In this paper, we consider the problem of numerical investigation of the counting statistics for a class of one-dimensional systems. Importance sampling, the cornerstone technique usually implemented for such problems, critically hinges on selecting an appropriate biased distribution. While an exponential tilt in the observable stands as the conventional choice for various problems, its efficiency in the context of counting statistics may be significantly hindered by the genuine discreteness of the observable. To address this challenge, we propose an alternative strategy, which we call importance sampling with the local tilt. We demonstrate the efficiency of the proposed approach through the analysis of three prototypical examples: a set of independent Gaussian random variables, Dyson gas, and symmetric simple exclusion process with a steplike initial condition.

1.
L. S.
Levitov
,
H.
Lee
, and
G. B.
Lesovik
, “
Electron counting statistics and coherent states of electric current
,”
J. Math. Phys.
37
,
4845
4866
(
1996
).
2.
U.
Thupakula
,
V.
Perrin
,
A.
Palacio-Morales
,
L.
Cario
,
M.
Aprili
,
P.
Simon
, and
F.
Massee
, “
Coherent and incoherent tunneling into Yu–Shiba–Rusinov states revealed by atomic scale shot-noise spectroscopy
,”
Phys. Rev. Lett.
128
,
247001
(
2022
); arXiv:2111.04749.
3.
D. C.
Ohnmacht
,
W.
Belzig
, and
J. C.
Cuevas
, “
Full counting statistics of Yu–Shiba–Rusinov bound states
,”
Phys. Rev. Res.
5
,
033176
(
2023
); arXiv:2305.04758.
4.
D. A.
Ivanov
and
A. G.
Abanov
, “
Characterizing correlations with full counting statistics: Classical ising and quantum XY spin chains
,”
Phys. Rev. E
87
,
022114
(
2013
); arXiv:1203.6325.
5.
V.
Eisler
and
Z.
Rácz
, “
Full counting statistics in a propagating quantum front and random matrix spectra
,”
Phys. Rev. Lett.
110
,
060602
(
2013
); arXiv:1211.2321.
6.
J.-M.
Stéphan
and
F.
Pollmann
, “
Full counting statistics in the Haldane–Shastry chain
,”
Phys. Rev. B
95
,
035119
(
2017
); arXiv:1608.06856.
7.
S.
Groha
,
F. H. L.
Essler
, and
P.
Calabrese
, “
Full counting statistics in the transverse field Ising chain
,”
SciPost Phys.
4
,
043
(
2018
).
8.
O.
Gamayun
,
O.
Lychkovskiy
, and
J.-S.
Caux
, “
Fredholm determinants, full counting statistics and Loschmidt echo for domain wall profiles in one-dimensional free fermionic chains
,”
SciPost Phys
8
,
036
(
2020
).
9.
J. S.
Pallister
,
S. H.
Pickering
,
D. M.
Gangardt
, and
A. G.
Abanov
, “
Phase transitions in full counting statistics of free fermions and directed polymers
,” arXiv:2405.12651 (
2024
).
10.
V.
Eisler
, “
Universality in the full counting statistics of trapped fermions
,”
Phys. Rev. Lett.
111
,
080402
(
2013
); arXiv:1304.1413.
11.
D. S.
Dean
,
P.
Le Doussal
,
S. N.
Majumdar
, and
G.
Schehr
, “
Noninteracting fermions at finite temperature in a d-dimensional trap: Universal correlations
,”
Phys. Rev. A
94
,
063622
(
2016
); arXiv:1609.04366.
12.
B.
Lacroix-A-Chez-Toine
,
S. N.
Majumdar
, and
G.
Schehr
, “
Rotating trapped fermions in two dimensions and the complex Ginibre ensemble: Exact results for the entanglement entropy and number variance
,”
Phys. Rev. A
99
,
021602
(
2019
); arXiv:1809.05835.
13.
D. S.
Dean
,
P.
Le Doussal
,
S. N.
Majumdar
, and
G.
Schehr
, “
Noninteracting fermions in a trap and random matrix theory
,”
J. Phys. A: Math. Theor.
52
,
144006
(
2019
); arXiv:1810.12583.
14.
N. R.
Smith
,
P.
Le Doussal
,
S. N.
Majumdar
, and
G.
Schehr
, “
Counting statistics for noninteracting fermions in a d-dimensional potential
,”
Phys. Rev. E
103
,
L030105
(
2021
); arXiv:2008.01045.
15.
N. R.
Smith
,
P.
Le Doussal
,
S. N.
Majumdar
, and
G.
Schehr
, “
Full counting statistics for interacting trapped fermions
,”
SciPost Phys.
11
,
110
(
2021
); arXiv:2106.05014.
16.
S.
Gustavsson
,
R.
Leturcq
,
B.
Simovic
,
R.
Schleser
,
T.
Ihn
,
P.
Studerus
,
K.
Ensslin
,
D. C.
Driscoll
, and
A. C.
Gossard
, “
Counting statistics of single electron transport in a quantum dot
,”
Phys. Rev. Lett.
96
,
076605
(
2006
); arXiv:cond-mat/0510269.
17.
C. W.
Groth
,
B.
Michaelis
, and
C. W. J.
Beenakker
, “
Counting statistics of coherent population trapping in quantum dots
,”
Phys. Rev. B
74
,
125315
(
2006
); arXiv:cond-mat/0605630.
18.
S. M.
Bezrukov
,
A. M.
Berezhkovskii
,
M. A.
Pustovoit
, and
A.
Szabo
, “
Particle number fluctuations in a membrane channel
,”
J. Chem. Phys.
113
,
8206
8211
(
2000
).
19.
S.
Marbach
, “
Intrinsic fractional noise in nanopores: The effect of reservoirs
,”
J. Chem. Phys.
154
,
171101
(
2021
); arXiv:2102.06811.
20.
T.
Bodineau
and
B.
Derrida
, “
Current fluctuations in nonequilibrium diffusive systems: An additivity principle
,”
Phys. Rev. Lett.
92
,
180601
(
2004
); arXiv:cond-mat/0402305.
21.
L.
Bertini
,
A.
De Sole
,
D.
Gabrielli
,
G.
Jona-Lasinio
, and
C.
Landim
, “
Current fluctuations in stochastic lattice gases
,”
Phys. Rev. Lett.
94
,
030601
(
2005
); arXiv:cond-mat/0407161.
22.
B.
Derrida
and
A.
Gerschenfeld
, “
Current fluctuations in one dimensional diffusive systems with a step initial density profile
,”
J. Stat. Phys.
137
,
978
1000
(
2009
); arXiv:0907.3294.
23.
P. L.
Krapivsky
and
B.
Meerson
, “
Fluctuations of current in nonstationary diffusive lattice gases
,”
Phys. Rev. E
86
,
031106
(
2012
); arXiv:1206.1842.
24.
P. L.
Krapivsky
,
K.
Mallick
, and
T.
Sadhu
, “
Large deviations in single-file diffusion
,”
Phys. Rev. Lett.
113
,
078101
(
2014
); arXiv:1405.1014.
25.
D. S.
Dean
,
S. N.
Majumdar
, and
G.
Schehr
, “
Effusion of stochastic processes on a line
,”
J. Stat. Mech.
2023
,
063208
; arXiv:2303.08961.
26.
U.
Basu
,
A.
Kundu
, and
A.
Pal
, “
Symmetric exclusion process under stochastic resetting
,”
Phys. Rev. E
100
,
032136
(
2019
); arXiv:1906.11801.
27.
C.
Di Bello
,
A. K.
Hartmann
,
S. N.
Majumdar
,
F.
Mori
,
A.
Rosso
, and
G.
Schehr
, “
Current fluctuations in stochastically resetting particle systems
,”
Phys. Rev. E
108
,
014112
(
2023
); arXiv:2302.06696.
28.
S.
Mishra
and
U.
Basu
, “
Symmetric exclusion process under stochastic power-law resetting
,”
J. Stat. Mech.
2023
,
053202
; arXiv:2211.14120.
29.
S.
Jose
,
R.
Dandekar
, and
K.
Ramola
, “
Current fluctuations in an interacting active lattice gas
,”
J. Stat. Mech.
2023
,
083208
; arXiv:2301.10680.
30.
T.
Agranov
,
S.
Ro
,
Y.
Kafri
, and
V.
Lecomte
, “
Macroscopic fluctuation theory and current fluctuations in active lattice gases
,”
SciPost Phys.
14
,
045
(
2023
); arXiv:2208.02124.
31.
T.
Banerjee
,
S. N.
Majumdar
,
A.
Rosso
, and
G.
Schehr
, “
Current fluctuations in noninteracting run-and-tumble particles in one dimension
,”
Phys. Rev. E
101
,
052101
(
2020
); arXiv:2001.01923.
32.
S.
Jose
,
A.
Rosso
, and
K.
Ramola
, “
Generalized disorder averages and current fluctuations in run and tumble particles
,”
Phys. Rev. E
108
,
L052601
(
2023
); arXiv:2306.13613.
33.
S.
Jose
et al, “
Effect of initial conditions on current fluctuations in non-interacting active particles
,”
J. Phys. A: Math. Theor.
57
,
285002
(
2024
).
34.
A.
Biswas
,
S.
Jose
,
A.
Pal
, and
K.
Ramola
, “
Current fluctuations in finite-sized one-dimensional non-interacting passive and active systems
,” arXiv:2404.13988 (
2024
).
35.
B.
Derrida
and
J. L.
Lebowitz
, “
Exact large deviation function in the asymmetric exclusion process
,”
Phys. Rev. Lett.
80
,
209
213
(
1998
); arXiv:cond-mat/9809044.
36.
B.
Derrida
and
A.
Gerschenfeld
, “
Current fluctuations of the one dimensional symmetric simple exclusion process with step initial condition
,”
J. Stat. Phys.
136
,
1
15
(
2009
); arXiv:0902.2364.
37.
A.
Lazarescu
and
K.
Mallick
, “
An exact formula for the statistics of the current in the TASEP with open boundaries
,”
J. Phys. A: Math. Theor.
44
,
315001
(
2011
); arXiv:1104.5089.
38.
I.
Lobaskin
,
M. R.
Evans
, and
K.
Mallick
, “
Current fluctuations in a partially asymmetric simple exclusion process with a defect particle
,”
Phys. Rev. E
109
,
024127
(
2024
); arXiv:2307.06770.
39.
S. N.
Majumdar
,
C.
Nadal
,
A.
Scardicchio
, and
P.
Vivo
, “
Index distribution of Gaussian random matrices
,”
Phys. Rev. Lett.
103
,
220603
(
2009
); arXiv:0910.0775.
40.
C.
Nadal
,
S. N.
Majumdar
, and
M.
Vergassola
, “
Phase transitions in the distribution of bipartite entanglement of a random pure state
,”
Phys. Rev. Lett.
104
,
110501
(
2010
); arXiv:0911.2844.
41.
C.
Nadal
,
S. N.
Majumdar
, and
M.
Vergassola
, “
Statistical distribution of quantum entanglement for a random bipartite state
,”
J. Stat. Phys.
142
,
403
438
(
2011
); arXiv:1006.4091.
42.
S. N.
Majumdar
,
C.
Nadal
,
A.
Scardicchio
, and
P.
Vivo
, “
How many eigenvalues of a Gaussian random matrix are positive?
,”
Phys. Rev. E
83
,
041105
(
2011
); arXiv:1012.1107.
43.
R.
Marino
,
S. N.
Majumdar
,
G.
Schehr
, and
P.
Vivo
, “
Phase transitions and edge scaling of number variance in Gaussian random matrices
,”
Phys. Rev. Lett.
112
,
254101
(
2014
); arXiv:1404.0575.
44.
R.
Marino
,
S. N.
Majumdar
,
G.
Schehr
, and
P.
Vivo
, “
Number statistics for β-ensembles of random matrices: Applications to trapped fermions at zero temperature
,”
Phys. Rev. E
94
,
032115
(
2016
); arXiv:1601.03178.
45.
A.
Dhar
,
A.
Kundu
,
S. N.
Majumdar
,
S.
Sabhapandit
, and
G.
Schehr
, “
Exact extremal statistics in the classical 1d coulomb gas
,”
Phys. Rev. Lett.
119
,
060601
(
2017
); arXiv:1704.08973.
46.
A.
Dhar
,
A.
Kundu
,
S. N.
Majumdar
,
S.
Sabhapandit
, and
G.
Schehr
, “
Extreme statistics and index distribution in the classical 1d Coulomb gas
,”
J. Phys. A: Math. Theor.
51
,
295001
(
2018
); arXiv:1802.10374.
47.
A.
Flack
,
S. N.
Majumdar
, and
G.
Schehr
, “
Gap probability and full counting statistics in the one-dimensional one-component plasma
,”
J. Stat. Mech.
2022
,
053211
; arXiv:2202.12118.
48.
M.
Lewin
, “
Coulomb and Riesz gases: The known and the unknown
,”
J. Math. Phys.
63
,
061101
(
2022
); arXiv:2202.09240.
49.
A. K.
Hartmann
, “
Sampling rare events: Statistics of local sequence alignments
,”
Phys. Rev. E
65
,
056102
(
2002
); arXiv:cond-mat/0108201.
50.
J. A.
Bucklew
,
Introduction to Rare Event Simulation
(
Springer
,
New York, NY
,
2004
).
51.
W.
Krauth
,
Statistical Mechanics Algorithms and Computations
(
Cambridge University Press
,
2006
).
52.
A.
Engel
,
R.
Monasson
, and
A. K.
Hartmann
, “
On large deviation properties of Erdös–Rényi random graphs
,”
J. Stat. Phys.
117
,
387
426
(
2004
); arXiv:cond-mat/0311535.
53.
A. K.
Hartmann
, “
Large-deviation properties of largest component for random graphs
,”
Eur. Phys. J. B
84
,
627
634
(
2011
); arXiv:1011.2996.
54.
A. K.
Hartmann
,
P.
Le Doussal
,
S. N.
Majumdar
,
A.
Rosso
, and
G.
Schehr
, “
High-precision simulation of the height distribution for the KPZ equation
,”
Europhys. Lett.
121
,
67004
(
2018
); arXiv:1802.02106.
55.
U.
Basu
,
S. N.
Majumdar
,
A.
Rosso
, and
G.
Schehr
, “
Long-time position distribution of an active Brownian particle in two dimensions
,”
Phys. Rev. E
100
,
062116
(
2019
); arXiv:1908.10624.
56.
I. N.
Burenev
,
S. N.
Majumdar
, and
A.
Rosso
, “
Local time of a system of Brownian particles on the line with steplike initial condition
,”
Phys. Rev. E
108
,
064113
(
2023
); arXiv:2306.16882.
57.
I. N.
Burenev
,
S. N.
Majumdar
, and
A.
Rosso
, “
Occupation time of a system of Brownian particles on the line with steplike initial condition
,”
Phys. Rev. E
109
,
044150
(
2024
); arXiv:2311.17689.
58.
P. J.
Forrester
,
Log-Gases and Random Matrices (LMS-34)
(
Princeton University Press
,
Princeton
,
2010
).
59.
M. L.
Mehta
,
Random Matrices, Pure and Applied Mathematics
(
Academic Press
,
2004
), Vol.
142
.
60.
D. S.
Dean
and
S. N.
Majumdar
, “
Large deviations of extreme eigenvalues of random matrices
,”
Phys. Rev. Lett.
97
,
160201
(
2006
); arXiv:cond-mat/0609651.
61.
D. S.
Dean
and
S. N.
Majumdar
, “
Extreme value statistics of eigenvalues of Gaussian random matrices
,”
Phys. Rev. E
77
,
041108
(
2008
); arXiv:0801.1730.
62.
K.
Johansson
, “
Non-intersecting paths, random tilings and random matrices
,”
Probab. Theory Relat. Fields
123
,
225
280
(
2002
); arXiv:math/0011250.
63.
T.
Halpin-Healy
and
Y.-C.
Zhang
, “
Kinetic roughening phenomena, stochastic growth, directed polymers and all that. Aspects of multidisciplinary statistical mechanics
,”
Phys. Rep.
254
,
215
414
(
1995
).
64.
K.
Johansson
, “
Shape fluctuations and random matrices
,”
Commun. Math. Phys.
209
,
437
476
(
2000
); arXiv:math/9903134.
65.
M.
Prahofer
and
H.
Spohn
, “
Universal distributions for growth processes in 1 + 1 dimensions and random matrices
,”
Phys. Rev. Lett.
84
,
4882
4885
(
2000
); arXiv:cond-mat/9912264.
66.
H.
Spohn
, “
Exact solutions for KPZ-type growth processes, random matrices, and equilibrium shapes of crystals
,”
Physica A
369
,
71
99
(
2006
); arXiv:cond-mat/0512011.
67.
P.
Zinn-Justin
, “
Six-vertex model with domain wall boundary conditions and one-matrix model
,”
Phys. Rev. E
62
,
3411
3418
(
2000
); arXiv:math-ph/0005008.
68.
F.
Colomo
and
A. G.
Pronko
, “
Third-order phase transition in random tilings
,”
Phys. Rev. E
88
,
042125
(
2013
); arXiv:1306.6207.
69.
I. N.
Burenev
,
F.
Colomo
,
A.
Maroncelli
, and
A. G.
Pronko
, “
Arctic curves of the four-vertex model
,”
J. Phys. A: Math. Theor.
56
,
465202
(
2023
); arXiv:2307.03076.
70.
B.
Derrida
, “
Non-equilibrium steady states: Fluctuations and large deviations of the density and of the current
,”
J. Stat. Mech.
2007
,
P07023
; arXiv:cond-mat/0703762.
71.
K.
Mallick
, “
The exclusion process: A paradigm for non-equilibrium behaviour
,”
Physica A
418
,
17
48
(
2015
); arXiv:1412.6258.
72.
T.
Kriecherbauer
and
J.
Krug
, “
A pedestrian’s view on interacting particle systems, KPZ universality and random matrices
,”
J. Phys. A: Math. Theor.
43
,
403001
(
2010
); arXiv:0803.2796.
You do not currently have access to this content.