Infrared pump-probe and two-dimensional infrared (2D-IR) spectroscopies were used to study the vibrational dynamics of a homologous set of trimetallic dodecacarbonyls with increasingly heavy atomic masses in tetrahydrofuran solution. The vibrational lifetimes showed some evidence of the vibrational heavy atom effect (VHAE) but were not consistent across the sample set. Spectral diffusion was measured by 2D-IR spectroscopy to investigate whether the changes produced by the VHAE had influenced other aspects of vibrational dynamics. The triiron species was found to be more dynamic on very fast timescales and may exhibit evidence of a transient bridging CO structure. Centerline slope analysis of the high-frequency CO peak for each complex revealed that the vibrational dynamics were subtly but consistently slowed for the compounds with heavier metal atoms.

1.
I. J.
Finkelstein
,
J.
Zheng
,
H.
Ishikawa
,
S.
Kim
,
K.
Kwak
, and
M. D.
Fayer
, “
Probing dynamics of complex molecular systems with ultrafast 2D IR vibrational echo spectroscopy
,”
Phys. Chem. Chem. Phys.
9
(
13
),
1533
1549
(
2007
).
2.
H.
Ishikawa
,
K.
Kwak
,
J. K.
Chung
,
S.
Kim
, and
M. D.
Fayer
, “
Direct observation of fast protein conformational switching
,”
Proc. Natl. Acad. Sci. U. S. A.
105
(
25
),
8619
8624
(
2008
).
3.
K.
Kwak
,
D. E.
Rosenfeld
,
J. K.
Chung
, and
M. D.
Fayer
, “
Solute–solvent complex switching dynamics of chloroform between acetone and Dimethylsulfoxide–two-dimensional IR chemical exchange spectroscopy
,”
J. Phys. Chem. B
112
,
13906
13915
(
2008
).
4.
S.
Park
,
K.
Kwak
, and
M. D.
Fayer
, “
Ultrafast 2D-IR vibrational echo spectroscopy: A probe of molecular dynamics
,”
Laser Phys. Lett.
4
(
10
),
704
718
(
2007
).
5.
K. P.
Sokolowsky
and
M. D.
Fayer
, “
Dynamics in the isotropic phase of nematogens using 2D IR vibrational echo measurements on natural-abundance 13CN and extended lifetime probes
,”
J. Phys. Chem. B
117
(
48
),
15060
15071
(
2013
).
6.
J.
Zheng
and
M. D.
Fayer
, “
Hydrogen bond lifetimes and energetics for solute/solvent complexes studied with 2D-IR vibrational echo spectroscopy
,”
J. Am. Chem. Soc.
129
,
4328
4335
(
2007
).
7.
J.
Zheng
and
M. D.
Fayer
, “
Solute–solvent complex kinetics and thermodynamics probed by 2D-IR vibrational echo chemical exchange spectroscopy
,”
J. Phys. Chem. B
112
,
10221
10227
(
2008
).
8.
J.
Zheng
,
K.
Kwak
, and
M. D.
Fayer
, “
Ultrafast 2D IR vibrational echo spectroscopy
,”
Acc. Chem. Res.
40
,
75
83
(
2007
).
9.
D.
Kossowska
,
G.
Lee
,
H.
Han
,
K.
Kwak
, and
M.
Cho
, “
Simultaneous enhancement of transition dipole strength and vibrational lifetime of an alkyne IR probe via π-d backbonding and vibrational decoupling
,”
Phys. Chem. Chem. Phys.
21
(
45
),
24919
24925
(
2019
).
10.
D.
Kossowska
,
K.
Park
,
J. Y.
Park
,
C.
Lim
,
K.
Kwak
, and
M.
Cho
, “
Rational design of an acetylenic infrared probe with enhanced dipole strength and increased vibrational lifetime
,”
J. Phys. Chem. B
123
(
29
),
6274
6281
(
2019
).
11.
S.
Ramos
,
K. J.
Scott
,
R. E.
Horness
,
A. L.
Le Sueur
, and
M. C.
Thielges
, “
Extended timescale 2D IR probes of proteins: p-Cyanoselenophenylalanine
,”
Phys. Chem. Chem. Phys.
19
(
15
),
10081
10086
(
2017
).
12.
D. E.
Levin
,
A. J.
Schmitz
,
S. M.
Hines
,
K. J.
Hines
,
M. J.
Tucker
,
S. H.
Brewer
, and
E. E.
Fenlon
, “
Synthesis and evaluation of the sensitivity and vibrational lifetimes of thiocyanate and selenocyanate infrared reporters
,”
RSC Adv.
6
(
43
),
36231
36237
(
2016
).
13.
M.
Hassani
,
C. J.
Mallon
,
J. N.
Monzy
,
A. J.
Schmitz
,
S. H.
Brewer
,
E. E.
Fenlon
, and
M. J.
Tucker
, “
Inhibition of vibrational energy flow within an aromatic scaffold via heavy atom effect
,”
J. Chem. Phys.
158
(
22
),
140723
(
2023
).
14.
M.
Hassani
,
D. C.
Moore
,
M. G.
Roberson
,
S.
Kashid
, and
M. J.
Tucker
, “
Effects of spectral density on the azide vibrational transition in water versus D2O
,”
Chem. Phys. Lett.
828
,
140723
(
2023
).
15.
H.
Bian
,
J.
Li
,
X.
Wen
, and
J.
Zheng
, “
Mode-specific intermolecular vibrational energy transfer. I. Phenyl selenocyanate and deuterated chloroform mixture
,”
J. Chem. Phys.
132
(
18
),
184505
(
2010
).
16.
C. G.
Pyles
,
C. M.
Olson
, and
A. M.
Massari
, “
Vibrational heavy atom effect controls relaxation and spectral diffusion in triphenyl hydride complexes
,”
Chem. Phys.
512
,
98
103
(
2018
).
17.
S. P.
McGlynn
,
R.
Sunseri
, and
N.
Christodouleas
, “
External heavy-atom spin-orbital coupling effect. I. The nature of the interaction
,”
J. Chem. Phys.
37
(
8
),
1818
1824
(
1962
).
18.
F.
Chalyavi
,
A. J.
Schmitz
,
N. R.
Fetto
,
M. J.
Tucker
,
S. H.
Brewer
, and
E. E.
Fenlon
, “
Extending the vibrational lifetime of azides with heavy atoms
,”
Phys. Chem. Chem. Phys.
22
(
32
),
18007
18013
(
2020
).
19.
S. A.
Egorov
,
K. F.
Everitt
, and
J. L.
Skinner
, “
Quantum dynamics and vibrational relaxation
,”
J. Phys. Chem. A
103
,
9494
9499
(
1999
).
20.
S. A.
Egorov
and
J. L.
Skinner
, “
A theory of vibrational energy relaxation in liquids
,”
J. Chem. Phys.
105
,
7047
7058
(
1996
).
21.
D. V.
Kurochkin
,
S. R. G.
Naraharisetty
, and
I. V.
Rubtsov
, “
A relaxation-assisted 2D IR spectroscopy method
,”
Proc. Natl. Acad. Sci. U. S. A.
104
(
36
),
14209
14214
(
2007
).
22.
T. W.
Marin
,
B. J.
Homoelle
, and
K. G.
Spears
, “
Ultrafast electron transfer in the [Co(Cp)2|V(CO)6] radical pair
,”
J. Phys. Chem. A
106
,
1152
1166
(
2002
).
23.
S. M.
Gallagher Faeder
and
D. M.
Jonas
, “
Two-dimensional electronic correlation and relaxation spectra: Theory and model calculations
,”
J. Phys. Chem. A
103
,
10489
10505
(
1999
).
24.
J. F.
Cahoon
,
K. R.
Sawyer
,
J. P.
Schlegel
, and
C. B.
Harris
, “
Determining transition-state geometries in liquids using 2D-IR
,”
Science
319
(
5871
),
1820
1823
(
2008
).
25.
T. L.
Jansen
and
J.
Knoester
, “
Waiting time dynamics in two-dimensional infrared spectroscopy
,”
Acc. Chem. Res.
42
(
9
),
1405
1411
(
2009
).
26.
F.
Kakiuchi
,
Y.
Tanaka
,
N.
Chatani
, and
S.
Murai
, “
Completely selective synthesis of (E)-β-(triethylsilyl) styrenes by Fe3(CO)12-catalyzed reaction of styrenes with triethylsilane
,”
J. Organomet. Chem.
456
,
45
47
(
1993
).
27.
Y.
Li
,
S.
Yu
,
X.
Wu
,
J.
Xiao
,
W.
Shen
,
Z.
Dong
, and
J.
Gao
, “
Iron catalyzed asymmetric hydrogenation of ketones
,”
J. Am. Chem. Soc.
136
(
10
),
4031
4039
(
2014
).
28.
M.
Pizzetti
,
A.
Russo
, and
E.
Petricci
, “
Microwave-assisted aminocarbonylation of ynamides by using catalytic [Fe3(CO)12] at low pressures of carbon monoxide
,”
Chem. - Eur. J.
17
(
16
),
4523
4528
(
2011
).
29.
X.
Yao
,
P.
Yang
,
Z.
Jin
,
Q.
Jiang
,
R.
Guo
,
R.
Xie
,
Q.
He
, and
W.
Yang
, “
Multifunctional nanoplatform for photoacoustic imaging-guided combined therapy enhanced by CO induced ferroptosis
,”
Biomaterials
197
,
268
283
(
2019
).
30.
M.
Bron
,
P.
Bogdanoff
,
S.
Fiechter
,
M.
Hilgendorff
,
J.
Radnik
,
I.
Dorbandt
et al, “
Carbon supported catalysts for oxygen reduction in acidic media prepared by thermolysis of Ru3(CO)12
,”
J. Electroanal. Chem.
517
,
85
94
(
2001
).
31.
N.
Chatani
,
Y.
Ie
,
F.
Kakiuchi
, and
S.
Murai
, “
Ru3(CO)12-Catalyzed decarbonylative cleavage of a C–C bond of alkyl phenyl ketones
,”
J. Am. Chem. Soc.
121
(
37
),
8645
8646
(
1999
).
32.
P.
Moggi
,
G.
Predieri
,
F.
Di Silvestri
, and
A.
Ferretti
, “
Ru/SiO2 catalysts prepared by the sol-gel method from Ru3(CO)12
,”
Appl. Catal., A
182
,
257
265
(
1999
).
33.
C.
Yu
,
P.
Zhao
,
G.
Chen
, and
B.
Hu
, “
Al2O3 supported Ru catalysts prepared by thermolysis of Ru3(CO)12 for catalytic wet air oxidation
,”
Appl. Surf. Sci.
257
(
17
),
7727
7731
(
2011
).
34.
C.
Aydin
,
A.
Kulkarni
,
M.
Chi
,
N. D.
Browning
, and
B. C.
Gates
, “
Atomically resolved site-isolated catalyst on MgO: Mononuclear osmium dicarbonyls formed from Os3(CO)12
,”
J. Phys. Chem. Lett.
3
(
14
),
1865
1871
(
2012
).
35.
J. G.
Patrow
,
Y.
Cheng
,
C. G.
Pyles
,
B.
Luo
,
I. A.
Tonks
, and
A. M.
Massari
, “
Spectroscopic study of sol-gel entrapped triruthenium dodecacarbonyl catalyst reveals hydride formation
,”
J. Phys. Chem. Lett.
11
(
17
),
7394
7399
(
2020
).
36.
C. G.
Pyles
,
J. G.
Patrow
,
Y.
Cheng
,
I. A.
Tonks
, and
A. M.
Massari
, “
Ruthenium hydrides encapsulated in sol-gel glasses exhibit new ultrafast vibrational dynamics
,”
J. Chem. Phys.
156
(
12
),
124502
(
2022
).
37.
C. J.
Huber
,
S. M.
Egger
,
I. C.
Spector
,
A. R.
Juelfs
,
C. L.
Haynes
, and
A. M.
Massari
, “
2D-IR spectroscopy of porous silica nanoparticles: Measuring the distance sensitivity of spectral diffusion
,”
J. Phys. Chem. C
119
(
45
),
25135
25144
(
2015
).
38.
B. H.
Jones
,
C. J.
Huber
,
I. C.
Spector
,
A. M.
Tabet
,
R. L.
Butler
,
Y.
Hang
, and
A. M.
Massari
, “
Correlating solvent dynamics and chemical reaction rates using binary solvent mixtures and two-dimensional infrared spectroscopy
,”
J. Chem. Phys.
142
(
21
),
212441
(
2015
).
39.
R. D.
Johnson
III
, “
NIST computational chemistry comparison and benchmark database
,” in
NIST Standard Reference Database Number 101
(
National Institute of Standards and Technology
,
Gaithersburg, MD
,
2022
), Vol.
20
.
40.
A. P.
Scott
and
L.
Radom
, “
Harmonic vibrational Frequencies: An evaluation of Hartree–Fock, Møller–Plesset, quadratic configuration interaction, density functional theory, and semiempirical scale factors
,”
J. Phys. Chem.
100
,
16502
16513
(
1996
).
41.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
,
G. E.
Scuseria
,
M. A.
Robb
,
J. R.
Cheeseman
,
V.
Barone
,
G. A.
Petersson
,
H.
Nakatsuji
et al,
Gaussian 16
,
Gaussian, Inc.
,
Wallingford, CT
,
2016
.
42.
S.
Dobos
,
S.
Nunziantecesaro
, and
M.
Maltese
, “
Infrared spectra and structure of bridging carbonyls in Fe2Ru(CO)12 and Fe3(CO)12
,”
Inorg. Chim. Acta
113
,
167
172
(
1986
).
43.
X.
Dong
,
F.
Yang
,
J.
Zhao
, and
J.
Wang
, “
Efficient intramolecular vibrational excitonic energy transfer in Ru3(CO)12 cluster revealed by two-dimensional infrared spectroscopy
,”
J. Phys. Chem. B
122
(
3
),
1296
1305
(
2018
).
44.
G. A.
Battiston
,
G.
Bor
,
U. K.
Dietler
,
S. F. A.
Kettle
,
R.
Rossetti
,
G.
Sbrignadello
, and
P. L.
Stanghellini
, “
Comparative infrared and Raman spectroscopic .nu.(carbon monoxide) study of dodecacarbonyltriruthenium, dodecacarbonyltriosmium, their mixed crystals, and the mixed triangulo cluster carbonyls dodecacarbonylosmiumdiruthenium and dodecacarbonyldiosmiumruthenium
,”
Inorg. Chem.
19
,
1961
1973
(
1980
).
45.
G. A.
Battiston
,
G.
Sbrignadello
, and
G.
Bor
, “
Infrared spectroscopic studies on metal carbonyl compounds. 23. A simple quantitative treatment of the infrared band intensity and the induced metal-metal dipole contribution to it in polynuclear metal carbonyls. An application to the spectrum of dodecacarbonyltriruthenium and dodecacarbonyltriosmium in the carbon-oxygen stretching region
,”
Inorg. Chem.
19
(
7
),
1973
1977
(
1980
).
46.
D.
Koch
,
Y.
Chen
,
P.
Golub
, and
S.
Manzhos
, “
Revisiting π backbonding: The influence of d orbitals on metal–CO bonds and ligand red shifts
,”
Phys. Chem. Chem. Phys.
21
,
20814
20821
(
2019
).
47.
G.
Bistoni
,
S.
Rampino
,
N.
Scafuri
,
G.
Ciancaleoni
,
D.
Zuccaccia
,
L.
Belpassi
, and
F.
Tarantelli
, “
How π back-donation quantitatively controls the CO stretching response in classical and non-classical metal carbonyl complexes
,”
Chem. Sci.
7
(
2
),
1174
1184
(
2016
).
48.
S. D.
Fried
and
S. G.
Boxer
, “
Measuring electric fields and noncovalent interactions using the vibrational Stark effect
,”
Acc. Chem. Res.
48
(
4
),
998
1006
(
2015
).
49.
K.
Kwak
,
S.
Park
,
I. J.
Finkelstein
, and
M. D.
Fayer
, “
Frequency-frequency correlation functions and apodization in two-dimensional infrared vibrational echo spectroscopy: A new approach
,”
J. Chem. Phys.
127
(
12
),
124503
(
2007
).
You do not currently have access to this content.