We have used surface plasmon resonant metal gratings to induce and probe the dielectric response (i.e., electro-optic modulation) of ionic liquids (ILs) at electrode interfaces. Here, the cross-plane electric field at the electrode surface modulates the refractive index of the IL due to the Pockels effect. This is observed as a shift in the resonant angle of the grating (i.e., Δϕ), which can be related to the change in the local index of refraction of the electrolyte (i.e., Δnlocal). The reflection modulation of the IL is compared against a polar (D2O) and a non-polar solvent (benzene) to confirm the electro-optic origin of resonance shift. The electrostatic accumulation of ions from the IL induces local index changes to the gratings over the extent of electrical double layer (EDL) thickness. Finite difference time domain simulations are used to relate the observed shifts in the plasmon resonance and change in reflection to the change in the local index of refraction of the electrolyte and the thickness of the EDL. Simultaneously using the wavelength and intensity shift of the resonance enables us to determine both the effective thickness and Δn of the double layer. We believe that this technique can be used more broadly, allowing the dynamics associated with the potential-induced ordering and rearrangement of ionic species in electrode–solution interfaces.

1.
K. S.
Panse
,
H.
Wu
,
S.
Zhou
,
F.
Zhao
,
N. R.
Aluru
, and
Y.
Zhang
, “
Innermost ion association configuration is a key structural descriptor of ionic liquids at electrified interfaces
,”
J. Phys. Chem. Lett.
13
,
9464
9472
(
2022
).
2.
L. K. S.
Bonagiri
,
K. S.
Panse
,
S.
Zhou
,
H.
Wu
,
N. R.
Aluru
, and
Y.
Zhang
, “
Real-space charge density profiling of electrode–electrolyte interfaces with angstrom depth resolution
,”
ACS Nano
16
,
19594
19604
(
2022
).
3.
Y.
Wang
,
G. M.
Swain
, and
G. J.
Blanchard
, “
Charge-induced birefringence in a room-temperature ionic liquid
,”
J. Phys. Chem. B
125
,
950
955
(
2021
).
4.
Y.
Wang
,
F.
Parvis
,
M. I.
Hossain
,
K.
Ma
,
R.
Jarošová
,
G. M.
Swain
, and
G. J.
Blanchard
, “
Local and long-range organization in room temperature ionic liquids
,”
Langmuir
37
,
605
615
(
2021
).
5.
K.
Ma
,
R.
Jarosova
,
G. M.
Swain
, and
G. J.
Blanchard
, “
Modulation of an induced charge density gradient in the room-temperature ionic liquid BMIM+BF4
,”
J. Phys. Chem. C
122
,
7361
7367
(
2018
).
6.
Y.
Wang
,
L.
Adhikari
,
G. A.
Baker
, and
G. J.
Blanchard
, “
Cation structure-dependence of the Pockels effect in aprotic ionic liquids
,”
Phys. Chem. Chem. Phys.
24
,
18067
18072
(
2022
).
7.
K.
Ma
,
R.
Jarosova
,
G. M.
Swain
, and
G. J.
Blanchard
, “
Charge-induced long-range order in a room-temperature ionic liquid
,”
Langmuir
32
,
9507
9512
(
2016
).
8.
A.
Montenegro
,
A. E.
Vaughn
,
M.
Mammetkuliyev
,
B.
Zhao
,
B.
Zhang
,
H.
Shi
,
D.
Bhattacharyya
,
A. V.
Benderskii
, and
S. B.
Cronin
, “
Field-dependent orientation and free energy of D2O at an electrode surface observed via SFG spectroscopy
,”
J. Phys. Chem. C
126
,
20831
20839
(
2022
).
9.
A.
Montenegro
,
C.
Dutta
,
M.
Mammetkuliev
,
H.
Shi
,
B.
Hou
,
D.
Bhattacharyya
,
B.
Zhao
,
S. B.
Cronin
, and
A. V.
Benderskii
, “
Asymmetric response of interfacial water to applied electric fields
,”
Nature
594
,
62
65
(
2021
).
10.
H.
Kanemaru
,
S.
Yukita
,
H.
Namiki
,
Y.
Nosaka
,
T.
Kobayashi
, and
E.
Tokunaga
, “
Giant Pockels effect of polar organic solvents and water in the electric double layer on a transparent electrode
,”
RSC Adv.
7
,
45682
45690
(
2017
).
11.
S.
Toda
,
R.
Clark
,
T.
Welton
, and
S.
Shigeto
, “
Observation of the Pockels effect in ionic liquids and insights into the length scale of potential-induced ordering
,”
Langmuir
37
,
5193
5201
(
2021
).
12.
B. V.
Merinov
,
S. V.
Zybin
,
S.
Naserifar
,
S.
Morozov
,
J.
Oppenheim
,
W. A.
Goddard
III
,
J.
Lee
,
J. H.
Lee
,
H. E.
Han
,
Y. C.
Choi
, and
S. H.
Kim
, “
Interface structure in Li-metal/[Pyr14] [TFSI]-ionic liquid system from ab initio molecular dynamics simulations
,”
J. Phys. Chem. Lett.
10
,
4577
4586
(
2019
).
13.
M. Y.
Yang
,
B. V.
Merinov
,
S. V.
Zybin
,
W. A.
Goddard Iii
,
E. K.
Mok
,
H. J.
Hah
,
H. E.
Han
,
Y. C.
Choi
, and
S. H.
Kim
, “
Transport properties of imidazolium based ionic liquid electrolytes from molecular dynamics simulations
,”
Electrochem. Sci. Adv.
2
,
e2100007
(
2022
).
14.
G.
Feng
,
S.
Li
,
V.
Presser
, and
P. T.
Cummings
, “
Molecular insights into carbon supercapacitors based on room-temperature ionic liquids
,”
J. Phys. Chem. Lett.
4
,
3367
3376
(
2013
).
15.
E.
Heid
,
S.
Boresch
, and
C.
Schröder
, “
Polarizable molecular dynamics simulations of ionic liquids: Influence of temperature control
,”
J. Chem. Phys.
152
,
094105
(
2020
).
16.
H.
Zhang
,
M.
Zhu
,
W.
Zhao
,
S.
Li
, and
G.
Feng
, “
Molecular dynamics study of room temperature ionic liquids with water at mica surface
,”
Green Energy Environ.
3
,
120
128
(
2018
).
17.
P.
Ray
,
A.
Balducci
, and
B.
Kirchner
, “
Molecular dynamics simulations of lithium-doped ionic-liquid electrolytes
,”
J. Phys. Chem. B
122
,
10535
10547
(
2018
).
18.
Z.
Yan
,
D.
Meng
,
X.
Wu
,
X.
Zhang
,
W.
Liu
, and
K.
He
, “
Two-dimensional ordering of ionic liquids confined by layered silicate plates via molecular dynamics simulation
,”
J. Phys. Chem. C
119
,
19244
19252
(
2015
).
19.
F.
Federici Canova
,
M.
Mizukami
,
T.
Imamura
,
K.
Kurihara
, and
A. L.
Shluger
, “
Structural stability and polarisation of ionic liquid films on silica surfaces
,”
Phys. Chem. Chem. Phys.
17
,
17661
17669
(
2015
).
20.
J.
Homola
,
I.
Koudela
, and
S. S.
Yee
, “
Surface plasmon resonance sensors based on diffraction gratings and prism couplers: Sensitivity comparison
,”
Sens. Actuators, B
54
,
16
24
(
1999
).
21.
P. S.
Vukusic
,
G. P.
Bryan-Brown
, and
J. R.
Sambles
, “
Surface plasmon resonance on gratings as a novel means for gas sensing
,”
Sens. Actuators, B
8
,
155
160
(
1992
).
22.
S.
Long
,
J.
Cao
,
Y.
Wang
,
S.
Gao
,
N.
Xu
,
J.
Gao
, and
W.
Wan
, “
Grating coupled SPR sensors using off the shelf compact discs and sensitivity dependence on grating period
,”
Sens. Actuators Rep.
2
,
100016
(
2020
).
23.
J. S.
Yuk
,
E. F.
Guignon
, and
M. A.
Lynes
, “
Sensitivity enhancement of a grating-based surface plasmon-coupled emission (SPCE) biosensor chip using gold thickness
,”
Chem. Phys. Lett.
591
,
5
9
(
2014
).
24.
S.
Roh
,
T.
Chung
, and
B.
Lee
, “
Overview of the characteristics of micro- and nano-structured surface plasmon resonance sensors
,”
Sensors
11
,
1565
1588
(
2011
).
25.
D.
Hayama
,
K.
Seto
,
K.
Yamashita
,
S.
Yukita
,
T.
Kobayashi
, and
E.
Tokunaga
, “
Giant Pockels effect in an electrode-water interface for a ‘liquid’ light modulator
,”
OSA Continuum
2
,
3358
3373
(
2019
).
26.
A.
Okada
,
T.
Kobayashi
, and
E.
Tokunaga
, “
Interfacial Pockels effect of solvents with a larger static dielectric constant than water and an ionic liquid on the surface of a transparent oxide electrode
,”
Appl. Sci.
12
,
2454
(
2022
).
27.
S.
Zhang
,
N.
Nishi
, and
T.
Sakka
, “
Electrochemical surface plasmon resonance measurements of camel-shaped static capacitance and slow dynamics of electric double layer structure at the ionic liquid/electrode interface
,”
J. Chem. Phys.
153
,
044707
(
2020
).
28.
N.
Nishi
,
Y.
Hirano
,
T.
Motokawa
, and
T.
Kakiuchi
, “
Ultraslow relaxation of the structure at the ionic liquid|gold electrode interface to a potential step probed by electrochemical surface plasmon resonance measurements: Asymmetry of the relaxation time to the potential-step direction
,”
Phys. Chem. Chem. Phys.
15
,
11615
11619
(
2013
).
29.
Y.
Wang
,
I.
Aravind
,
Z.
Cai
,
L.
Shen
,
G. N.
Gibson
,
J.
Chen
,
B.
Wang
,
H.
Shi
,
B.
Song
,
E.
Guignon
,
N. C.
Cady
,
W. D.
Page
,
A.
Pilar
, and
S. B.
Cronin
, “
Hot electron driven photocatalysis on plasmon-resonant grating nanostructures
,”
ACS Appl. Mater. Interfaces
12
,
17459
17465
(
2020
).
30.
I.
Aravind
,
Y.
Wang
,
Z.
Cai
,
L.
Shen
,
B.
Zhao
,
S.
Yang
,
Y.
Wang
,
J. M.
Dawlaty
,
G. N.
Gibson
,
E.
Guignon
,
N. C.
Cady
,
W. D.
Page
,
A.
Pilar
, and
S. B.
Cronin
, “
Hot electron plasmon-resonant grating structures for enhanced photochemistry: A theoretical study
,”
Crystals
11
,
118
(
2021
).
31.
J.
Homola
, “
Electromagnetic theory of surface plasmons
,” in
Surface Plasmon Resonance Based Sensors
, edited by
J.
Homola
(
Springer
,
Berlin, Heidelberg
,
2006
), pp.
3
44
.
32.
L.
Shen
,
G. N.
Gibson
,
N.
Poudel
,
B.
Hou
,
J.
Chen
,
H.
Shi
,
E.
Guignon
,
N. C.
Cady
,
W. D.
Page
,
A.
Pilar
, and
S. B.
Cronin
, “
Plasmon resonant amplification of hot electron-driven photocatalysis
,”
Appl. Phys. Lett.
113
,
113104
(
2018
).
33.
L.
Shen
,
N.
Poudel
,
G. N.
Gibson
,
B.
Hou
,
J.
Chen
,
H.
Shi
,
E.
Guignon
,
W. D.
Page
,
A.
Pilar
, and
S. B.
Cronin
, “
Plasmon resonant amplification of a hot electron-driven photodiode
,”
Nano Res.
11
,
2310
2314
(
2018
).
34.
Y.
Wang
,
L.
Shen
,
Y.
Wang
,
B.
Hou
,
G. N.
Gibson
,
N.
Poudel
,
J.
Chen
,
H.
Shi
,
E.
Guignon
,
N. C.
Cady
,
W. D.
Page
,
A.
Pilar
,
J.
Dawlaty
, and
S. B.
Cronin
, “
Hot electron-driven photocatalysis and transient absorption spectroscopy in plasmon resonant grating structures
,”
Faraday Discuss.
214
,
325
339
(
2019
).
35.
Y.
Wang
,
H.
Shi
,
L.
Shen
,
Y.
Wang
,
S. B.
Cronin
, and
J. M.
Dawlaty
, “
Ultrafast dynamics of hot electrons in nanostructures: Distinguishing the influence on interband and plasmon resonances
,”
ACS Photonics
6
,
2295
2302
(
2019
).
36.
Y.
Wang
,
Y.
Wang
,
I.
Aravind
,
Z.
Cai
,
L.
Shen
,
B.
Zhang
,
B.
Wang
,
J.
Chen
,
B.
Zhao
,
H.
Shi
,
J. M.
Dawlaty
, and
S. B.
Cronin
, “
In situ investigation of ultrafast dynamics of hot electron-driven photocatalysis in plasmon-resonant grating structures
,”
J. Am. Chem. Soc.
144
,
3517
3526
(
2022
).
37.
T.
Douglas
,
S.
Yoo
, and
P.
Dutta
, “
Ionic liquid solutions show anomalous crowding behavior at an electrode surface
,”
Langmuir
38
,
6322
6329
(
2022
).
38.
J.
Homola
and
M.
Piliarik
, “
Surface plasmon resonance (SPR) sensors
,” in
Surface Plasmon Resonance Based Sensors
, edited by
J.
Homola
(
Springer
,
Berlin, Heidelberg
,
2006
), pp.
45
67
.
39.
X.
Luo
,
S.
Deng
, and
P.
Wang
, “
Temporal–spatial-resolved mapping of the electrical double layer changes by surface plasmon resonance imaging
,”
RSC Adv.
8
,
28266
28274
(
2018
).
You do not currently have access to this content.