The thermodynamics and kinetics of nanoparticle crystallization, as opposed to bulk phases, may be influenced by surface and size effects. We investigate the importance of such factors in the crystallization process of gold, silver, and iron nanodroplets using numerical simulations in the form of molecular dynamics combined with path sampling. This modeling strategy is targeted at obtaining representative ensembles of structures located at the transition state of the crystallization process. A structural analysis of the transition state ensembles reveals that both the average size and location of the critical nucleation cluster are influenced by surface and nanoscale size effects. Furthermore, we also show that transition state structures in smaller nanodroplets exhibit a more ordered liquid phase, and differentiating between a well-ordered critical cluster and its surrounding disordered liquid phase becomes less evident. All in all, these findings demonstrate that crystallization mechanisms in nanoparticles go beyond the assumptions of classical nucleation theory.

1.
S.
Rathinavel
,
K.
Priyadharshini
, and
D.
Panda
, “
A review on carbon nanotube: An overview of synthesis, properties, functionalization, characterization, and the application
,”
Mater. Sci. Eng., B
268
,
115095
(
2021
).
2.
M. A.
Farzin
and
H.
Abdoos
, “
A critical review on quantum dots: From synthesis toward applications in electrochemical biosensors for determination of disease-related biomolecules
,”
Talanta
224
,
121828
(
2021
).
3.
N.
Baig
,
I.
Kammakakam
, and
W.
Falath
, “
Nanomaterials: A review of synthesis methods, properties, recent progress, and challenges
,”
Mater. Adv.
2
,
1821
1871
(
2021
).
4.
M. F.
Hochella
, Jr.
,
S. K.
Lower
,
P. A.
Maurice
,
R. L.
Penn
,
N.
Sahai
,
D. L.
Sparks
, and
B. S.
Twining
, “
Nanominerals, mineral nanoparticles, and earth systems
,”
Science
319
,
1631
1635
(
2008
).
5.
T.
Schäfer
,
F.
Huber
,
H.
Seher
,
T.
Missana
,
U.
Alonso
,
M.
Kumke
,
S.
Eidner
,
F.
Claret
, and
F.
Enzmann
, “
Nanoparticles and their influence on radionuclide mobility in deep geological formations
,”
Appl. Geochem.
27
,
390
403
(
2012
).
6.
T.
Rönkkö
,
H.
Kuuluvainen
,
P.
Karjalainen
,
J.
Keskinen
,
R.
Hillamo
,
J. V.
Niemi
,
L.
Pirjola
,
H. J.
Timonen
,
S.
Saarikoski
,
E.
Saukko
,
A.
Järvinen
,
H.
Silvennoinen
,
A.
Rostedt
,
M.
Olin
,
J.
Yli-Ojanperä
,
P.
Nousiainen
,
A.
Kousa
, and
M.
Dal Maso
, “
Traffic is a major source of atmospheric nanocluster aerosol
,”
Proc. Natl. Acad. Sci. U.S.A.
114
,
7549
7554
(
2017
).
7.
M.
Kulmala
,
T.
Petäjä
,
M.
Ehn
,
J.
Thornton
,
M.
Sipilä
,
D. R.
Worsnop
, and
V.-M.
Kerminen
, “
Chemistry of atmospheric nucleation: On the recent advances on precursor characterization and atmospheric cluster composition in connection with atmospheric new particle formation
,”
Annu. Rev. Phys. Chem.
65
,
21
37
(
2014
).
8.
M.
Bundschuh
,
J.
Filser
,
S.
Lüderwald
,
M. S.
McKee
,
G.
Metreveli
,
G. E.
Schaumann
,
R.
Schulz
, and
S.
Wagner
, “
Nanoparticles in the environment: Where do we come from, where do we go to?
,”
Environ. Sci. Eur.
30
,
6
(
2018
).
9.
S.
Mathivanan
and
S.
Mathivanan
, “
Perspectives of nano-materials and nanobiosensors in food safety and agriculture
,” in
Novel Nanomaterials
(
IntechOpen
,
2021
).
10.
S.
Prasad
, “
Nanobiosensors: The future for diagnosis of disease?
,”
Nanobiosens. Dis. Diagn.
3
,
1
10
(
2014
).
11.
J.
Lee
,
J.
Yang
,
S. G.
Kwon
, and
T.
Hyeon
, “
Nonclassical nucleation and growth of inorganic nanoparticles
,”
Nat. Rev. Mater.
1
,
16034
(
2016
).
12.
N. T. K.
Thanh
,
N.
Maclean
, and
S.
Mahiddine
, “
Mechanisms of nucleation and growth of nanoparticles in solution
,”
Chem. Rev.
114
,
7610
7630
(
2014
).
13.
Y.-S.
Jun
,
Y.
Zhu
,
Y.
Wang
,
D.
Ghim
,
X.
Wu
,
D.
Kim
, and
H.
Jung
, “
Classical and nonclassical nucleation and growth mechanisms for nanoparticle formation
,”
Annu. Rev. Phys. Chem.
73
,
453
477
(
2022
).
14.
R.
Zhang
,
A.
Khalizov
,
L.
Wang
,
M.
Hu
, and
W.
Xu
, “
Nucleation and growth of nanoparticles in the atmosphere
,”
Chem. Rev.
112
,
1957
2011
(
2012
).
15.
J.
Lam
and
J. F.
Lutsko
, “
Lattice induced crystallization of nanodroplets: The role of finite-size effects and substrate properties in controlling polymorphism
,”
Nanoscale
10
,
4921
4926
(
2018
).
16.
J.
Amodeo
,
F.
Pietrucci
, and
J.
Lam
, “
Out-of-Equilibrium polymorph selection in nanoparticle freezing
,”
J. Phys. Chem. Lett.
11
,
8060
8066
(
2020
).
17.
D. M.
Wells
,
G.
Rossi
,
R.
Ferrando
, and
R. E.
Palmer
, “
Metastability of the atomic structures of size-selected gold nanoparticles
,”
Nanoscale
7
,
6498
6503
(
2015
).
18.
N.
Tarrat
and
D.
Loffreda
, “
Morphological sensitivity of silver nanoparticles to the environment
,”
Environ. Sci.: Nano
10
,
1754
(
2023
).
19.
R. K.
Ramamoorthy
,
E.
Yildirim
,
E.
Barba
,
P.
Roblin
,
J. A.
Vargas
,
L.-M.
Lacroix
,
I.
Rodriguez-Ruiz
,
P.
Decorse
,
V.
Petkov
,
S.
Teychené
, and
G.
Viau
, “
The role of pre-nucleation clusters in the crystallization of gold nanoparticles
,”
Nanoscale
12
,
16173
16188
(
2020
).
20.
A.
Schiener
,
A.
Magerl
,
A.
Krach
,
S.
Seifert
,
H.-G.
Steinrück
,
J.
Zagorac
,
D.
Zahn
, and
R.
Weihrich
, “
In situ investigation of two-step nucleation and growth of CdS nanoparticles from solution
,”
Nanoscale
7
,
11328
11333
(
2015
).
21.
C.
Schoonen
and
J. F.
Lutsko
, “
Crystal polymorphism induced by surface tension
,”
Phys. Rev. Lett.
129
,
246101
(
2022
).
22.
J. F.
Lutsko
, “
How crystals form: A theory of nucleation pathways
,”
Sci. Adv.
5
,
eaav7399
(
2019
).
23.
D.
Quigley
,
C. L.
Freeman
,
J. H.
Harding
, and
P. M.
Rodger
, “
Sampling the structure of calcium carbonate nanoparticles with metadynamics
,”
J. Chem. Phys.
134
,
044703
(
2011
).
24.
L.
Pavan
,
K.
Rossi
, and
F.
Baletto
, “
Metallic nanoparticles meet metadynamics
,”
J. Chem. Phys.
143
,
184304
(
2015
).
25.
G. C.
Sosso
,
J.
Chen
,
S. J.
Cox
,
M.
Fitzner
,
P.
Pedevilla
,
A.
Zen
, and
A.
Michaelides
, “
Crystal nucleation in liquids: Open questions and future challenges in molecular dynamics simulations
,”
Chem. Rev.
116
,
7078
7116
(
2016
).
26.
F.
Giberti
,
M.
Salvalaglio
, and
M.
Parrinello
, “
Metadynamics studies of crystal nucleation
,”
IUCrJ
2
,
256
266
(
2015
).
27.
F.
Pietrucci
, “
Strategies for the exploration of free energy landscapes: Unity in diversity and challenges ahead
,”
Rev. Phys.
2
,
32
45
(
2017
).
28.
P. G.
Bolhuis
,
D.
Chandler
,
C.
Dellago
, and
P. L.
Geissler
, “
TRANSITION PATH SAMPLING: Throwing ropes over rough mountain passes, in the dark
,”
Annu. Rev. Phys. Chem.
53
,
291
318
(
2002
).
29.
P. G.
Bolhuis
and
D. W. H.
Swenson
, “
Transition path sampling as Markov chain Monte Carlo of trajectories: Recent algorithms, software, applications, and future outlook
,”
Adv. Theory Simul.
4
,
2000237
(
2021
).
30.
A.
Laio
and
M.
Parrinello
, “
Escaping free-energy minima
,”
Proc. Natl. Acad. Sci. U. S. A.
99
(
20
),
12562
12566
(
2002
).
31.
G.
Bussi
and
A.
Laio
, “
Using metadynamics to explore complex free-energy landscapes
,”
Nat. Rev. Phys.
2
(
4
),
200
212
(
2020
).
32.
A. R.
Finney
and
M.
Salvalaglio
, “
Multiple pathways in NaCl homogeneous crystal nucleation
,”
Faraday Discuss.
235
,
56
80
(
2022
).
33.
E. E.
Borrero
and
C.
Dellago
, “
Avoiding traps in trajectory space: Metadynamics enhanced transition path sampling
,”
Eur. Phys. J.: Spec. Top.
225
,
1609
1620
(
2016
).
34.
S.
Falkner
,
A.
Coretti
, and
C.
Dellago
, “
Enhanced sampling of configuration and path space in a generalized ensemble by shooting point exchange
,”
Phys. Rev. Lett.
132
,
128001
(
2024
).
35.
B.
Peters
, “
Using the histogram test to quantify reaction coordinate error
,”
J. Chem. Phys.
125
(
24
),
241101
(
2006
).
36.
C.
Dellago
,
P. G.
Bolhuis
, and
P. L.
Geissler
, “
Transition path sampling
,”
Adv. Chem. Phys.
123
,
1
78
(
2002
).
37.
B.
Peters
and
B. L.
Trout
, “
Obtaining reaction coordinates by likelihood maximization
,”
J. Chem. Phys.
125
(
5
),
054108
(
2006
).
38.
B.
Peters
,
G. T.
Beckham
, and
B. L.
Trout
, “
Extensions to the likelihood maximization approach for finding reaction coordinates
,”
J. Chem. Phys.
127
(
3
),
034109
(
2007
).
39.
J.
Zhang
,
L.
Mou
, and
X.
Jiang
, “
Surface chemistry of gold nanoparticles for health-related applications
,”
Chem. Sci.
11
(
4
),
923
936
(
2020
).
40.
A. A.
Yaqoob
,
K.
Umar
, and
M. N. M.
Ibrahim
, “
Silver nanoparticles: Various methods of synthesis, size affecting factors and their potential applications–a review
,”
Appl. Nanosci.
10
,
1369
1378
(
2020
).
41.
A.
Ebrahiminezhad
,
A.
Zare-Hoseinabadi
,
A. K.
Sarmah
,
S.
Taghizadeh
,
Y.
Ghasemi
, and
A.
Berenjian
, “
Plant-mediated synthesis and applications of iron nanoparticles
,”
Mol. Biotechnol.
60
,
154
168
(
2018
).
42.
M. I.
Mendelev
,
S.
Han
,
D. J.
Srolovitz
,
G. J.
Ackland
,
D. Y.
Sun
, and
M.
Asta
, “
Development of new interatomic potentials appropriate for crystalline and liquid iron
,”
Philos. Mag.
83
,
3977
3994
(
2003
).
43.
P. L.
Williams
,
Y.
Mishin
, and
J. C.
Hamilton
, “
An embedded-atom potential for the Cu–Ag system
,”
Modell. Simul. Mater. Sci. Eng.
14
,
817
(
2006
).
44.
H.
Chamati
and
N. I.
Papanicolaou
, “
Second-moment interatomic potential for gold and its application to molecular-dynamics simulations
,”
J. Phys.: Condens. Matter
16
,
8399
(
2004
).
45.
S.
Combettes
,
J.
Lam
,
P.
Benzo
,
A.
Ponchet
,
M.-J.
Casanove
,
F.
Calvo
, and
M.
Benoit
, “
How interface properties control the equilibrium shape of core–shell Fe–Au and Fe–Ag nanoparticles
,”
Nanoscale
12
,
18079
18090
(
2020
).
46.
A. P.
Thompson
,
H. M.
Aktulga
,
R.
Berger
,
D. S.
Bolintineanu
,
W. M.
Brown
,
P. S.
Crozier
,
P. J.
in’t Veld
,
A.
Kohlmeyer
,
S. G.
Moore
,
T. D.
Nguyen
et al, “
LAMMPS—A flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales
,”
Comput. Phys. Commun.
271
,
108171
(
2022
).
47.
M.
Bonomi
,
G.
Bussi
,
C.
Camilloni
,
G. A.
Tribello
,
P.
Banáš
,
A.
Barducci
,
M.
Bernetti
,
P. G.
Bolhuis
,
S.
Bottaro
,
D.
Branduardi
et al, “
Promoting transparency and reproducibility in enhanced molecular simulations
,”
Nat. Methods
16
(
8
),
670
673
(
2019
).
48.
G. A.
Tribello
,
M.
Bonomi
,
D.
Branduardi
,
C.
Camilloni
, and
G.
Bussi
, “
Plumed 2: New feathers for an old bird
,”
Comput. Phys. Commun.
185
(
2
),
604
613
(
2014
).
49.
W.
Lechner
and
C.
Dellago
, “
Accurate determination of crystal structures based on averaged local bond order parameters
,”
J. Chem. Phys.
129
(
11
),
114707
(
2008
).
50.
A.
Stukowski
, “
Visualization and analysis of atomistic simulation data with OVITO–The Open Visualization Tool
,”
Modell. Simul. Mater. Sci. Eng.
18
,
015012
(
2009
).
51.
G. D.
Förster
,
M.
Benoit
, and
J.
Lam
, “
Alloy, Janus and core–shell nanoparticles: Numerical modeling of their nucleation and growth in physical synthesis
,”
Phys. Chem. Chem. Phys.
21
,
22774
22781
(
2019
).
52.
J.
Zhao
,
V.
Singh
,
P.
Grammatikopoulos
,
C.
Cassidy
,
K.
Aranishi
,
M.
Sowwan
,
K.
Nordlund
, and
F.
Djurabekova
, “
Crystallization of silicon nanoclusters with inert gas temperature control
,”
Phys. Rev. B
91
,
035419
(
2015
).
53.
E.
Kesälä
,
A.
Kuronen
, and
K.
Nordlund
, “
Molecular dynamics simulation of pressure dependence of cluster growth in inert gas condensation
,”
Phys. Rev. B
75
,
174121
(
2007
).
54.
K.
Rossi
,
G. D.
Förster
,
C.
Zeni
, and
J.
Lam
, “
Modeling and characterization of the nucleation and growth of carbon nanostructures in physical synthesis
,”
Carbon Trends
11
,
100268
(
2023
).
55.
J.
Goniakowski
and
C.
Mottet
, “
Simulation of the growth of metal nanoclusters on the MgO(100) surface
,”
Phys. Rev. B
81
,
155443
(
2010
).
56.
Y.
Xia
,
D.
Nelli
,
R.
Ferrando
,
J.
Yuan
, and
Z. Y.
Li
, “
Shape control of size-selected naked platinum nanocrystals
,”
Nat. Commun.
12
,
3019
(
2021
).
57.
S. L.
Lai
,
J. Y.
Guo
,
V.
Petrova
,
G.
Ramanath
, and
L. H.
Allen
, “
Size-dependent melting properties of small tin particles: Nanocalorimetric measurements
,”
Phys. Rev. Lett.
77
,
99
102
(
1996
).
58.
C.
Zeni
,
K.
Rossi
,
T.
Pavloudis
,
J.
Kioseoglou
,
S.
de Gironcoli
,
R. E.
Palmer
, and
F.
Baletto
, “
Data-driven simulation and characterisation of gold nanoparticle melting
,”
Nat. Commun.
12
,
6056
(
2021
).
59.
L.
Delgado-Callico
,
K.
Rossi
,
R.
Pinto-Miles
,
P.
Salzbrenner
, and
F.
Baletto
, “
A universal signature in the melting of metallic nanoparticles
,”
Nanoscale
13
(
2
),
1172
1180
(
2021
).
60.
K.
Rossi
,
L. B.
Pártay
,
G.
Csányi
, and
F.
Baletto
, “
Thermodynamics of CuPt nanoalloys
,”
Sci. Rep.
8
,
9150
(
2018
).
61.
A.
Laio
and
F. L.
Gervasio
, “
Metadynamics: A method to simulate rare events and reconstruct the free energy in biophysics, chemistry and material science
,”
Rep. Prog. Phys.
71
,
126601
(
2008
).
62.
P. M.
Piaggi
,
O.
Valsson
, and
M.
Parrinello
, “
Enhancing entropy and enthalpy fluctuations to drive crystallization in atomistic simulations
,”
Phys. Rev. Lett.
119
,
015701
(
2017
).
63.
P. M.
Piaggi
and
M.
Parrinello
, “
Entropy based fingerprint for local crystalline order
,”
J. Chem. Phys.
147
,
114112
(
2017
).
64.
J.
Lam
and
F.
Pietrucci
, “
Critical comparison of general-purpose collective variables for crystal nucleation
,”
Phys. Rev. E
107
,
L012601
(
2023
).
65.
G.
Díaz Leines
and
J.
Rogal
, “
Maximum likelihood analysis of reaction coordinates during solidification in ni
,”
J. Phys. Chem. B
122
(
48
),
10934
10942
(
2018
).
66.
S.
Menon
,
G.
Díaz Leines
,
R.
Drautz
, and
J.
Rogal
, “
Role of pre-ordered liquid in the selection mechanism of crystal polymorphs during nucleation
,”
J. Chem. Phys.
153
(
10
),
104508
(
2020
).
You do not currently have access to this content.