I present an exact solution of the Poisson–Boltzmann equation for two parallel plates and discuss the solution properties. I discuss in more detail plates with opposite charges: In this case, there are two critical separations, Lc,1 < Lc,2. For separations less than Lc,1, the force between plates is repulsive. It switches to attractive at Lc,1, but with the electric potential having the same sign on both plates. For L > Lc,2, the force remains attractive, and the potential at the plates has the same sign as the charge on each plate. I also describe charge regulation, determined by pKa, and provide formulas for both the critical distance where oppositely charged plates repel and their charging process. The implications of these results for the nanoparticle assembly, as driven by electrostatic interactions, are also discussed.

1.
B. P.
Nayak
,
H. J.
Kim
,
A.
Travesset
,
D.
Vaknin
,
S. K.
Mallapragada
, and
W.
Wang
, “
Tuning self-assembly of gold nanoparticles grafted with charged polymers by varying temperature and electrolytes
,”
J. Phys. Chem. C
127
,
24651
24657
(
2023
).
2.
H. J.
Kim
,
B. P.
Nayak
,
H.
Zhang
,
B. M.
Ocko
,
A.
Travesset
,
D.
Vaknin
,
S. K.
Mallapragada
, and
W.
Wang
, “
Two-dimensional assembly of gold nanoparticles grafted with charged-end-group polymers
,”
J. Colloid Interface Sci.
650
,
1941
1948
(
2023
).
3.
B. P.
Nayak
,
H.
Zhang
,
W.
Bu
,
B. M.
Ocko
,
A.
Travesset
,
D.
Vaknin
,
S. K.
Mallapragada
, and
W.
Wang
, “
Ionic-like superlattices by charged nanoparticles: A step toward photonics applications
,”
ACS Appl. Nano Mater.
7
,
3220
3228
(
2024
).
4.
A. Y.
Grosberg
,
T. T.
Nguyen
, and
B. I.
Shklovskii
, “
Colloquium: The physics of charge inversion in chemical and biological systems
,”
Rev. Mod. Phys.
74
,
329
(
2002
).
5.
Y.
Levin
, “
Electrostatic correlations: From plasma to biology
,”
Rep. Prog. Phys.
65
,
1577
1632
(
2002
).
6.
H.
Boroudjerdi
,
Y.
Kim
,
A.
Naji
,
R.
Netz
,
X.
Schlagberger
, and
A.
Serr
, “
Statics and dynamics of strongly charged soft matter
,”
Phys. Rep.
416
,
129
199
(
2005
).
7.
A.
Travesset
and
S.
Vangaveti
, “
Electrostatic correlations at the Stern layer: Physics or chemistry?
,”
J. Chem. Phys.
131
,
185102
(
2009
).
8.
J.
Lyklema
, “
Quest for ion-ion correlations in electric double layers and overcharging phenomena
,”
Adv. Colloid Interface Sci.
147–148
,
205
213
(
2009
).
9.
R.
Messina
, “
Electrostatics in soft matter
,”
J. Phys.: Condens. Matter
21
,
113102
(
2009
).
10.
W.
Kung
,
P.
González-Mozuelos
, and
M. O.
De La Cruz
, “
Nanoparticles in aqueous media: Crystallization and solvation charge asymmetry
,”
Soft Matter
6
,
331
341
(
2010
).
11.
R.
Kjellander
, “
A multiple decay-length extension of the Debye–Hückel theory: To achieve high accuracy also for concentrated solutions and explain under-screening in dilute symmetric electrolytes
,”
Phys. Chem. Chem. Phys.
22
,
23952
23985
(
2020
).
12.
W.
Bu
,
D.
Vaknin
, and
A.
Travesset
, “
Monovalent counterion distributions at highly charged water interfaces: Proton-transfer and Poisson-Boltzmann theory
,”
Phys. Rev. E
72
,
060501
(
2005
).
13.
W.
Bu
,
D.
Vaknin
, and
A.
Travesset
, “
How accurate is Poisson–Boltzmann theory for monovalent ions near highly charged interfaces?
,”
Langmuir
22
,
5673
5681
(
2006
).
14.
P.
Attard
,
D. J.
Mitchell
, and
B. W.
Ninham
, “
Beyond Poisson–Boltzmann: Images and correlations in the electric double layer. II. Symmetric electrolyte
,”
J. Chem. Phys.
89
,
4358
4367
(
1988
).
15.
S. H.
Behrens
and
M.
Borkovec
, “
Exact Poisson-Boltzmann solution for the interaction of dissimilar charge-regulating surfaces
,”
Phys. Rev. E
60
,
7040
7048
(
1999
).
16.
M.
Polat
and
H.
Polat
, “
Analytical solution of Poisson–Boltzmann equation for interacting plates of arbitrary potentials and same sign
,”
J. Colloid Interface Sci.
341
,
178
185
(
2010
).
17.
K.
Johannessen
, “
A nonlinear differential equation related to the Jacobi elliptic functions
,”
Int. J. Differ. Equations
2012
,
412569
.
18.
W.
Zhang
,
Q.
Wang
,
M.
Zeng
, and
C.
Zhao
, “
An exact solution of the nonlinear Poisson-Boltzmann equation in parallel-plate geometry
,”
Colloid Polym. Sci.
296
,
1917
1923
(
2018
).
19.
L.
Šamaj
and
E.
Trizac
, “
Electric double layers with surface charge modulations: Exact Poisson-Boltzmann solutions
,”
Phys. Rev. E
100
,
042611
(
2019
).
20.
J.
Israelachvili
,
Intermolecular and Surface Forces
(
Academic Press
,
London
,
2000
).
21.
L.
Šamaj
and
E.
Trizac
, “
Counterions at highly charged interfaces: From one plate to like-charge attraction
,”
Phys. Rev. Lett.
106
,
078301
(
2011
).
22.
S.
Wang
,
R.
Walker-Gibbons
,
B.
Watkins
,
M.
Flynn
, and
M.
Krishnan
, “
A charge-dependent long-ranged force drives tailored assembly of matter in solution
,”
Nat. Nanotechnol.
19
,
485
(
2024
).
23.
A.
Travesset
, “
Salty solutions near a charged modulated interface
,”
Eur. Phys. J. E
17
,
435
446
(
2005
).
24.
C.
Calero
and
J.
Faraudo
, “
The interaction between electrolyte and surfaces decorated with charged groups: A molecular dynamics simulation study
,”
J. Chem. Phys.
132
,
024704
(
2010
).
25.
G. V.
Bossa
and
S.
May
, “
Debye-Hückel free energy of an electric double layer with discrete charges located at a dielectric interface
,”
Membranes
11
,
129
(
2021
).
26.
P.
Attard
,
D. J.
Mitchell
, and
B. W.
Ninham
, “
Beyond Poisson–Boltzmann: Images and correlations in the electric double layer. I. Counterions only
,”
J. Chem. Phys.
88
,
4987
4996
(
1988
).
You do not currently have access to this content.