A double harmonic oscillator model is applied to compute the negative ion photoelectron spectra (NIPES) of the 1- and 2-cyanonaphthalene (CNN) radical anions. The computed Franck–Condon factors utilize optimized structures and harmonic vibrational frequencies obtained using density functional theory with the B3LYP 6-311++G (2d,2p) basis set while considering the mode-mixing Duschinsky effects. To test the accuracy of our model, the NIPES of α and β naphthyl radical anions were computed, and a strong agreement between the slow electron velocity-map ion imaging spectra and the predicted spectra was found. The adiabatic electron affinities (EAs) of the ground singlet states (S0) in 1-CNN and 2-CNN are 0.856 and 0.798 eV, respectively. The origin of the lowest-lying triplet (T1) states in 1-CNN and 2-CNN is found to be 3.226 and 3.266 eV, resulting in singlet–triplet energy splittings (ΔEST) of 2.370 and 2.468 eV, respectively. Both the NIPES for electron detachment to the S0 and T1 states exhibit well-resolved vibrational features, allowing for the assignment of several vibrational fundamental frequencies. Following deprotonation, several isomers are formed, with the most stable deprotonated radical anions in 1-CNN and 2-CNN, corresponding to the removal of the most acidic proton, with EAs of 2.062 and 2.16 eV. The rich spectroscopic and thermochemical data obtained in the current study make the CNN radical anions and their deprotonated species interesting systems for investigation in gas-phase, negative-ion experiments.

1.
F. C.
Daly
,
J.
Palotás
,
U.
Jacovella
, and
E. K.
Campbell
, “
Electronic spectroscopy of 1-cyanonaphthalene cation for astrochemical consideration
,”
Astron. Astrophys.
677
,
A128
(
2023
).
2.
K.
Li
,
A.
Li
,
X. J.
Yang
, and
T.
Fang
, “
Infrared emission of specific polycyclic aromatic hydrocarbon molecules: Cyanonaphthalenes
,”
Astrophys. J.
961
,
107
(
2024
).
3.
J.
Palotás
,
F. C.
Daly
,
T. E.
Douglas-Walker
, and
E. K.
Campbell
, “
Mid-infrared spectroscopy of 1-cyanonaphthalene cation for astrochemical consideration
,”
Phys. Chem. Chem. Phys.
26
,
4111
(
2024
).
4.
M. H.
Queiroz
,
T. V.
Alves
, and
R.
Rivelino
, “
Photoabsorption of microhydrated naphthalene and its cyano-substituted derivatives: Probing prereactive models for photodissociation in molecular clouds
,”
J. Phys. Chem. A
127
,
4317
(
2023
).
5.
R.
Ramachandran
,
K. K.
Rahul
,
J. K.
Meka
,
S.
Pavithraa
,
A.
Roy
,
B. N.
Rajasekhar
,
P.
Janardhan
,
A.
Bhardwaj
,
N. J.
Mason
, and
B.
Sivaraman
, “
Stability and morphology of cyanonaphthalene icy mantles on ISM cold dust analogues
,”
J. Chem. Sci.
135
,
77
(
2023
).
6.
T. J.
Santaloci
and
R. C.
Fortenberry
, “
Electronically excited states of closed-shell, cyano-functionalized polycyclic aromatic hydrocarbon anions
,”
Chemistry
3
,
296
(
2021
).
7.
V.
Shivatare
,
S. Y.
Tzeng
, and
W. B.
Tzeng
, “
Active vibrations of 1-cyanonaphthalene cation studied by mass-analyzed threshold ionization spectroscopy
,”
Chem. Phys. Lett.
558
,
20
(
2013
).
8.
M. H.
Stockett
,
J. N.
Bull
,
H.
Cederquist
,
S.
Indrajith
,
M.
Ji
,
J. E.
Navarro Navarrete
,
H. T.
Schmidt
,
H.
Zettergren
, and
B.
Zhu
, “
Efficient stabilization of cyanonaphthalene by fast radiative cooling and implications for the resilience of small PAHs in interstellar clouds
,”
Nat. Commun.
14
,
395
(
2023
).
9.
T.
Fujiwara
,
R.
Campos Ramos
,
M. Z.
Zgierski
, and
E. C.
Lim
, “
Experimental and theoretical studies of the conformational structures of the mixed clusters of 1-cyanonaphthalene with water
,”
J. Chem. Phys.
123
,
244307
(
2005
).
10.
V.
Brenner
,
A.
Zehnacker
,
F.
Lahmani
, and
P.
Millie
, “
Experimental and theoretical study of 1-cyanonaphthalene clustered with acetonitrile and water in a supersonic jet
,”
J. Phys. Chem.
97
,
10570
(
1993
).
11.
F.
Lahmani
,
A.
Zehnacker-Rentien
, and
E.
Breheret
, “
Photophysics of van der Waals complexes: solvation effects on the 1-cyanonaphthalene singlet state
,”
J. Phys. Chem.
94
,
8767
(
1990
).
12.
F.
Carelli
,
T.
Grassi
, and
F. A.
Gianturco
, “
Electron attachment rates for PAH anions in the ISM and dark molecular clouds: Dependence on their chemical properties
,”
Astron. Astrophys.
549
,
A103
(
2013
).
13.
M.
Buragohain
,
A.
Pathak
,
P.
Sarre
, and
N. K.
Gour
, “
Interstellar dehydrogenated PAH anions: Vibrational spectra
,”
Mon. Not. R. Astron. Soc.
474
,
4594
(
2017
).
14.
K. L. K.
Lee
,
B. A.
McGuire
, and
M. C.
McCarthy
, “
Gas-phase synthetic pathways to benzene and benzonitrile: A combined microwave and thermochemical investigation
,”
Phys. Chem. Chem. Phys.
21
,
2946
(
2019
).
15.
A. J.
Trevitt
,
F.
Goulay
,
C. A.
Taatjes
,
D. L.
Osborn
, and
S. R.
Leone
, “
Reactions of the CN radical with benzene and toluene: Product detection and low-temperature kinetics
,”
J. Phys. Chem. A
114
,
1749
(
2010
).
16.
B. A.
McGuire
,
R. A.
Loomis
,
A. M.
Burkhardt
,
K. L. K.
Lee
,
C. N.
Shingledecker
,
S. B.
Charnley
,
I. R.
Cooke
,
M. A.
Cordiner
,
E.
Herbst
,
S.
Kalenskii
,
M. A.
Siebert
,
E. R.
Willis
,
C.
Xue
,
A. J.
Remijan
, and
M. C.
McCarthy
, “
Detection of two interstellar polycyclic aromatic hydrocarbons via spectral matched filtering
,”
Science
371
,
1265
(
2021
).
17.
J. R.
Gayvert
and
K. B.
Bravaya
, “
Projected CAP-EOM-CCSD method for electronic resonances
,”
J. Chem. Phys.
156
,
094108
(
2022
).
18.
T.
Heinis
,
S.
Chowdhury
, and
P.
Kebarle
, “
Electron affinities of naphthalene, anthracene and substituted naphthalenes and anthracenes
,”
Org. Mass Spectrom.
28
,
358
(
1993
).
19.
H.
Maeda
,
S.
Matsuda
, and
K.
Mizuno
, “
Intramolecular photocycloaddition reactions of arylcyclopropane tethered 1-cyanonaphthalenes
,”
J. Org. Chem.
81
,
8544
(
2016
).
20.
C.
Pac
,
K.
Mizuno
,
T.
Sugioka
, and
H.
Sakurai
, “
The stereoselective photocycloaddition of indene and phenyl vinyl ether to α-naphthonitrile
,”
Chem. Lett.
2
,
187
(
1973
).
21.
T.
Noh
and
D.
Kim
, “
Reinvestigation in the photoreaction of 1-naphthalenecarbonitrile and furan
,”
Tetrahedron Lett.
37
,
9329
(
1996
).
22.
M.
Sakamoto
,
T.
Yagi
,
T.
Mino
,
K.
Yamaguchi
, and
T.
Fujita
, “
A novel photochemical cycloaddition of 1-cyanonaphthalene to substituted pyridines
,”
J. Am. Chem. Soc.
122
,
8141
(
2000
).
23.
J. N.
Bull
,
P.
Bolognesi
,
C. S.
Anstöter
,
E. K.
Ashworth
,
J. E.
Navarro Navarrete
,
B.
Zhu
,
R.
Richter
,
N.
Pal
,
J.
Chiarinelli
,
L.
Avaldi
,
H.
Zettergren
, and
M. H.
Stockett
, “
Autoionization from the plasmon resonance in isolated 1-cyanonaphthalene
,”
J. Chem. Phys.
158
,
241101
(
2023
).
24.
D.
McNaughton
,
M. K.
Jahn
,
M. J.
Travers
,
D.
Wachsmuth
,
P. D.
Godfrey
, and
J.-U.
Grabow
, “
Laboratory rotational spectroscopy of cyano substituted polycyclic aromatic hydrocarbons
,”
Mon. Not. R. Astron. Soc.
476
,
5268
(
2018
).
25.
C.
Utsunomiya
,
T.
Kobayashi
, and
S.
Nagakura
, “
Photoelectron spectra of substituted naphthalenes
,”
Bull. Chem. Soc. Jpn.
48
,
1852
(
2006
).
26.
M. R.
Chowdhury
,
G. A.
Garcia
,
H. R.
Hrodmarsson
,
J.-C.
Loison
, and
L.
Nahon
, “
Photoionization of nitrile-substituted naphthalene and benzene: Cation spectroscopy, photostability, and implications for photoelectric gas heating
,”
Astrophys. J.
963
,
29
(
2024
).
27.
E.
Herbst
, “
Can negative molecular ions be detected in dense interstellar clouds?
,”
Nature
289
,
656
(
1981
).
28.
R. C.
Fortenberry
, “
Interstellar anions: The role of quantum chemistry
,”
J. Phys. Chem. A
119
,
9941
(
2015
).
29.
K. O.
Johansson
,
M. P.
Head-Gordon
,
P. E.
Schrader
,
K. R.
Wilson
, and
H. A.
Michelsen
, “
Resonance-stabilized hydrocarbon-radical chain reactions may explain soot inception and growth
,”
Science
361
,
997
(
2018
).
30.
H.
Richter
and
J. B.
Howard
, “
Formation of polycyclic aromatic hydrocarbons and their growth to soot—A review of chemical reaction pathways
,”
Prog. Energy Combust. Sci.
26
,
565
(
2000
).
31.
K.-H.
Homann
, “
Fullerenes and soot formation—New pathways to large particles in flames
,”
Angew. Chem., Int. Ed.
37
,
2434
(
1998
).
32.
E.
Herbst
and
Y.
Osamura
, “
Calculations on the formation rates and mechanisms for CnH anions in interstellar and circumstellar media
,”
Astrophys. J.
679
,
1670
(
2008
).
33.
M. L.
Senent
and
M.
Hochlaf
, “
Reactivity of anions in interstellar media: Detectability and applications
,”
Astrophys. J.
768
,
59
(
2013
).
34.
T. J.
Millar
,
C.
Walsh
, and
T. A.
Field
, “
Negative ions in space
,”
Chem. Rev.
117
,
1765
(
2017
).
35.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
,
G. E.
Scuseria
,
M. A.
Robb
,
J. R.
Cheeseman
,
G.
Scalmani
,
V.
Barone
,
G. A.
Petersson
,
H.
Nakatsuji
,
X.
Li
,
M.
Caricato
,
A. V.
Marenich
,
J.
Bloino
,
B. G.
Janesko
,
R.
Gomperts
,
B.
Mennucci
,
H. P.
Hratchian
,
J. V.
Ortiz
,
A. F.
Izmaylov
,
J. L.
Sonnenberg
,
D.
Williams-Young
,
F.
Ding
,
F.
Lipparini
,
F.
Egidi
,
J.
Goings
,
B.
Peng
,
A.
Petrone
,
T.
Henderson
,
D.
Ranasinghe
,
V. G.
Zakrzewski
,
J.
Gao
,
N.
Rega
,
G.
Zheng
,
W.
Liang
,
M.
Hada
,
M.
Ehara
,
K.
Toyota
,
R.
Fukuda
,
J.
Hasegawa
,
M.
Ishida
,
T.
Nakajima
,
Y.
Honda
,
O.
Kitao
,
H.
Nakai
,
T.
Vreven
,
K.
Throssell
,
J. A.
Montgomery
, Jr.
,
J. E.
Peralta
,
F.
Ogliaro
,
M. J.
Bearpark
,
J. J.
Heyd
,
E. N.
Brothers
,
K. N.
Kudin
,
V. N.
Staroverov
,
T. A.
Keith
,
R.
Kobayashi
,
J.
Normand
,
K.
Raghavachari
,
A. P.
Rendell
,
J. C.
Burant
,
S. S.
Iyengar
,
J.
Tomasi
,
M.
Cossi
,
J. M.
Millam
,
M.
Klene
,
C.
Adamo
,
R.
Cammi
,
J. W.
Ochterski
,
R. L.
Martin
,
K.
Morokuma
,
O.
Farkas
,
J. B.
Foresman
, and
D. J.
Fox
,
GAUSSIAN 09, Revision A.1
,
Gaussian, Inc.
,
Wallingford, CT
,
2016
.
36.
M. L.
Weichman
,
J. B.
Kim
,
J. A.
DeVine
,
D. S.
Levine
, and
D. M.
Neumark
, “
Vibrational and electronic structure of the α- and β-naphthyl radicals via slow photoelectron velocity-map imaging
,”
J. Am. Chem. Soc.
137
,
1420
(
2015
).
37.
K. M.
Ervin
,
T. M.
Ramond
,
G. E.
Davico
,
R. L.
Schwartz
,
S. M.
Casey
, and
W. C.
Lineberger
, “
Naphthyl radical: Negative ion photoelectron spectroscopy, Franck–Condon simulation, and thermochemistry
,”
J. Phys. Chem. A
105
,
10822
(
2001
).
38.
M. L.
Weichman
,
J. A.
DeVine
,
D. S.
Levine
,
J. B.
Kim
, and
D. M.
Neumark
, “
Isomer-specific vibronic structure of the 9-, 1-, and 2-anthracenyl radicals via slow photoelectron velocity-map imaging
,”
Proc. Natl. Acad. Sci. U. S. A.
113
,
1698
(
2016
).
39.
S. J.
Kregel
,
G. K.
Thurston
, and
E.
Garand
, “
Photoelectron spectroscopy of anthracene and fluoranthene radical anions
,”
J. Chem. Phys.
148
,
234306
(
2018
).
40.
B. N.
Papas
,
S.
Wang
,
N. J.
DeYonker
,
H. L.
Woodcock
, and
H. F.
Schaefer
, “
Naphthalenyl, anthracenyl, tetracenyl, and pentacenyl radicals and their anions
,”
J. Phys. Chem. A
107
,
6311
(
2003
).
41.
K. M.
Ervin
,
PESCAL, A Fortran program for fitting Franck-Condon profiles of electronic and photoelectron spectra
,
University of Nevada
,
Reno, NV
,
2018
.
42.
F.
Duschinsky
, “
The importance of the electron spectrum in multi atomic molecules. Concerning the Franck-Condon principle
,”
Acta Physicochim. URSS,
7
(
4
),
551
(
1937
).
43.
T. E.
Sharp
and
H. M.
Rosenstock
, “
Franck-Condon factors for polyatomic molecules
,”
J. Chem. Phys.
41
,
3453
(
1964
).
44.
D. N. K. H.
Abeysooriya
,
N. J.
White
,
K. T.
Workman
,
J. A.
Dupuy
, and
W. K.
Gichuhi
, “
Cyanocyclopentadiene-annulated polycyclic aromatic radical anions: Predicted negative ion photoelectron spectra and singlet–triplet energies of cyanoindene and cyanofluorene radical anions
,”
J. Phys. Chem. A
128
,
1837
(
2024
).
45.
K. T.
Workman
,
R. A.
Firth
, and
W. K.
Gichuhi
, “
From benzonitrile to dicyanobenzenes: The effect of an additional CN group on the thermochemistry and negative ion photoelectron spectra of dicyanobenzene radical anions
,”
J. Phys. Chem. A
127
,
181
(
2023
).
46.
K. T.
Workman
,
A. J.
Usher
,
D. W.
Henson
,
N. J.
White
, and
W. K.
Gichuhi
, “
Predicted negative ion photoelectron spectra of 1-, 2-, and 9-cyanoanthracene radical anions and computed thermochemical values of the three cyanoanthracene isomers
,”
J. Phys. Chem. A
127
,
4063
(
2023
).
47.
C. Y.
Ng
,
T.
Baer
, and
I.
Powis
,
Unimolecular and Bimolecular Ion-Molecule Reaction Dynamics
(
Wiley
,
Chichester
,
1994
).
48.
D. M.
Neumark
, “
Spectroscopy of radicals, clusters, and transition states using slow electron velocity-map imaging of cryogenically cooled anions
,”
J. Phys. Chem. A
127
,
4207
(
2023
).
49.
J. J.
Fifen
,
Z.
Dhaouadi
, and
M.
Nsangou
, “
Revision of the thermodynamics of the proton in gas phase
,”
J. Phys. Chem. A
118
,
11090
(
2014
).
50.
G. N.
Merrill
and
S. R.
Kass
, “
Calculated gas-phase acidities using density functional theory: Is it reliable?
,”
J. Phys. Chem.
100
,
17465
(
1996
).
51.
N. Q.
Trung
,
A.
Mechler
,
N. T.
Hoa
, and
Q. V.
Vo
, “
Calculating bond dissociation energies of X–H (X=C, N, O, S) bonds of aromatic systems via density functional theory: A detailed comparison of methods
,”
R. Soc. Open Sci.
9
,
220177
(
2022
).
52.
National Renewable Energy Laboratory (NREL), A machine-Learning derived, Fast, Accurate Bond dissociation Enthalpy Tool (ALFABET), machine learning predictions of bond dissociation energies (BDEs) webtool, available at https://bde.ml.nrel.gov/ (retrieved May 10, 2024).
53.
P. C. St.
John
,
Y.
Guan
,
Y.
Kim
,
S.
Kim
, and
R. S.
Paton
, “
Prediction of organic homolytic bond dissociation enthalpies at near chemical accuracy with sub-second computational cost
,”
Nat. Commun.
11
,
2328
(
2020
).
54.
F.
Lahmani
,
E.
Bréhéret
,
A.
Zehnacker-Rentien
, and
T.
Ebata
, “
Spectroscopy and dynamics of the first excited state of 1- and 2-cyanonaphthalene cooled in a supersonic jet
,”
J. Chem. Soc. Faraday Trans.
89
,
623
(
1993
).
55.
S. A.
Lyapustina
,
S.
Xu
,
J. M.
Nilles
, and
K. H.
Bowen
, Jr.
, “
Solvent-induced stabilization of the naphthalene anion by water molecules: A negative cluster ion photoelectron spectroscopic study
,”
J. Chem. Phys.
112
,
6643
(
2000
).
56.
J. K.
Song
,
S. Y.
Han
,
I.
Chu
,
J. H.
Kim
,
S. K.
Kim
,
S. A.
Lyapustina
,
S.
Xu
,
J. M.
Nilles
, and
K. H.
Bowen
, Jr.
, “
Photoelectron spectroscopy of naphthalene cluster anions
,”
J. Chem. Phys.
116
,
4477
(
2002
).
57.
J.
Schiedt
,
W. J.
Knott
,
K.
Le Barbu
,
E. W.
Schlag
, and
R.
Weinkauf
, “
Microsolvation of similar-sized aromatic molecules: Photoelectron spectroscopy of bithiophene–, azulene–, and naphthalene–water anion clusters
,”
J. Chem. Phys.
113
,
9470
(
2000
).
58.
J.
Simons
, “
Molecular anions perspective
,”
J. Phys. Chem. A
127
,
3940
(
2023
).
59.
J.
Simons
, “
Theoretical study of negative molecular ions
,”
Annu. Rev. Phys. Chem.
62
,
107
(
2011
).
60.
P. D.
Burrow
,
J. A.
Michejda
, and
K. D.
Jordan
, “
Electron transmission study of the temporary negative ion states of selected benzenoid and conjugated aromatic hydrocarbons
,”
J. Chem. Phys.
86
,
9
(
1987
).
61.
B.
Hajgató
,
D.
Szieberth
,
P.
Geerlings
,
F.
De Proft
, and
M. S.
Deleuze
, “
A benchmark theoretical study of the electronic ground state and of the singlet-triplet split of benzene and linear acenes
,”
J. Chem. Phys.
131
,
224321
(
2009
).
62.
M.
Sakamoto
,
X.
Cai
,
M.
Hara
,
M.
Fujitsuka
, and
T.
Majima
, “
Intermolecular electron transfer from naphthalene derivatives in the higher triplet excited states
,”
J. Am. Chem. Soc.
126
,
9709
(
2004
).
63.
M.
Montalti
,
A.
Credi
,
L.
Prodi
, and
M. T.
Gandolfi
, in
Handbook of Photochemistry
, 3rd ed. (
CRC Press; Taylor & Francis Group
,
Boca Raton; London; and New York
,
2006
).
64.
X.
Cai
,
M.
Hara
,
K.
Kawai
,
S.
Tojo
, and
T.
Majima
, “
Naphthalene in the higher triplet excited state
,”
Chem. Commun.
2003
,
222
.
65.
A. R.
Dixon
,
D.
Khuseynov
, and
A.
Sanov
, “
Benzonitrile: Electron affinity, excited states, and anion solvation
,”
J. Chem. Phys.
143
,
134306
(
2015
).
66.
F.
Pauzat
,
D.
Talbi
,
M. D.
Miller
,
D. J.
DeFrees
, and
Y.
Ellinger
, “
Theoretical IR spectra of ionized naphthalene
,”
J. Phys. Chem.
96
,
7882
(
1992
).
67.
S.
Gulania
,
T.-C.
Jagau
,
A.
Sanov
, and
A. I.
Krylov
, “
The quest to uncover the nature of benzonitrile anion
,”
Phys. Chem. Chem. Phys.
22
,
5002
(
2020
).
68.
S. R.
Langhoff
,
C. W.
Bauschlicher
,
D. M.
Hudgins
,
S. A.
Sandford
, and
L. J.
Allamandola
, “
Infrared spectra of substituted polycyclic aromatic hydrocarbons
,”
J. Phys. Chem. A
102
,
1632
(
1998
).
69.
C. W.
Bauschlicher
,
A.
Ricca
,
C.
Boersma
, and
L. J.
Allamandola
, “
The NASA Ames PAH IR spectroscopic database: Computational version 3.00 with updated content and the introduction of multiple scaling factors
,”
Astrophys. J., Suppl. Ser.
234
,
32
(
2018
).
70.
A. L.
Mattioda
,
D. M.
Hudgins
,
C.
Boersma
,
C. W.
Bauschlicher
,
A.
Ricca
,
J.
Cami
,
E.
Peeters
,
F. S.
de Armas
,
G. P.
Saborido
, and
L. J.
Allamandola
, “
The NASA Ames PAH IR spectroscopic database: The laboratory spectra
,”
Astrophys. J., Suppl. Ser.
251
,
22
(
2020
).
71.
V. J.
Esposito
,
R. C.
Fortenberry
,
C.
Boersma
,
A.
Maragkoudakis
, and
L. J.
Allamandola
, “
CN stretches around 4.4 microns dominate the IR absorption spectra of cyano-polycyclic aromatic hydrocarbons
,”
Mon. Not. R. Astron. Soc.: Lett.
531
,
L87
(
2024
).
72.
J. C. W.
Bauschlicher
, “
Infrared spectra of polycyclic aromatic hydrocarbons: Nitrogen substitution
,”
Chem. Phys.
234
,
87
(
1998
).
73.
K. M.
Ervin
and
V. F.
DeTuri
, “
Anchoring the gas-phase acidity scale
,”
J. Phys. Chem. A
106
,
9947
(
2002
).
74.
M. A. V.
Ribeiro da Silva
,
A. I. M. C.
Lobo Ferreira
,
A. L. M.
Barros
,
A. R. C.
Bessa
,
B. C. S. A.
Brito
,
J. A. S.
Vieira
, and
S. A. P.
Martins
, “
Standard molar enthalpies of formation of 1- and 2-cyanonaphthalene
,”
J. Chem. Thermodyn.
43
,
1306
(
2011
).
75.
D. R.
Reed
and
S. R.
Kass
, “
Experimental determination of the α and β C–H bond dissociation energies in naphthalene
,”
J. Mass Spectrom.
35
,
534
(
2000
).
76.
R. A.
Firth
,
T. L.
Dimino
, and
W. K.
Gichuhi
, “
Negative ion photoelectron spectra of deprotonated benzonitrile isomers via computation of Franck–Condon factors
,”
J. Phys. Chem. A
126
,
4781
(
2022
).
You do not currently have access to this content.