The laser power mediated changes in the Raman line shape have been considered in terms of interference between discrete phonon states ρ and the electronic continuum states ϰ contributed by Urbach tail states. The laser-induced effects are treated in terms of the increase in the surface temperature and thereby the scaling of electronic disorder, i.e., Urbach energy, which can further contribute to the electron–phonon interactions. Therefore, the visualization of this effect is attempted analytically as a perturbation term in the Hamiltonian, which clearly accounts for the observed changes with laser power. This has been investigated based on the experimental results of laser power dependent Raman spectra of bulk EuFeO3 and silicon nanowires, which are found to provide convincing interpretations.

1.
J.
Weiner
and
P.-T.
Ho
,
Light–Matter Interaction: Fundamentals and Applications
, 1st ed. (
Wiley
,
2003
).
2.
R. L.
Smith
, “
Two-photon photoelectric effect
,”
Phys. Rev.
128
(
5
),
2225
2229
(
1962
).
3.
V.
Nathan
,
S. S.
Mitra
, and
A. H.
Guenther
, “
Review of multiphoton absorption in crystalline solids
,”
J. Opt. Soc. Am. B
2
(
2
),
294
(
1985
).
4.
A.
Kumar
,
O. V.
Rambadey
,
H.
Rai
, and
P. R.
Sagdeo
, “
Role of laser excitation wavelength and power in the Fano resonance scattering in RFe0.50Cr0.50O3 (R = Sm, Er, and Eu): A brief Raman study
,”
J. Phys. Chem. C
126
(
12
),
5403
5410
(
2022
).
5.
R.
Gupta
,
Q.
Xiong
,
C. K.
Adu
,
U. J.
Kim
, and
P. C.
Eklund
, “
Laser-induced Fano resonance scattering in silicon nanowires
,”
Nano Lett.
3
(
5
),
627
631
(
2003
).
6.
K. W.
Adu
,
H. R.
Gutiérrez
,
U. J.
Kim
, and
P. C.
Eklund
, “
Inhomogeneous laser heating and phonon confinement in silicon nanowires: A micro-Raman scattering study
,”
Phys. Rev. B
73
(
15
),
155333
(
2006
).
7.
J. R.
Ferraro
,
K.
Nakamoto
, and
C. W.
Brown
,
Introductory Raman Spectroscopy
, 2nd ed. (
Academic Press
,
Amsterdam; Boston
,
2003
).
8.
O. V.
Rambadey
,
M.
Gupta
, and
P. R.
Sagdeo
, “
Phonon-mode-specific lattice dynamical coupling of carriers in semiconductors using Raman and optical spectroscopic techniques
,”
Phys. Rev. B
106
(
7
),
075204
(
2022
).
9.
M. D.
Joshi
,
N. K.
Kumbhar
,
O. V.
Rambadey
,
P. R.
Sagdeo
,
R. S.
Devan
, and
S. S.
Hosmani
, “
Exfoliated nano-hBN additives for enhancing tribological performance of ATSP coatings deposited on AISI 316L steel: Role of SMAT pre-treatment
,”
Surf. Coat. Technol.
447
,
128829
(
2022
).
10.
G.
Gouadec
and
P.
Colomban
, “
Raman spectroscopy of nanomaterials: How spectra relate to disorder, particle size and mechanical properties
,”
Prog. Cryst. Growth Charact. Mater.
53
(
1
),
1
56
(
2007
).
11.
T.
Rajgoli
,
S.
Hinge
,
T.
Sant
,
S. M.
Jejurikar
,
A.
Mandal
,
A.
Banpurkar
,
O.
Rambadey
,
P.
Sagdeo
, and
U.
Deshpande
, “
Nonpolar growth of GaN films on polar sapphire substrate using pulsed laser deposition: Investigation of substrate temperature variation on the quality of films
,”
Phys. Status Solidi B
260
(
6
),
2200587
(
2023
).
12.
P.
Verma
,
J.
Kortus
,
J.
Monecke
,
S.
Anand
, and
K. P.
Jain
, “
Phonon sidebands of electronic transitions in Li-doped CdS
,”
Phys. Rev. B
59
(
24
),
15748
15752
(
1999
).
13.
Z.
Xu
,
Z.
He
,
Y.
Song
,
X.
Fu
,
M.
Rommel
,
X.
Luo
,
A.
Hartmaier
,
J.
Zhang
, and
F.
Fang
, “
Topic review: Application of Raman spectroscopy characterization in micro/nano-machining
,”
Micromachines
9
(
7
),
361
(
2018
).
14.
A.
Rzhevskii
, “
Basic aspects of experimental design in Raman microscopy
,”
Spectroscopy
31
(
11
),
40
45
(
2016
); available at https://www.spectroscopyonline.com/view/basic-aspects-experimental-design-raman-microscopy.
15.
F.
Cerdeira
,
T. A.
Fjeldly
, and
M.
Cardona
, “
Effect of free carriers on zone-center vibrational modes in heavily doped p-type Si. II. Optical modes
,”
Phys. Rev. B
8
(
10
),
4734
4745
(
1973
).
16.
K. P.
Jain
and
C. S.
Jayanthi
, “
Resonant Raman scattering at the indirect gaps of semiconductors
,”
Phys. Rev. B
19
(
8
),
4198
4204
(
1979
).
17.
A. G.
Rolo
and
M. I.
Vasilevskiy
, “
Raman spectroscopy of optical phonons confined in semiconductor quantum dots and nanocrystals
,”
J. Raman Spectrosc.
38
(
6
),
618
633
(
2007
).
18.
V.
Magidson
and
R.
Beserman
, “
Fano-type interference in the Raman spectrum of photoexcited Si
,”
Phys. Rev. B
66
(
19
),
195206
(
2002
).
19.
O. N.
Shebanova
and
P.
Lazor
, “
Raman study of magnetite (Fe3O4): Laser-induced thermal effects and oxidation
,”
J. Raman Spectrosc.
34
(
11
),
845
852
(
2003
).
20.
A.
Sunny
,
A.
Thirumurugan
, and
K.
Balasubramanian
, “
Laser induced Fano scattering, electron–phonon coupling, bond length and phonon lifetime changes in α-Fe2O3 nanostructures
,”
Phys. Chem. Chem. Phys.
22
(
4
),
2001
2009
(
2020
).
21.
F.
Yang
,
S.
Wang
, and
Y.
Zhang
, “
Effects of laser power and substrate on the Raman shift of carbon-nanotube papers
,”
Carbon Trends
1
,
100009
(
2020
).
22.
L.
Han
,
M.
Zeman
, and
A. H. M.
Smets
, “
Raman study of laser-induced heating effects in free-standing silicon nanocrystals
,”
Nanoscale
7
(
18
),
8389
8397
(
2015
).
23.
G. G.
Siu
,
M. J.
Stokes
, and
Y.
Liu
, “
Variation of fundamental and higher-order Raman spectra of ZrO2 nanograins with annealing temperature
,”
Phys. Rev. B
59
(
4
),
3173
3179
(
1999
).
24.
R. C.
Prince
,
R. R.
Frontiera
, and
E. O.
Potma
, “
Stimulated Raman scattering: From bulk to nano
,”
Chem. Rev.
117
(
7
),
5070
5094
(
2017
).
25.
C. F.
Klingshirn
,
Semiconductor Optics
(
Springer
,
Berlin, Heidelberg
,
2012
).
26.
F.
Murphy-Armando
,
G.
Fagas
, and
J. C.
Greer
, “
Deformation potentials and electron–phonon coupling in silicon nanowires
,”
Nano Lett.
10
(
3
),
869
873
(
2010
).
27.
W.
Wan
,
B.
Xiong
,
W.
Zhang
,
J.
Feng
, and
E.
Wang
, “
The effect of the electron–phonon coupling on the thermal conductivity of silicon nanowires
,”
J. Phys.: Condens. Matter
24
(
29
),
295402
(
2012
).
28.
M.
Speckbacher
,
J.
Treu
,
T. J.
Whittles
,
W. M.
Linhart
,
X.
Xu
,
K.
Saller
,
V. R.
Dhanak
,
G.
Abstreiter
,
J. J.
Finley
,
T. D.
Veal
, and
G.
Koblmüller
, “
Direct measurements of Fermi level pinning at the surface of intrinsically n-type InGaAs nanowires
,”
Nano Lett.
16
(
8
),
5135
5142
(
2016
).
29.
W.
Zhang
,
T. J. A.
Craddock
,
Y.
Li
,
M.
Swartzlander
,
R. R.
Alfano
, and
L.
Shi
, “
Fano resonance line shapes in the Raman spectra of tubulin and microtubules reveal quantum effects
,”
Biophys. Rep.
2
(
1
),
100043
(
2022
).
30.
M.
Gupta
,
A.
Kumar
,
A.
Sagdeo
, and
P. R.
Sagdeo
, “
Doping-induced combined Fano and phonon confinement effect in La-doped CeO2: Raman spectroscopy analysis
,”
J. Phys. Chem. C
125
(
4
),
2648
2658
(
2021
).
31.
O. V.
Rambadey
,
M.
Gupta
,
A.
Kumar
, and
P. R.
Sagdeo
, “
Analysis of structural disorder on Raman spectra of semiconductors
,”
J. Appl. Phys.
133
(
13
),
131101
(
2023
).
32.
S. F.
Wu
,
P.
Richard
,
X. B.
Wang
,
C. S.
Lian
,
S. M.
Nie
,
J. T.
Wang
,
N. L.
Wang
, and
H.
Ding
, “
Raman scattering investigation of the electron-phonon coupling in superconducting Nd(O,F) BiS2
,”
Phys. Rev. B
90
(
5
),
054519
(
2014
).
33.
W.
Zhang
,
A. O.
Govorov
, and
G. W.
Bryant
, “
Semiconductor-metal nanoparticle molecules: Hybrid excitons and the nonlinear Fano effect
,”
Phys. Rev. Lett.
97
(
14
),
146804
(
2006
).
34.
W.
Zhang
and
A. O.
Govorov
, “
Quantum theory of the nonlinear Fano effect in hybrid metal-semiconductor nanostructures: The case of strong nonlinearity
,”
Phys. Rev. B
84
(
8
),
081405
(
2011
).
35.
C. I.
Medel-Ruiz
,
H. P.
Ladrón de Guevara
,
J. R.
Molina-Contreras
, and
C.
Frausto-Reyes
, “
Fano effect in resonant Raman spectrum of CdTe
,”
Solid State Commun.
312
,
113895
(
2020
).
36.
F.
Cerdeira
,
T. A.
Fjeldly
, and
M.
Cardona
, “
Interaction between electronic and vibronic Raman scattering in heavily doped silicon
,”
Solid State Commun.
13
(
3
),
325
328
(
1973
).
37.
M.
Kroner
,
A. O.
Govorov
,
S.
Remi
,
B.
Biedermann
,
S.
Seidl
,
A.
Badolato
,
P. M.
Petroff
,
W.
Zhang
,
R.
Barbour
,
B. D.
Gerardot
,
R. J.
Warburton
, and
K.
Karrai
, “
The nonlinear Fano effect
,”
Nature
451
(
7176
),
311
314
(
2008
).
38.
P. R.
Sagdeo
,
N. P.
Lalla
,
A. V.
Narlikar
,
D.
Prabhakaran
, and
A. T.
Boothroyd
, “
Strain-induced first-order orbital flip transition and coexistence of charge-orbital ordered phases in Pr0.5Ca0.5MnO3
,”
Phys. Rev. B
78
(
17
),
174106
(
2008
).
39.
Y.
Kang
,
H.
Peelaers
, and
C. G.
Van De Walle
, “
First-principles study of electron-phonon interactions and transport in anatase TiO2
,”
Phys. Rev. B
100
(
12
),
121113
(
2019
).
40.
V. G.
Sathe
,
S.
Tyagi
, and
G.
Sharma
, “
Electron-phonon coupling in perovskites studied by Raman scattering
,”
J. Phys.: Conf. Ser.
755
,
012008
(
2016
).
41.
M. K.
Warshi
,
V.
Mishra
,
A.
Sagdeo
,
V.
Mishra
,
R.
Kumar
, and
P. R.
Sagdeo
, “
Structural, optical and electronic properties of RFeO3
,”
Ceram. Int.
44
(
7
),
8344
8349
(
2018
).
42.
U.
Fano
, “
Effects of configuration interaction on intensities and phase shifts
,”
Phys. Rev.
124
(
6
),
1866
1878
(
1961
).
43.
O. V.
Rambadey
,
A.
Kumar
,
K.
Kumar
,
V.
Mishra
, and
P. R.
Sagdeo
, “
Methodology to probe disorder contribution in Raman linewidth via optical absorption spectroscopy in orthoferrite EuFeO3
,”
J. Phys. Chem. C
126
(
32
),
13946
13956
(
2022
).
44.
O. V.
Rambadey
,
A.
Kumar
, and
P. R.
Sagdeo
, “
Investigating the correlation between the Urbach energy and asymmetry parameter of the Raman mode in semiconductors
,”
Phys. Rev. B
104
(
24
),
245205
(
2021
).
45.
F.
Urbach
, “
The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids
,”
Phys. Rev.
92
(
5
),
1324
(
1953
).
46.
M. V.
Kurik
, “
Urbach rule
,”
Phys. Status Solidi A
8
(
1
),
9
45
(
1971
).
47.
P.
Iyyappa Rajan
,
C.
Baldo
,
Enamullah
,
S.
Mahalakshmi
,
R.
Navamathavan
, and
T.
Adinaveen
, “
High thermopower and power factors in EuFeO3 for high temperature thermoelectric applications: A first-principles approach
,”
J. Appl. Phys.
128
(
15
),
155101
(
2020
).
48.
F.
Sarikhani
,
A.
Zabardasti
,
A. R.
Soleymani
, and
M.
Naseri
, “
Enhanced visible light activity of EuFeO3/TiO2 nanocomposites prepared by thermal treatment–hydrolysis precipitation method
,”
Appl. Phys. A
126
(
6
),
476
(
2020
).
49.
M.
Kamal Warshi
,
V.
Mishra
,
A.
Sagdeo
,
V.
Mishra
,
R.
Kumar
, and
P. R.
Sagdeo
, “
Synthesis and characterization of RFeO3: Experimental results and theoretical prediction
,”
Adv. Mater. Process. Technol.
4
(
4
),
558
572
(
2018
).
50.
R.
Li
,
X.
Zhang
,
D.
Zhang
,
Y.
Zhang
, and
G.
Xiang
, “
Optical properties and quantum confinement in ultrafine single crystal silicon nanowires synthesized by thermal evaporation without catalyst
,”
RSC Adv.
3
(
36
),
15982
(
2013
).
51.
G.
Kotnana
and
S. N.
Jammalamadaka
, “
Band gap tuning and orbital mediated electron–phonon coupling in HoFe1−xCrxO3 (0 ≤ x ≤ 1)
,”
J. Appl. Phys.
118
(
12
),
124101
(
2015
).
52.
A.
Kumar
,
S.
Umrao
, and
P. R.
Sagdeo
, “
Orbital facilitated charge transfer originated phonon mode in Cr-substituted PrFeO3: A brief Raman study
,”
J. Raman Spectrosc.
51
(
7
),
1210
1218
(
2020
).
53.
V.
Mishra
,
M. K.
Warshi
,
A.
Sati
,
A.
Kumar
,
V.
Mishra
,
R.
Kumar
, and
P. R.
Sagdeo
, “
Investigation of temperature-dependent optical properties of TiO2 using diffuse reflectance spectroscopy
,”
SN Appl. Sci.
1
(
3
),
241
(
2019
).
54.
V.
Mishra
,
A.
Sati
,
M. K.
Warshi
,
A. B.
Phatangare
,
S.
Dhole
,
V. N.
Bhoraskar
,
H.
Ghosh
,
A.
Sagdeo
,
V.
Mishra
,
R.
Kumar
, and
P. R.
Sagdeo
, “
Effect of electron irradiation on the optical properties of SrTiO3: An experimental and theoretical investigations
,”
Mater. Res. Express
5
(
3
),
036210
(
2018
).
55.
I.
Studenyak
,
M.
Kranjec
, and
M.
Kurik
, “
Urbach rule in solid state physics
,”
Int. J. Opt. Appl.
4
(
3
),
76
83
(
2014
).
56.
A.
Sati
,
V.
Mishra
,
A.
Kumar
,
M.
Warshi
,
A.
Sagdeo
,
R.
Kumar
, and
P.
Sagdeo
, “
Effect of structural disorder on the electronic and phononic properties of Hf doped BaTiO3
,”
J. Mater. Sci.: Mater. Electron.
30
,
9498
9506
(
2019
).
57.
C. H.
Grein
and
S.
John
, “
Temperature dependence of the Urbach optical absorption edge: A theory of multiple phonon absorption and emission sidebands
,”
Phys. Rev. B
39
(
2
),
1140
1151
(
1989
).
58.
M.
Ledinsky
,
T.
Schönfeldová
,
J.
Holovský
,
E.
Aydin
,
Z.
Hájková
,
L.
Landová
,
N.
Neyková
,
A.
Fejfar
, and
S.
De Wolf
, “
Temperature dependence of the Urbach energy in lead iodide perovskites
,”
J. Phys. Chem. Lett.
10
(
6
),
1368
1373
(
2019
).
59.
A.
Kumar
,
V.
Mishra
,
M. K.
Warshi
,
A.
Sati
,
A.
Sagdeo
,
R.
Kumar
, and
P. R.
Sagdeo
, “
Possible evidence of delocalized excitons in Cr-doped PrFeO3: An experimental and theoretical realization
,”
J. Phys. Chem. Solids
130
,
230
235
(
2019
).
60.
N.
Mokdad
,
F. Z.
Mami
,
N.
Boukli-Hacène
,
K.
Zitouni
, and
A.
Kadri
, “
Theoretical study of Urbach tail behavior in Hg1−xCdxTe in the 0.21 ≤ x ≤ 0.6 medium and far infrared optical ranges
,”
J. Appl. Phys.
132
(
17
),
175702
(
2022
).
61.
A.
Kumar
,
M. K.
Warshi
,
V.
Mishra
,
S. K.
Saxena
,
R.
Kumar
, and
P. R.
Sagdeo
, “
Strain control of Urbach energy in Cr-doped PrFeO3
,”
Appl. Phys. A
123
(
9
),
576
(
2017
).
62.
A.
Kumar
,
V.
Mishra
,
M. K.
Warshi
,
A.
Sati
,
A.
Sagdeo
,
R.
Kumar
, and
P. R.
Sagdeo
, “
Strain induced disordered phonon modes in Cr doped PrFeO3
,”
J. Phys.: Condens. Matter
31
(
27
),
275602
(
2019
).
63.
M.
Gupta
,
O. V.
Rambadey
,
S. C.
Shirbhate
,
S.
Acharya
,
A.
Sagdeo
, and
P. R.
Sagdeo
, “
Probing the signature of disordering and delocalization of oxygen vacancies and anti-site defects in doped LaAlO3 solid electrolytes
,”
J. Phys. Chem. C
126
,
20251
(
2022
).
64.
M. K.
Warshi
,
A.
Kumar
,
A.
Sati
,
S.
Thota
,
K.
Mukherjee
,
A.
Sagdeo
, and
P. R.
Sagdeo
, “
Cluster glass behavior in orthorhombic SmFeO3 perovskite: Interplay between spin ordering and lattice dynamics
,”
Chem. Mater.
32
(
3
),
1250
1260
(
2020
).
65.
M.
Gupta
,
O. V.
Rambadey
, and
P. R.
Sagdeo
, “
Probing the effect of R-cation radii on structural, vibrational, optical, and dielectric properties of rare earth (R=La, Pr, Nd) aluminates
,”
Ceram. Int.
48
,
23072
(
2022
).
66.
A.
Sati
,
P.
Pokhriyal
,
A.
Kumar
,
S.
Anwar
,
A.
Sagdeo
,
N. P.
Lalla
, and
P. R.
Sagdeo
, “
Origin of ferroelectricity in cubic phase of Hf substituted BaTiO3
,”
J. Phys.: Condens. Matter
33
(
16
),
165403
(
2021
).
67.
M.
Gupta
,
O. V.
Rambadey
,
A.
Sagdeo
, and
P. R.
Sagdeo
, “
Investigating the structural, vibrational, optical, and dielectric properties in Mg-substituted LaAlO3
,”
J. Mater. Sci.: Mater. Electron.
33
,
13352
(
2022
).
68.
M.
Gupta
,
S. C.
Shirbhate
,
O. V.
Rambadey
,
S. A.
Acharya
, and
P. R.
Sagdeo
, “
Temperature-dependent delocalization of oxygen vacancies in La-substituted CeO2
,”
ACS Appl. Energy Mater.
5
(
8
),
9759
9769
(
2022
).
69.
A.
Kumar
,
M. K.
Warshi
,
A.
Sagdeo
,
M.
Krzystyniak
,
S.
Rudić
,
D. T.
Adroja
,
I.
da Silva
, and
P. R.
Sagdeo
, “
Origin of natural and magnetic field induced polar order in orthorhombic PrFe1/2Cr1/2O3
,”
Phys. Rev. B
104
(
3
),
035101
(
2021
).
70.
S.
Dutt
,
O. V.
Rambadey
,
P. R.
Sagdeo
, and
A.
Sagdeo
, “
Absence of presumed ferroelectricity in methylammonium lead chloride single crystals representing organic-inorganic hybrid perovskites
,”
Mater. Chem. Phys.
295
,
127169
(
2023
).
71.
S. R.
Johnson
and
T.
Tiedje
, “
Temperature dependence of the Urbach edge in GaAs
,”
J. Appl. Phys.
78
(
9
),
5609
5613
(
1995
).
72.
P.
Fornasini
and
R.
Grisenti
, “
On EXAFS Debye-Waller factor and recent advances
,”
J. Synchrotron Radiat.
22
(
5
),
1242
1257
(
2015
).
73.
F.
Giustino
, “
Electron-phonon interactions from first principles
,”
Rev. Mod. Phys.
89
(
1
),
015003
(
2017
).
74.
A.
Kumar
,
M. K.
Warshi
,
V.
Mishra
,
A.
Sati
,
S.
Banik
,
A.
Sagdeo
,
R.
Kumar
, and
P. R.
Sagdeo
, “
Optical spectroscopy: An effective tool to probe the origin of dielectric loss in Cr doped PrFeO3
,”
Ceram. Int.
45
(
7
),
8585
8592
(
2019
).
75.
O. V.
Rambadey
,
A.
Kumar
,
A.
Sati
, and
P. R.
Sagdeo
, “
Exploring the interrelation between Urbach energy and dielectric constant in Hf-substituted BaTiO3
,”
ACS Omega
6
(
47
),
32231
32238
(
2021
).
76.
T. R.
Hart
,
R. L.
Aggarwal
, and
B.
Lax
, “
Temperature dependence of Raman scattering in silicon
,”
Phys. Rev. B
1
(
2
),
638
642
(
1970
).
77.
T.
Tiedje
and
J. M.
Cebulka
, “
Temperature dependence of the photoconductive absorption edge in amorphous silicon
,”
Phys. Rev. B
28
(
12
),
7075
7079
(
1983
).
78.
P.
Mishra
and
K. P.
Jain
, “
Temperature-dependent Raman scattering studies in nanocrystalline silicon and finite-size effects
,”
Phys. Rev. B
62
(
22
),
14790
14795
(
2000
).
79.
I.
Bonalde
,
E.
Medina
,
M.
Rodríguez
,
S. M.
Wasim
,
G.
Marín
,
C.
Rincón
,
A.
Rincón
, and
C.
Torres
, “
Urbach tail, disorder, and localized modes in ternary semiconductors
,”
Phys. Rev. B
69
(
19
),
195201
(
2004
).
80.
A.
Kumar
,
O. V.
Rambadey
, and
P. R.
Sagdeo
, “
Unorthodox approach to realize the correlation between the dielectric constant and electronic disorder in Cr-doped PrFeO3
,”
J. Phys. Chem. C
125
(
13
),
7378
7383
(
2021
).
81.
J.
Bhosale
,
A. K.
Ramdas
,
A.
Burger
,
A.
Muñoz
,
A. H.
Romero
,
M.
Cardona
,
R.
Lauck
, and
R. K.
Kremer
, “
Temperature dependence of band gaps in semiconductors: Electron-phonon interaction
,”
Phys. Rev. B
86
(
19
),
195208
(
2012
).
82.
X.
Zhou
,
L.
Li
,
H.
Dong
,
A.
Giri
,
P. E.
Hopkins
, and
O. V.
Prezhdo
, “
Temperature dependence of electron-phonon interactions in gold films rationalized by time-domain ab initio analysis
,”
J. Phys. Chem. C
121
(
32
),
17488
17497
(
2017
).
83.
S.
Banerjee
,
D.-I.
Kim
,
R. D.
Robinson
,
I. P.
Herman
,
Y.
Mao
, and
S. S.
Wong
, “
Observation of Fano asymmetry in Raman spectra of SrTiO3 and CaxSr1−xTiO3 perovskite nanocubes
,”
Appl. Phys. Lett.
89
(
22
),
223130
(
2006
).
84.
B. G.
Burke
,
J.
Chan
,
K. A.
Williams
,
Z.
Wu
,
A. A.
Puretzky
, and
D. B.
Geohegan
, “
Raman study of Fano interference in p-type doped silicon
,”
J. Raman Spectrosc.
41
(
12
),
1759
1764
(
2010
).
85.
A. W.
Simonian
,
A. B.
Sproul
,
Z.
Shi
, and
E.
Gauja
, “
Observation of Fano resonance in heavily doped p-type silicon at room temperature
,”
Phys. Rev. B
52
(
8
),
5672
5674
(
1995
).
86.
J.
Huso
,
H.
Che
,
D.
Thapa
,
A.
Canul
,
M. D.
McCluskey
, and
L.
Bergman
, “
Phonon dynamics and Urbach energy studies of MgZnO alloys
,”
J. Appl. Phys.
117
(
12
),
125702
(
2015
).
87.
M.
Balkanski
,
R. F.
Wallis
, and
E.
Haro
, “
Anharmonic effects in light scattering due to optical phonons in silicon
,”
Phys. Rev. B
28
(
4
),
1928
1934
(
1983
).
88.
A.
Kumar
,
M. K.
Warshi
,
M.
Gupta
, and
P. R.
Sagdeo
, “
The magneto-elastic and optical properties of multiferroic GaFeO3-δ
,”
J. Magn. Magn. Mater.
514
,
167210
(
2020
).
89.
A.
Dwivedi
,
D.
Kumar
,
S. B.
Rai
, and
A. K.
Rai
, “
Effect of host on the radiative (upconversion emission) as well as non-radiative relaxation (laser induced optical heating) in Tm3+/Yb3+ co-doped phosphors
,”
J. Lumin.
226
,
117421
(
2020
).
90.
M. C.
Weber
,
M.
Guennou
,
H. J.
Zhao
,
J.
Íñiguez
,
R.
Vilarinho
,
A.
Almeida
,
J. A.
Moreira
, and
J.
Kreisel
, “
Raman spectroscopy of rare-earth orthoferrites R FeO3 (R=La, Sm, Eu, Gd, Tb, Dy)
,”
Phys. Rev. B
94
(
21
),
214103
(
2016
).
91.
A.
Kumar
,
A.
Sati
,
V.
Mishra
,
M. K.
Warshi
,
R.
Kumar
, and
P. R.
Sagdeo
, “
Charge neutral crystal field transitions: A measure of electron–phonon interaction
,”
J. Phys. Chem. Solids
135
,
109102
(
2019
).
92.
M. A.
Smondyrev
, “
Diagrams in the polaron model
,”
Theor. Math. Phys.
68
(
1
),
653
664
(
1986
).
93.
C. G.
Kuper
and
G. D.
Whitfield
, “
Introduction to the theory of the polaron: H. Frohlich
,” in
Polarons and Excitons
(
Plenum Press
,
Edinburg
,
1963
), pp.
1
28
.
94.
T. K.
Mitra
,
A.
Chatterjee
, and
S.
Mukhopadhyay
, “
Polarons
,”
Phys. Rep.
153
(
2–3
),
91
207
(
1987
).
95.
E.
Cappelluti
,
L.
Benfatto
,
M.
Manzardo
, and
A. B.
Kuzmenko
, “
Charged-phonon theory and Fano effect in the optical spectroscopy of bilayer graphene
,”
Phys. Rev. B
86
(
11
),
115439
(
2012
).
You do not currently have access to this content.