Colloidal and nanoparticle self-assembly enables the creation of ordered structures with a variety of electronic and photonic functionalities. The outcomes of the self-assembly processes used to synthesize such structures, however, strongly depend on the uniformity of the individual nanoparticles. Here, we explore the simplest form of particle size dispersity—bidispersity—and its impact on the self-assembly process. We investigate the robustness of self-assembling bcc-type crystals via isotropic interaction potentials in binary systems with increasingly disparate particle sizes by determining their terminal size ratio—the most extreme size ratio at which a mixed binary bcc crystal forms. Our findings show that two-well pair potentials produce bcc crystals that are more robust with respect to particle size ratio than one-well pair potentials. This suggests that an improved self-assembly process is accomplished with a second attractive length scale encoded in the particle–particle interaction, which stabilizes the second-nearest neighbor shell. In addition, we document qualitative differences in the process of ordering and disordering: in bidisperse systems of particles interacting via one-well potentials, we observe a breakdown of order prior to demixing, while in systems interacting via two-well potentials, demixing occurs first and bcc continues to form in parts of the droplet down to low size ratios.

1.
P.
Liu
,
L.
Bai
,
J.
Yang
,
H.
Gu
,
Q.
Zhong
,
Z.
Xie
, and
Z.
Gu
,
Nanoscale Adv.
1
,
1672
(
2019
).
2.
M.
He
,
J. P.
Gales
,
É.
Ducrot
,
Z.
Gong
,
G.-R.
Yi
,
S.
Sacanna
, and
D. J.
Pine
,
Nature
585
,
524
(
2020
).
3.
A.
Stein
,
B. E.
Wilson
, and
S. G.
Rudisill
,
Chem. Soc. Rev.
42
,
2763
(
2013
).
4.
H.
He
,
M.
Zhong
,
D.
Konkolewicz
,
K.
Yacatto
,
T.
Rappold
,
G.
Sugar
,
N. E.
David
,
J.
Gelb
,
N.
Kotwal
,
A.
Merkle
, and
K.
Matyjaszewski
,
Adv. Funct. Mater.
23
,
4720
(
2013
).
5.
Y.
Yang
,
L.
Ohnoutek
,
S.
Ajmal
,
X.
Zheng
,
Y.
Feng
,
K.
Li
,
T.
Wang
,
Y.
Deng
,
Y.
Liu
,
D.
Xu
,
V. K.
Valev
, and
L.
Zhang
,
J. Mater. Chem. A
7
,
11836
(
2019
).
6.
J. H.
Kim
,
J. H.
Moon
,
S.-Y.
Lee
, and
J.
Park
,
Appl. Phys. Lett.
97
,
103701
(
2010
).
7.
M.
Ben-Moshe
,
V. L.
Alexeev
, and
S. A.
Asher
,
Anal. Chem.
78
,
5149
(
2006
).
8.
F.
Wang
,
Z.
Zhu
,
M.
Xue
,
F.
Xue
,
Q.
Wang
,
Z.
Meng
,
W.
Lu
,
W.
Chen
,
F.
Qi
, and
Z.
Yan
,
Sens. Actuators, B
220
,
222
(
2015
).
9.
Y.
Liu
,
L.
Chen
,
T.
Cheng
,
H.
Guo
,
B.
Sun
, and
Y.
Wang
,
J. Power Sources
395
,
66
(
2018
).
10.
S.
Martin
,
G.
Bryant
, and
W.
van Megen
,
Phys. Rev. E
67
,
061405
(
2003
).
11.
S.
Martin
,
G.
Bryant
, and
W.
van Megen
,
Phys. Rev. E
71
,
021404
(
2005
).
12.
H. J.
Schöpe
,
G.
Bryant
, and
W.
van Megen
,
J. Chem. Phys.
127
,
084505
(
2007
).
14.
D.
Coslovich
,
M.
Ozawa
, and
L.
Berthier
,
J. Phys.: Condens. Matter
30
,
144004
(
2018
).
15.
B. A.
Lindquist
,
R. B.
Jadrich
, and
T. M.
Truskett
,
J. Chem. Phys.
148
,
191101
(
2018
).
16.
P.
Bartlett
,
J. Chem. Phys.
109
,
10970
(
1998
).
18.
Y.
Terada
,
T.
Keyes
,
J.
Kim
, and
M.
Tokuyama
,
AIP Conf. Proc.
1518
,
776
(
2013
).
19.
R.
Botet
,
B.
Cabane
,
L.
Goehring
,
J.
Li
, and
F.
Artzner
,
Faraday Discuss.
186
,
229
(
2016
).
20.
P. K.
Bommineni
,
N. R.
Varela-Rosales
,
M.
Klement
, and
M.
Engel
,
Phys. Rev. Lett.
122
,
128005
(
2019
).
21.
B.
Cabane
,
J.
Li
,
F.
Artzner
,
R.
Botet
,
C.
Labbez
,
G.
Bareigts
,
M.
Sztucki
, and
L.
Goehring
,
Phys. Rev. Lett.
116
,
208001
(
2016
).
22.
E. V.
Shevchenko
,
D. V.
Talapin
,
C. B.
Murray
, and
S.
O’Brien
,
J. Am. Chem. Soc.
128
,
3620
(
2006
).
23.
E.
Pretti
,
H.
Zerze
,
M.
Song
,
Y.
Ding
,
N. A.
Mahynski
,
H. W.
Hatch
,
V. K.
Shen
, and
J.
Mittal
,
Soft Matter
14
,
6303
(
2018
).
24.
R. A.
LaCour
,
T. C.
Moore
, and
S. C.
Glotzer
,
Phys. Rev. Lett.
128
,
188001
(
2022
).
25.
26.
H.
Fang
,
M. F.
Hagan
, and
W. B.
Rogers
,
Proc. Natl. Acad. Sci. U. S. A.
117
,
27927
(
2020
).
27.
V.
Ogarko
and
S.
Luding
,
Soft Matter
9
,
9530
(
2013
).
28.
L.
Meng
,
P.
Lu
, and
S.
Li
,
Particuology
16
,
155
(
2014
).
29.
C.
Anzivino
,
M.
Casiulis
,
T.
Zhang
,
A. S.
Moussa
,
S.
Martiniani
, and
A.
Zaccone
,
J. Chem. Phys.
158
,
044901
(
2023
).
30.
Y.
Yuan
,
L.
Liu
,
Y.
Zhuang
,
W.
Jin
, and
S.
Li
,
Phys. Rev. E
98
,
042903
(
2018
).
31.
E. J.
Meijer
and
F.
El Azhar
,
J. Chem. Phys.
106
,
4678
(
1997
).
32.
C.
Rascón
,
E.
Velasco
,
L.
Mederos
, and
G.
Navascués
,
J. Chem. Phys.
106
,
6689
(
1997
).
33.
D.
Gottwald
,
C. N.
Likos
,
G.
Kahl
, and
H.
Löwen
,
Phys. Rev. Lett.
92
,
068301
(
2004
).
34.
S.
Prestipino
,
F.
Saija
, and
P. V.
Giaquinta
,
J. Chem. Phys.
123
,
144110
(
2005
).
35.
A.
Travesset
,
J. Chem. Phys.
141
,
164501
(
2014
).
36.
K.
Kremer
,
M. O.
Robbins
, and
G. S.
Grest
,
Phys. Rev. Lett.
57
,
2694
(
1986
).
37.
M. O.
Robbins
,
K.
Kremer
, and
G. S.
Grest
,
J. Chem. Phys.
88
,
3286
(
1988
).
38.
A.-P.
Hynninen
and
M.
Dijkstra
,
Phys. Rev. E
68
,
021407
(
2003
).
39.
C.
Desgranges
and
J.
Delhommelle
,
J. Chem. Phys.
126
,
054501
(
2007
).
40.
C.
Desgranges
and
J.
Delhommelle
,
J. Phys. Chem. B
111
,
12257
(
2007
).
41.
Y.
Monovoukas
and
A. P.
Gast
,
J. Colloid Interface Sci.
128
,
533
(
1989
).
42.
E. B.
Sirota
,
H. D.
Ou-Yang
,
S. K.
Sinha
,
P. M.
Chaikin
,
J. D.
Axe
, and
Y.
Fujii
,
Phys. Rev. Lett.
62
,
1524
(
1989
).
43.
R. L.
Whetten
,
M. N.
Shafigullin
,
J. T.
Khoury
,
T. G.
Schaaff
,
I.
Vezmar
,
M. M.
Alvarez
, and
A.
Wilkinson
,
Acc. Chem. Res.
32
,
397
(
1999
).
44.
B. A.
Korgel
and
D.
Fitzmaurice
,
Phys. Rev. B
59
,
14191
(
1999
).
45.
A.
Yethiraj
and
A.
van Blaaderen
,
Nature
421
,
513
(
2003
).
46.
B. W.
Goodfellow
and
B. A.
Korgel
,
ACS Nano
5
,
2419
(
2011
).
47.
P.
Tan
,
N.
Xu
, and
L.
Xu
,
Nat. Phys.
10
,
73
(
2014
).
48.
R. V.
Thaner
,
Y.
Kim
,
T. I. N. G.
Li
,
R. J.
Macfarlane
,
S. T.
Nguyen
,
M.
Olvera de la Cruz
, and
C. A.
Mirkin
,
Nano Lett.
15
,
5545
(
2015
).
49.
B. W.
Goodfellow
,
Y.
Yu
,
C. A.
Bosoy
,
D.-M.
Smilgies
, and
B. A.
Korgel
,
J. Phys. Chem. Lett.
6
,
2406
(
2015
).
50.
W.
Steurer
, in
Physical Metallurgy
, 5th ed., edited by
D. E.
Laughlin
and
K.
Hono
(
Elsevier
,
2014
), pp.
1
101
.
51.
S.
Lee
,
M. J.
Bluemle
, and
F. S.
Bates
,
Science
330
,
349
(
2010
).
52.
R. J.
Macfarlane
,
B.
Lee
,
M. R.
Jones
,
N.
Harris
,
G. C.
Schatz
, and
C. A.
Mirkin
,
Science
334
,
204
(
2011
).
53.
S.
Chanpuriya
,
K.
Kim
,
J.
Zhang
,
S.
Lee
,
A.
Arora
,
K. D.
Dorfman
,
K. T.
Delaney
,
G. H.
Fredrickson
, and
F. S.
Bates
,
ACS Nano
10
,
4961
(
2016
).
54.
S.
Lee
,
C.
Leighton
, and
F. S.
Bates
,
Proc. Natl. Acad. Sci. U. S. A.
111
,
17723
(
2014
).
55.
K.
Yue
,
M.
Huang
,
R. L.
Marson
,
J.
He
,
J.
Huang
,
Z.
Zhou
,
J.
Wang
,
C.
Liu
,
X.
Yan
,
K.
Wu
,
Z.
Guo
,
H.
Liu
,
W.
Zhang
,
P.
Ni
,
C.
Wesdemiotis
,
W.-B.
Zhang
,
S. C.
Glotzer
, and
S. Z. D.
Cheng
,
Proc. Natl. Acad. Sci. U. S. A.
113
,
14195
(
2016
).
56.
S. A.
Kim
,
K.-J.
Jeong
,
A.
Yethiraj
, and
M. K.
Mahanthappa
,
Proc. Natl. Acad. Sci. U. S. A.
114
,
4072
(
2017
).
57.
J.
Henzie
,
M.
Grünwald
,
A.
Widmer-Cooper
,
P. L.
Geissler
, and
P.
Yang
,
Nat. Mater.
11
,
131
(
2012
).
58.
R. L.
Marson
,
E. G.
Teich
,
J.
Dshemuchadse
,
S. C.
Glotzer
, and
R. G.
Larson
,
Soft Matter
15
,
6288
(
2019
).
59.
H.
Huh
,
K.
Ahn
,
J. H.
Lim
,
H. W.
Kim
, and
L. J.
Park
,
J. Mater. Process. Technol.
214
,
1326
(
2014
).
60.
S.
Alexander
and
J.
McTague
,
Phys. Rev. Lett.
41
,
702
(
1978
).
61.
N. V.
Dziomkina
,
M. A.
Hempenius
, and
G. J.
Vancso
,
Polymer
50
,
5713
(
2009
).
62.
C.
Zhou
,
J.
Han
, and
R.
Guo
,
J. Colloid Interface Sci.
397
,
80
(
2013
).
63.
T.
Palberg
,
P.
Wette
, and
D. M.
Herlach
,
Phys. Rev. E
93
,
022601
(
2016
).
64.
H. J.
Schöpe
,
T.
Decker
, and
T.
Palberg
,
J. Chem. Phys.
109
,
10068
(
1998
).
65.
J.
Dshemuchadse
,
P. F.
Damasceno
,
C. L.
Phillips
,
M.
Engel
, and
S. C.
Glotzer
,
Proc. Natl. Acad. Sci. U. S. A.
118
,
e2024034118
(
2021
).
66.
J. A.
Anderson
,
C. D.
Lorenz
, and
A.
Travesset
,
J. Comput. Phys.
227
,
5342
(
2008
).
67.
J. A.
Anderson
,
J.
Glaser
, and
S. C.
Glotzer
,
Comput. Mater. Sci.
173
,
109363
(
2020
).
68.
M.
Rechtsman
,
F.
Stillinger
, and
S.
Torquato
,
Phys. Rev. E
73
,
011406
(
2006
).
69.
M.
Engel
and
H.-R.
Trebin
,
Phys. Rev. Lett.
98
,
225505
(
2007
).
71.
D.
Berthelot
,
C. R. Acad. Sci.
126
,
1703
(
1898
), https://gallica.bnf.fr/ark:/12148/bpt6k3082d/f1703.
72.
W.
Hume-Rothery
,
Atomic Theory for Students of Metallurgy
(
The Institute of Metals
,
London
,
1962
).
73.
A.
Stukowski
, “
Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool
,”
Modell. Simul. Mater. Sci. Eng.
18
,
015012
(
2010
).
74.
D.
Palmer
,
A.
Fernandez
,
M.
Gao
,
L.
Rimmer
, and
E.
Palmer
,
CrystalMaker®
, https://crystalmaker.com,
2024
.
75.
A.
Stukowski
,
Modell. Simul. Mater. Sci. Eng.
20
,
045021
(
2012
).
76.
C. S.
Adorf
,
P. M.
Dodd
,
V.
Ramasubramani
, and
S. C.
Glotzer
,
Comput. Mater. Sci.
146
,
220
(
2018
).
77.
V.
Ramasubramani
,
C. S.
Adorf
,
P. M.
Dodd
,
B. D.
Dice
, and
S. C.
Glotzer
, in
Proceedings of the 17th Python in Science Conference
(
SciPy
,
2018
), p.
152
, http://doi.org/10.25080/Majora-4af1f417-016.
78.
V.
Ramasubramani
,
B. D.
Dice
,
E. S.
Harper
,
M. P.
Spellings
,
J. A.
Anderson
, and
S. C.
Glotzer
,
Comput. Phys. Commun.
254
,
107275
(
2020
).
79.
S.
Sarkar
,
R.
Biswas
,
M.
Santra
, and
B.
Bagchi
,
Phys. Rev. E
88
,
022104
(
2013
).
80.
Q.
Fan
,
Z.
Li
,
Y.
Li
,
A.
Gao
,
Y.
Zhao
,
D.
Yang
,
C.
Zhu
,
T. V.
Brinzari
,
G.
Xu
,
L.
Pan
,
L. T.
Vuong
, and
Y.
Yin
,
J. Am. Chem. Soc.
145
,
28191
(
2023
).
81.
B.
Blaiszik
,
K.
Chard
,
J.
Pruyne
,
R.
Ananthakrishnan
,
S.
Tuecke
, and
I.
Foster
, “
The materials data facility: Data services to advance materials science research
,”
Met. Mater. Soc.
68
,
2045
(
2016
).
82.
J. J.
Kennard
,
H. J.
Zelaya Solano
,
C. D.
Biddulph
,
R. C.
Prager
, and
J.
Dshemuchadse
(
2024
). “
Disorder and demixing in bidisperse particle systems assembling bcc crystals
,”
Materials Data Facility
, https://doi.org/10.18126/ts8g-1070.
You do not currently have access to this content.