In this study, peptides designed using fragments of an antifreeze protein (AFP) from the freeze-tolerant insect Tenebrio molitor, TmAFP, were evaluated as inhibitors of clathrate hydrate formation. It was found that these peptides exhibit inhibitory effects by both direct and indirect mechanisms. The direct mechanism involves the displacement of methane molecules by hydrophobic methyl groups from threonine residues, preventing their diffusion to the hydrate surface. The indirect mechanism is characterized by the formation of cylindrical gas bubbles, the morphology of which reduces the pressure difference at the bubble interface, thereby slowing methane transport. The transfer of methane to the hydrate interface is primarily dominated by gas bubbles in the presence of antifreeze peptides. Spherical bubbles facilitate methane migration and potentially accelerate hydrate formation; conversely, the promotion of a cylindrical bubble morphology by two of the designed systems was found to mitigate this effect, leading to slower methane transport and reduced hydrate growth. These findings provide valuable guidance for the design of effective peptide-based inhibitors of natural-gas hydrate formation with potential applications in the energy and environmental sectors.

1.
E. D.
Sloan
and
C. A.
Koh
,
Clathrate Hydrates of Natural Gases
(
CRC Press
,
2007
).
2.
S.
Blazquez
,
M.
M Conde
,
C.
Vega
, and
E.
Sanz
, “
Growth rate of CO2 and CH4 hydrates by means of molecular dynamics simulations
,”
J. Chem. Phys.
159
,
064503
(
2023
).
3.
E. D.
Sloan
, “
Fundamental principles and applications of natural gas hydrates
,”
Nature
426
,
353
359
(
2003
).
4.
H.
Lu
,
Y.
Seo
,
J.
Lee
,
I.
Moudrakovski
,
J. A.
Ripmeester
,
N. R.
Chapman
,
R. B.
Coffin
,
G.
Gardner
, and
J.
Pohlman
, “
Complex gas hydrate from the Cascadia margin
,”
Nature
445
,
303
(
2007
).
5.
Y.
Liu
,
C.
Chen
,
Z.
Chen
,
W.
Li
,
Y.
Qin
, and
B.
Dong
, “
The growth of methane hydrate with impingement influenced by thermodynamic inhibitor
,”
Fuel
304
,
121390
(
2021
).
6.
C.
Chen
,
Y.
Zhang
,
J.
Sun
,
Y.
Liu
,
Y.
Qin
,
Z.
Ling
,
W.
Liu
, and
W.
Li
, “
The roles of functional groups of antifreeze protein in inhibition of hydrate growth
,”
Fuel
327
,
125060
(
2022
).
7.
M.
Maddah
,
M.
Maddah
, and
K.
Peyvandi
, “
Investigation on structural properties of winter flounder antifreeze protein in interaction with clathrate hydrate by molecular dynamics simulation
,”
J. Chem. Thermodyn.
152
,
106267
(
2021
).
8.
A. H.
Mohammadi
and
D.
Richon
, “
Gas hydrate phase equilibrium in the presence of ethylene glycol or methanol aqueous solution
,”
Ind. Eng. Chem. Res.
49
,
8865
8869
(
2010
).
9.
H.
Kim
,
H. P.
Veluswamy
,
Y.
Seo
, and
P.
Linga
, “
Morphology study on the effect of thermodynamic inhibitors during methane hydrate formation in the presence of NaCl
,”
Cryst. Growth Des.
18
,
6984
6994
(
2018
).
10.
S. D.
Seo
,
S. Y.
Hong
,
A. K.
Sum
,
K. H.
Lee
,
J. D.
Lee
, and
B. R.
Lee
, “
Thermodynamic and kinetic analysis of gas hydrates for desalination of saturated salinity water
,”
Chem. Eng. J.
370
,
980
987
(
2019
).
11.
E. G.
Dirdal
and
M. A.
Kelland
, “
Synthesis and investigation of polymers of 2-methacrylamido-caprolactam as kinetic hydrate inhibitors
,”
Energy Fuels
34
,
6981
6990
(
2020
).
12.
J.
Liu
,
H.
Wang
,
J.
Guo
,
G.
Chen
,
J.
Zhong
,
Y.
Yan
, and
J.
Zhang
, “
Molecular insights into the kinetic hydrate inhibition performance of poly(N-vinyl lactam) polymers
,”
J. Nat. Gas Sci. Eng.
83
,
103504
(
2020
).
13.
A.
Hudait
,
Y.
Qiu
,
N.
Odendahl
, and
V.
Molinero
, “
Hydrogen-bonding and hydrophobic groups contribute equally to the binding of hyperactive antifreeze and ice-nucleating proteins to ice
,”
J. Am. Chem. Soc.
141
,
7887
7898
(
2019
).
14.
Y.
Qiu
,
A.
Hudait
, and
V.
Molinero
, “
How size and aggregation of ice-binding proteins control their ice nucleation efficiency
,”
J. Am. Chem. Soc.
141
,
7439
7452
(
2019
).
15.
H.
Zeng
,
L. D.
Wilson
,
V. K.
Walker
, and
J. A.
Ripmeester
, “
Effect of antifreeze proteins on the nucleation, growth, and the memory effect during tetrahydrofuran clathrate hydrate formation
,”
J. Am. Chem. Soc.
128
,
2844
2850
(
2006
).
16.
M.
Maddah
,
M.
Maddah
, and
K.
Peyvandi
, “
The influence of a type III antifreeze protein and its mutants on methane hydrate adsorption-inhibition: A molecular dynamics simulation study
,”
Phys. Chem. Chem. Phys.
21
,
21836
21846
(
2019
).
17.
A.
Ampaw
,
T. A.
Charlton
,
J. G.
Briard
, and
R. N.
Ben
, “
Designing the next generation of cryoprotectants—From proteins to small molecules
,”
Pept. Sci.
111
,
e24086
(
2019
).
18.
R.
Surís-Valls
and
I. K.
Voets
, “
Peptidic antifreeze materials: Prospects and challenges
,”
Int. J. Mol. Sci.
20
,
5149
(
2019
).
19.
C. A.
Stevens
,
F.
Bachtiger
,
X. D.
Kong
,
L. A.
Abriata
,
G. C.
Sosso
,
M. I.
Gibson
, and
H. A.
Klok
, “
A minimalistic cyclic ice-binding peptide from phage display
,”
Nat. Commun.
12
,
2675
2678
(
2021
).
20.
M.
Maddah
,
M.
Maddah
, and
K.
Peyvandi
, “
Molecular dynamics simulation of methane hydrate formation in presence and absence of amino acid inhibitors
,”
J. Mol. Liq.
269
,
721
732
(
2018
).
21.
S.
Li
,
R.
Lv
,
Z.
Yan
,
F.
Huang
,
X.
Zhang
,
G.
Chen
, and
T.
Yue
, “
Design of alanine-rich short peptides as a green alternative of gas hydrate inhibitors: Dual methyl group docking for efficient adsorption on the surface of gas hydrates
,”
ACS Sustainable Chem. Eng.
8
,
4256
4266
(
2020
).
22.
W.
Go
,
S.
Yun
,
D.
Lee
, and
Y.
Seo
, “
Dipeptides as environmentally friendly CH4 hydrate inhibitors: Experimental and computational approaches
,”
Fuel
329
,
125479
(
2022
).
23.
Z. R.
Chen
,
W. G.
Liu
,
J. Y.
Sun
,
C.
Chen
, and
Y. C.
Song
, “
Alanine rich amphiphilic peptides as green substitutes for hydrate inhibitors: A molecular simulation study
,”
J. Mol. Liq.
370
,
121008
(
2023
).
24.
C. P.
Tang
,
Z. R.
Chen
,
A.
Farhadian
,
D.
Iravani
,
C.
Chen
,
Y.
Song
,
A.
Rahimi
,
D. Q.
Liang
,
L. S.
Lu
, and
S. S.
Fan
, “
Environmentally friendly antiagglomerants: A promising solution for gas hydrate plugging and corrosion risk management in oil and gas pipelines
,”
Energy Fuels
38
,
6738
6752
(
2024
).
25.
Z. R.
Chen
,
A.
Farhadian
,
Z. T.
Rizi
,
A.
Mortazavi-Manesh
,
M.
Mohammad-Taheri
,
M. A.
Aminolroayaei
,
E.
Sadeh
, and
C.
Chen
, “
Novel core–shell and recyclable gas hydrate promoter for efficient solidified natural gas storage
,”
Energy Convers. Manage.
301
,
118059
(
2024
).
26.
S.
Alireza Bagherzadeh
,
S.
Alavi
,
J. A.
Ripmeester
, and
P.
Englezos
, “
Why ice-binding type I antifreeze protein acts as a gas hydrate crystal inhibitor
,”
Phys. Chem. Chem. Phys.
17
,
9984
9990
(
2015
).
27.
N.
Zhang
,
Y. T.
Du
,
P. Q.
Yao
,
H. Y.
Huang
,
L. R.
Zhang
,
F. S.
Zhang
, and
J. J.
Liu
, “
Synergistic effect of hyperactive antifreeze protein on inhibition of gas-hydrate growth by hydrophobic and hydrophilic groups
,”
J. Phys. Chem. B
127
,
10469
10477
(
2023
).
28.
S. L.
Pedersen
and
K. J.
Jensen
, “
Instruments for automated peptide synthesis
,”
Methods Mol. Biol.
1047
,
215
224
(
2013
).
29.
X. Y.
Zhang
,
H. S.
Qi
,
J.
Yang
,
X.
Chen
, and
L.
Zhang
, “
Development of low immunogenic antifreeze peptides for cryopreservation
,”
Ind. Eng. Chem. Res.
62
,
12063
12072
(
2023
).
30.
D.
van der Spoel
,
E.
Lindahl
,
B.
Hess
,
G.
Groenhof
,
A. E.
Mark
, and
H. J. C.
Berendsen
, “
GROMACS: Fast, flexible, and free
,”
J. Comput. Chem.
26
,
1701
(
2005
).
31.
K.
Lindorff-Larsen
,
S.
Piana
,
K.
Palmo
,
P.
Maragakis
,
J. L.
Klepeis
,
R. O.
Dror
, and
D. E.
Shaw
, “
Improved side-chain torsion potentials for the Amber ff99SB protein force field
,”
Proteins
78
,
1950
1958
(
2010
).
32.
M. R.
Walsh
,
C. A.
Koh
,
E. D.
Sloan
,
A. K.
Sum
, and
D. T.
Wu
, “
Microsecond simulations of spontaneous methane hydrate nucleation and growth
,”
Science
326
,
1095
1098
(
2009
).
33.
M. M.
Conde
and
C.
Vega
, “
Determining the three-phase coexistence line in methane hydrates using computer simulations
,”
J. Chem. Phys.
133
,
064507
(
2010
).
34.
L.
Martínez
,
R.
Andrade
,
E. G.
Birgin
, and
J. M.
Martínez
, “
PACKMOL: A package for building initial configurations for molecular dynamics simulations
,”
J. Comput. Chem.
30
,
2157
2164
(
2009
).
35.
J. L. F.
Abascal
,
E.
Sanz
,
R.
García Fernández
, and
C.
Vega
, “
A potential model for the study of ices and amorphous water: TIP4P/Ice
,”
J. Chem. Phys.
122
,
234511
(
2005
).
36.
M.
Matsumoto
,
T.
Yagasaki
, and
H.
Tanaka
, “
GenIce: Hydrogen-disordered ice generator
,”
J. Comput. Chem.
39
,
61
64
(
2018
).
37.
S.
Nosé
, “
A molecular dynamics method for simulations in the canonical ensemble
,”
Mol. Phys.
52
,
255
268
(
1984
).
38.
M.
Parrinello
and
A.
Rahman
, “
Polymorphic transitions in single crystals: A new molecular dynamics method
,”
J. Appl. Phys.
52
,
7182
7190
(
1981
).
39.
T. A.
Darden
,
D. M.
York
, and
L. G.
Pedersen
, “
Particle mesh Ewald: An N log(N) method for Ewald sums in large systems
,”
J. Chem. Phys.
98
,
10089
10092
(
1993
).
40.
M. J.
Abraham
and
J. E.
Gready
, “
Optimization of parameters for molecular dynamics simulation using smooth particle-mesh Ewald in GROMACS 4.5
,”
J. Comput. Chem.
32
,
2031
2040
(
2011
).
41.
B.
Hess
,
H.
Bekker
,
H. J. C.
Berendsen
, and
J. G. E. M.
Fraaije
, “
LINCS: A linear constraint solver for molecular simulations
,”
J. Comput. Chem.
18
,
1463
1472
(
1997
).
42.
W. F.
Hu
,
C.
Chen
,
J. Y.
Sun
,
N.
Zhang
,
J. F.
Zhao
,
Y.
Liu
,
Z.
Ling
,
W. Z.
Li
,
W. G.
Liu
, and
Y. C.
Song
, “
Three-body aggregation of guest molecules as a key step in methane hydrate nucleation and growth
,”
Commun. Chem.
5
,
33
(
2022
).
43.
U. S.
Midya
and
S.
Bandyopadhyay
, “
Operation of Kelvin effect in the activities of an antifreeze protein: A molecular dynamics simulation study
,”
J. Phys. Chem. B
122
,
3079
3087
(
2018
).
44.
A. H.
Nguyen
and
V.
Molinero
, “
Identification of clathrate hydrates, hexagonal ice, cubic ice, and liquid water in simulations: The CHILL+ algorithm
,”
J. Phys. Chem. B
119
,
9369
9376
(
2015
).
45.
S. A.
Bagherzadeh
,
S.
Alavi
,
J.
Ripmeester
, and
P.
Englezos
, “
Formation of methane nano-bubbles during hydrate decomposition and their effect on hydrate growth
,”
J. Chem. Phys.
142
,
214701
(
2015
).
46.
K. H.
Li
,
B. B.
Chen
,
M. J.
Yang
,
Y. C.
Song
, and
A. K.
Sum
, “
Methane hydrate phase equilibrium considering dissolved methane concentrations and interfacial geometries from molecular simulations
,”
J. Chem. Phys.
159
,
244505
(
2023
).
47.
J. H.
Weijs
,
J. R. T.
Seddon
, and
D.
Lohse
, “
Diffusive shielding stabilizes bulk nanobubble clusters
,”
ChemPhysChem
13
,
2197
2204
(
2012
).
48.
P.
Montero de Hijes
,
K.
Shi
,
E. G.
Noya
,
E. E.
Santiso
,
K. E.
Gubbins
,
E.
Sanz
, and
C.
Vega
, “
The Young–Laplace equation for a solid–liquid interface
,”
J. Chem. Phys.
153
,
191102
(
2020
).
You do not currently have access to this content.