The conductivity type is one of the most fundamental transport properties of semiconductors, which is usually identified by fabricating the field-effect transistor, the Hall-effect device, etc. However, it is challenging to obtain an Ohmic contact if the sample is down to nanometer-scale because of the small size and intrinsic heterogeneity. Noncontact dielectric force microscopy (DFM) can identify the conductivity type of the sample by applying a DC gate voltage to the tip, which is effective in tuning the accumulation or depletion of charge carriers. Here, we further developed a dual-modulation DFM, which simplified the conductivity type identification from multiple scan times under different DC gate voltages to a single scan under an AC gate voltage. Taking single-walled carbon nanotubes as testing samples, the semiconducting-type sample exhibits a more significant charge carrier accumulation/depletion under each half-period of the AC gate voltage than the metallic-type sample due to the stronger rectification effect. The charge carrier accumulation or depletion of the p-type sample is opposite to that of the n-type sample at the same half-period of the AC gate voltage because of the reversed charge carrier type.

1.
P. C.
Shen
et al, “
Ultralow contact resistance between semimetal and monolayer semiconductors
,”
Nature
593
,
211
217
(
2021
).
2.
Y.
Li
et al, “
Nanoscale heterogeneous distribution of surface energy at interlayers in organic bulk-heterojunction solar cells
,”
Joule
5
,
3154
3168
(
2021
).
3.
C.
Wang
et al, “
In Operando visualization of interfacial band bending in photomultiplying organic photodetectors
,”
Nano Lett.
21
,
8474
8480
(
2021
).
4.
X.
Lian
et al, “
Light-induced beneficial ion accumulation for high-performance quasi-2D perovskite solar cells
,”
Energy Environ. Sci.
15
,
2499
2507
(
2022
).
5.
A.
Furube
et al, “
Basic aspects of gold nanoparticle photo-functionalization using oxides and 2D materials: Control of light confinement, heat-generation, and charge separation in nanospace
,”
J. Chem. Phys.
157
,
140901
(
2022
).
6.
C.
Wang
et al, “
Charge accumulation behavior in quantum dot light-emitting diodes
,”
Acta Phys.-Chim. Sin.
38
,
2104030
(
2022
).
7.
L.
Tang
et al, “
Polyfluorinated crosslinker-based solid polymer electrolytes for long-cycling 4.5 V lithium metal batteries
,”
Nat. Commun.
14
,
2301
(
2023
).
8.
Z.
Ma
et al, “
Interface-mediation-enabled high-performance near-infrared AgAuSe quantum dot light-emitting diodes
,”
J. Am. Chem. Soc.
145
,
24972
24980
(
2023
).
9.
J.
Bai
et al, “
Multifunctional flexible sensor based on PU-TA@MXene Janus architecture for selective direction recognition
,”
Adv. Mater.
35
,
2302847
(
2023
).
10.
T.
Zhang
et al, “
Incorporation of a polyfluorinated acrylate additive for high-performance quasi-2D perovskite light-emitting diodes
,”
Acta Phys.-Chim. Sin.
39
,
2301024
(
2023
).
11.
S. M.
Sze
and
K. K.
Ng
,
Physics of Semiconductor Devices
(
John Wiley & Sons
,
2006
).
12.
O.
Cherniavskaya
et al, “
Quantitative noncontact electrostatic force imaging of nanocrystal polarizability
,”
J. Phys. Chem. B
107
,
1525
1531
(
2003
).
13.
X. H.
Qiu
et al, “
Electrostatic characteristics of nanostructures investigated using electric force microscopy
,”
J. Solid State Chem.
181
,
1670
1677
(
2008
).
14.
X.
Chen
et al, “
Functional scanning force microscopy for energy nanodevices
,”
Adv. Mater.
30
,
1802490
(
2018
).
15.
B. X. E.
Desbiolles
et al, “
Electrostatically actuated encased cantilevers
,”
Beilstein J. Nanotechnol.
9
,
1381
1389
(
2018
).
16.
S.
Hussain
et al, “
Local electrical characterization of two-dimensional materials with functional atomic force microscopy
,”
Front. Phys.
14
,
33401
(
2019
).
17.
D.
Li
et al, “
Electronic gap characterization at mesoscopic scale via scanning probe microscopy under ambient conditions
,”
Nat. Commun.
13
,
4648
(
2022
).
18.
W.
Lu
,
D.
Wang
, and
L.
Chen
, “
Near-static dielectric polarization of individual carbon nanotubes
,”
Nano Lett.
7
,
2729
2733
(
2007
).
19.
W.
Lu
et al, “
A scanning probe microscopy based assay for single-walled carbon nanotube metallicity
,”
Nano Lett.
9
,
1668
1672
(
2009
).
20.
Y.
Jiang
et al, “
Direct observation and measurement of mobile charge carriers in a monolayer organic semiconductor on a dielectric substrate
,”
ACS Nano
5
,
6195
6201
(
2011
).
21.
W.
Lu
et al, “
Contactless characterization of electronic properties of nanomaterials using dielectric force microscopy
,”
J. Phys. Chem. C
116
,
7158
7163
(
2012
).
22.
K.
Zhang
,
N.
Marzari
, and
Q.
Zhang
, “
Covalently functionalized metallic single-walled carbon nanotubes studied using electrostatic force microscopy and dielectric force microscopy
,”
J. Phys. Chem. C
117
,
24570
24578
(
2013
).
23.
Q.
Chen
et al, “
Probe the effects of surface adsorbates on ZnO nanowire conductivity using dielectric force microscopy
,”
Chin. J. Chem. Phys.
27
,
582
586
(
2014
).
24.
Z.
Li
et al, “
Imaging metal-like monoclinic phase stabilized by surface coordination effect in vanadium dioxide nanobeam
,”
Nat. Commun.
8
,
15561
(
2017
).
25.
Q.
Chen
et al, “
Ag-incorporated organic–inorganic perovskite films and planar heterojunction solar cells
,”
Nano Lett.
17
,
3231
3237
(
2017
).
26.
D.
Jeon
,
Y.
Kang
, and
T.
Kim
, “
Correlation between the dielectric response and thickness of vanadium pentoxide nanowires
,”
ACS Appl. Electron. Mater.
4
,
124
129
(
2022
).
27.
X.
Cui
et al, “
Controlling energy-level alignments at carbon nanotube/Au contacts
,”
Nano Lett.
3
,
783
787
(
2003
).
28.
W.
Lu
,
Y.
Xiong
, and
L.
Chen
, “
Length-dependent dielectric polarization in metallic single-walled carbon nanotubes
,”
J. Phys. Chem. C
113
,
10337
10340
(
2009
).
29.
J.
Zhang
et al, “
Probing electronic doping of single-walled carbon nanotubes by gaseous ammonia with dielectric force microscopy
,”
J. Phys. Chem. Lett.
3
,
3509
3512
(
2012
).
30.
R.
Zhang
et al, “
CuI encapsulated within single-walled carbon nanotube networks with high current carrying capacity and excellent conductivity
,”
Adv. Funct. Mater.
33
,
2301864
(
2023
).
31.
S.
Liu
et al, “
Interlayer charge transfer induced electrical behavior transition in 1D AgI@sSWCNT van der Waals heterostructures
,”
Nano Lett.
24
,
741
747
(
2024
).
32.
J.
Zhang
et al, “
Dielectric force microscopy: Imaging charge carriers in nanomaterials without electrical contacts
,”
Acc. Chem. Res.
48
,
1788
1796
(
2015
).
33.
J.
Lai
et al, “
Quantitative measurement of the charge carrier concentration using dielectric force microscopy
,”
Chin. Phys. B
32
,
037202
(
2023
).
34.
D.
Kang
et al, “
Oxygen-induced p-type doping of a long individual single-walled carbon nanotube
,”
Nanotechnology
16
,
1048
1052
(
2005
).
You do not currently have access to this content.