
P.
Michetti
and
G. C.
La Rocca
, “
Polariton states in disordered organic microcavities
,”
Phys. Rev. B
71
,
115320
(
2005
).
14.
M.
Litinskaya
and
P.
Reineker
, “
Loss of coherence of exciton polaritons in inhomogeneous organic microcavities
,”
Phys. Rev. B
74
,
165320
(
2006
).
15.
E.
Galiffi
,
G.
Carini
,
X.
Ni
,
G.
Álvarez-Pérez
,
S.
Yves
,
E. M.
Renzi
,
R.
Nolen
,
S.
Wasserroth
,
M.
Wolf
,
P.
Alonso-Gonzalez
,
A.
Paarmann
, and
A.
Alù
, “
Extreme light confinement and control in low-symmetry phonon-polaritonic crystals
,”
Nat. Rev. Mater.
9
,
9
28
(
2023
); arXiv:2312.06805.
16.
D.
Tanese
,
H.
Flayac
,
D.
Solnyshkov
,
A.
Amo
,
A.
Lemaître
,
E.
Galopin
,
R.
Braive
,
P.
Senellart
,
I.
Sagnes
,
G.
Malpuech
, and
J.
Bloch
, “
Polariton condensation in solitonic gap states in a one-dimensional periodic potential
,”
Nat. Commun.
4
,
1749
(
2013
).
17.
T.
Jacqmin
,
I.
Carusotto
,
I.
Sagnes
,
M.
Abbarchi
,
D. D.
Solnyshkov
,
G.
Malpuech
,
E.
Galopin
,
A.
Lemaître
,
J.
Bloch
, and
A.
Amo
, “
Direct observation of Dirac cones and a flatband in a honeycomb lattice for polaritons
,”
Phys. Rev. Lett.
112
,
116402
(
2014
); arXiv:1310.8105.
18.
C.
Schneider
,
K.
Winkler
,
M. D.
Fraser
,
M.
Kamp
,
Y.
Yamamoto
,
E. A.
Ostrovskaya
, and
S.
Höfling
, “
Exciton-polariton trapping and potential landscape engineering
,”
Rep. Prog. Phys.
80
,
016503
(
2017
); arXiv:1510.07540.
19.
D. G.
Baranov
,
B.
Munkhbat
,
E.
Zhukova
,
A.
Bisht
,
A.
Canales
,
B.
Rousseaux
,
G.
Johansson
,
T. J.
Antosiewicz
, and
T.
Shegai
, “
Ultrastrong coupling between nanoparticle plasmons and cavity photons at ambient conditions
,”
Nat. Commun.
11
,
2715
(
2020
); arXiv:1912.07739.
20.
K.
Chevrier
,
J. M.
Benoit
,
C.
Symonds
,
S. K.
Saikin
,
J.
Yuen-Zhou
, and
J.
Bellessa
, “
Anisotropy and controllable band structure in suprawavelength polaritonic metasurfaces
,”
Phys. Rev. Lett.
122
,
173902
(
2019
); arXiv:1903.03328.
21.
A.
Thomas
,
J.
George
,
A.
Shalabney
,
M.
Dryzhakov
,
S. J.
Varma
,
J.
Moran
,
T.
Chervy
,
X.
Zhong
,
E.
Devaux
,
C.
Genet
,
J. A.
Hutchison
, and
T. W.
Ebbesen
, “
Ground-state chemical reactivity under vibrational coupling to the vacuum electromagnetic field
,”
Angew. Chem., Int. Ed.
55
,
11462
11466
(
2016
).
22.
W.
Ahn
,
J. F.
Triana
,
F.
Recabal
,
F.
Herrera
, and
B. S.
Simpkins
, “
Modification of ground-state chemical reactivity via light–matter coherence in infrared cavities
,”
Science
380
,
1165
1168
(
2023
).
23.
A.
Thomas
,
L.
Lethuillier-Karl
,
K.
Nagarajan
,
R. M. A.
Vergauwe
,
J.
George
,
T.
Chervy
,
A.
Shalabney
,
E.
Devaux
,
C.
Genet
,
J.
Moran
, and
T. W.
Ebbesen
, “
Tilting a ground-state reactivity landscape by vibrational strong coupling
,”
Science
363
,
615
619
(
2019
).
24.
K.
Hirai
,
H.
Ishikawa
,
T.
Chervy
,
J. A.
Hutchison
, and
H.
Uji-i
, “
Selective crystallization via vibrational strong coupling
,”
Chem. Sci.
12
,
11986
11994
(
2021
).
25.
M. V.
Imperatore
,
J. B.
Asbury
, and
N. C.
Giebink
, “
Reproducibility of cavity-enhanced chemical reaction rates in the vibrational strong coupling regime
,”
J. Chem. Phys.
154
,
191103
(
2021
).
26.
G. D.
Wiesehan
and
W.
Xiong
, “
Negligible rate enhancement from reported cooperative vibrational strong coupling catalysis
,”
J. Chem. Phys.
155
,
241103
(
2021
).
27.
A. P.
Fidler
,
L.
Chen
,
A. M.
McKillop
, and
M. L.
Weichman
, “
Ultrafast dynamics of CN radical reactions with chloroform solvent under vibrational strong coupling
,”
J. Chem. Phys.
159
,
164302
(
2023
).
28.
A. D.
Dunkelberger
,
B. T.
Spann
,
K. P.
Fears
,
B. S.
Simpkins
, and
J. C.
Owrutsky
, “
Modified relaxation dynamics and coherent energy exchange in coupled vibration-cavity polaritons
,”
Nat. Commun.
7
,
13504
(
2016
).
29.
B.
Xiang
,
R. F.
Ribeiro
,
M.
Du
,
L.
Chen
,
Z.
Yang
,
J.
Wang
,
J.
Yuen-Zhou
, and
W.
Xiong
, “
Intermolecular vibrational energy transfer enabled by microcavity strong light–matter coupling
,”
Science
368
,
665
667
(
2020
).
30.
T.-T.
Chen
,
M.
Du
,
Z.
Yang
,
J.
Yuen-Zhou
, and
W.
Xiong
, “
Cavity-enabled enhancement of ultrafast intramolecular vibrational redistribution over pseudorotation
,”
Science
378
,
790
794
(
2022
).
31.
B. S.
Simpkins
,
A. D.
Dunkelberger
, and
I.
Vurgaftman
, “
Control, modulation, and analytical descriptions of vibrational strong coupling
,”
Chem. Rev.
123
,
5020
5048
(
2023
).
32.
J.
Galego
,
C.
Climent
,
F. J.
Garcia-Vidal
, and
J.
Feist
, “
Cavity Casimir-Polder forces and their effects in ground-state chemical reactivity
,”
Phys. Rev. X
9
,
021057
(
2019
).
33.
J. A.
Campos-Gonzalez-Angulo
,
R. F.
Ribeiro
, and
J.
Yuen-Zhou
, “
Resonant catalysis of thermally activated chemical reactions with vibrational polaritons
,”
Nat. Commun.
10
,
4685
(
2019
).
34.
N. M.
Hoffmann
,
L.
Lacombe
,
A.
Rubio
, and
N. T.
Maitra
, “
Effect of many modes on self-polarization and photochemical suppression in cavities
,”
J. Chem. Phys.
153
,
104103
(
2020
).
35.
X.
Li
,
A.
Mandal
, and
P.
Huo
, “
Cavity frequency-dependent theory for vibrational polariton chemistry
,”
Nat. Commun.
12
,
1315
(
2021
).
36.
E. W.
Fischer
and
P.
Saalfrank
, “
Ground state properties and infrared spectra of anharmonic vibrational polaritons of small molecules in cavities
,”
J. Chem. Phys.
154
,
104311
(
2021
).
37.
P. Y.
Yang
and
J.
Cao
, “
Quantum effects in chemical reactions under polaritonic vibrational strong coupling
,”
J. Phys. Chem. Lett.
12
,
9531
9538
(
2021
).
38.
D. S.
Wang
,
T.
Neuman
,
S. F.
Yelin
, and
J.
Flick
, “
Cavity-modified unimolecular dissociation reactions via intramolecular vibrational energy redistribution
,”
J. Phys. Chem. Lett.
13
,
3317
3324
(
2022
).
39.
J.
Flick
,
M.
Ruggenthaler
,
H.
Appel
, and
A.
Rubio
, “
Atoms and molecules in cavities, from weak to strong coupling in quantum-electrodynamics (QED) chemistry
,”
Proc. Natl. Acad. Sci. U. S. A.
114
,
3026
3034
(
2017
).
40.
R. R.
Riso
,
T. S.
Haugland
,
E.
Ronca
, and
H.
Koch
, “
Molecular orbital theory in cavity QED environments
,”
Nat. Commun.
13
,
1368
(
2022
).
41.
C.
Schäfer
,
J.
Flick
,
E.
Ronca
,
P.
Narang
, and
A.
Rubio
, “
Shining light on the microscopic resonant mechanism responsible for cavity-mediated chemical reactivity
,”
Nat. Commun.
13
,
7817
(
2022
).
42.
J.
Bonini
and
J.
Flick
, “
Ab initio linear-response approach to vibro-polaritons in the cavity Born–Oppenheimer approximation
,”
J. Chem. Theory Comput.
18
,
2764
2773
(
2021
).
43.
J.
Yang
,
Q.
Ou
,
Z.
Pei
,
H.
Wang
,
B.
Weng
,
Z.
Shuai
,
K.
Mullen
, and
Y.
Shao
, “
Quantum-electrodynamical time-dependent density functional theory within Gaussian atomic basis
,”
J. Chem. Phys.
155
,
064107
(
2021
).
44.
B.
Rosenzweig
,
N. M.
Hoffmann
,
L.
Lacombe
, and
N. T.
Maitra
, “
Analysis of the classical trajectory treatment of photon dynamics for polaritonic phenomena
,”
J. Chem. Phys.
156
,
054101
(
2022
); arXiv:2111.11957.
45.
J. F.
Triana
,
F. J.
Hernández
, and
F.
Herrera
, “
The shape of the electric dipole function determines the sub-picosecond dynamics of anharmonic vibrational polaritons
,”
J. Chem. Phys.
152
,
234111
(
2020
).
46.
T. E.
Li
,
J. E.
Subotnik
, and
A.
Nitzan
, “
Cavity molecular dynamics simulations of liquid water under vibrational ultrastrong coupling
,”
Proc. Natl. Acad. Sci. U. S. A.
117
,
18324
18331
(
2020
).
47.
J. A.
Campos-Gonzalez-Angulo
,
Y. R.
Poh
,
M.
Du
, and
J.
Yuen-Zhou
, “
Swinging between shine and shadow: Theoretical advances on thermally activated vibropolaritonic chemistry
,”
J. Chem. Phys.
158
,
230901
(
2023
).
48.
E.
Suyabatmaz
and
R. F.
Ribeiro
, “
Vibrational polariton transport in disordered media
,”
J. Chem. Phys.
159
,
034701
(
2023
).
49.
R. F.
Ribeiro
,
L. A.
Martínez-Martínez
,
M.
Du
,
J.
Campos-Gonzalez-Angulo
, and
J.
Yuen-Zhou
, “
Polariton chemistry: Controlling molecular dynamics with optical cavities
,”
Chem. Sci.
9
,
6325
6339
(
2018
).
50.
T. E.
Li
,
B.
Cui
,
J. E.
Subotnik
, and
A.
Nitzan
, “
Molecular polaritonics: Chemical dynamics under strong light–matter coupling
,”
Annu. Rev. Phys. Chem.
73
,
43
71
(
2022
).
51.
J.
Fregoni
,
F. J.
Garcia-Vidal
, and
J.
Feist
, “
Theoretical challenges in polaritonic chemistry
,”
ACS Photonics
9
,
1096
1107
(
2022
).
52.
A.
Mandal
,
M. A.
Taylor
,
B. M.
Weight
,
E. R.
Koessler
,
X.
Li
, and
P.
Huo
, “
Theoretical advances in polariton chemistry and molecular cavity quantum electrodynamics
,”
Chem. Rev.
123
,
9786
9879
(
2023
).
53.
M.
Ruggenthaler
,
D.
Sidler
, and
A.
Rubio
, “
Understanding polaritonic chemistry from ab initio quantum electrodynamics
,”
Chem. Rev.
123
,
11191
11229
(
2023
); arXiv:2211.04241.
54.
B.
Xiang
,
J.
Wang
,
Z.
Yang
, and
W.
Xiong
, “
Nonlinear infrared polaritonic interaction between cavities mediated by molecular vibrations at ultrafast time scale
,”
Sci. Adv.
7
,
eabf6397
(
2021
).
55.
T. E.
Li
, “
Mesoscale molecular simulations of Fabry–Pérot vibrational strong coupling
,”
J. Chem. Theory Comput.
(
2024
).
56.
R.
Houdré
,
R. P.
Stanley
, and
M.
Ilegems
, “
Vacuum-field Rabi splitting in the presence of inhomogeneous broadening: Resolution of a homogeneous linewidth in an inhomogeneously broadened system
,”
Phys. Rev. A
53
,
2711
2715
(
1996
).
57.
A.
George
,
T.
Geraghty
,
Z.
Kelsey
,
S.
Mukherjee
,
G.
Davidova
,
W.
Kim
, and
A. J.
Musser
, “
Controlling the manifold of polariton states through molecular disorder
,”
Adv. Opt. Mater.
12
,
2302387
(
2024
); arXiv:2309.13178.
58.
E.
Jaynes
and
F.
Cummings
, “
Comparison of quantum and semiclassical radiation theories with application to the beam maser
,”
Proc. IEEE
51
,
89
109
(
1963
).
59.
M.
Tavis
and
F. W.
Cummings
, “
Exact solution for an N-molecule—Radiation-field Hamiltonian
,”
Phys. Rev.
170
,
379
384
(
1968
).
60.
M.
Tavis
and
F. W.
Cummings
, “
Approximate solutions for an N-molecule-radiation-field Hamiltonian
,”
Phys. Rev.
188
,
692
695
(
1969
).
61.
G. J. R.
Aroeira
,
K. T.
Kairys
, and
R. F.
Ribeiro
, “
Theoretical analysis of exciton wave packet dynamics in polaritonic wires
,”
J. Phys. Chem. Lett.
14
,
5681
5691
(
2023
); arXiv:2304.11453.
62.
K.
Łempicka Mirek
,
M.
Król
,
H.
Sigurdsson
,
A.
Wincukiewicz
,
P.
Morawiak
,
R.
Mazur
,
M.
Muszyński
,
W.
Piecek
,
P.
Kula
,
T.
Stefaniuk
,
M.
Kamińska
,
L.
De Marco
,
P. G.
Lagoudakis
,
D.
Ballarini
,
D.
Sanvitto
,
J.
Szczytko
, and
B.
Piętka
, “
Electrically tunable Berry curvature and strong light-matter coupling in liquid crystal microcavities with 2D perovskite
,”
Sci. Adv.
8
,
eabq7533
(
2022
).
63.
M.
Son
,
Z. T.
Armstrong
,
R. T.
Allen
,
A.
Dhavamani
,
M. S.
Arnold
, and
M. T.
Zanni
, “
Energy cascades in donor-acceptor exciton-polaritons observed by ultrafast two-dimensional white-light spectroscopy
,”
Nat. Commun.
13
,
7305
(
2022
).
You do not currently have access to this content.