The description of electronic properties of low bandgap molecular system is often performed by using density functional theory (DFT) and time dependent (TD) DFT calculations with the optimally tuned range-separated hybrid (OT-RSH) functional, as it contains the necessary ingredients to reliably predict charge transfer excitations. However, the range separating parameter (ω) is system-dependent and its optimization, including the chemical environment, is intricate. Refaely-Abramson et al. demonstrated that the gap renormalization in molecular crystals, a ground state property, can be represented by an OT-RSH functional screened by ɛstatic [Phys. Rev. B 88, 081204(R) (2013)], the zero frequency scalar dielectric constant. In this study, we propose the use of an OT-RSH functional screened by the scalar dielectric constant in the high frequency limit (OT-sRSH), ɛ, an appropriate constraint for vertical ionization energies or excitations in a dielectric environment. We have performed calculations for S,N-heteroacene derivatives in tetrahydrofuran and dichloromethane. The “unscreened” OT-RSH functional tends to underestimate experimental ionization potentials (IPs) and optical gaps (Egs) by up to 1.5 and 0.5 eV, respectively. In contrast, OT-sRSH functional calculations underestimate IPs and Egs by only 0.4 and 0.2 eV. We also compared the OT-sRSH results to explicitly solvated OT-RSH functional calculations for oligothiophenes in dioxane, benzene in ammonia, and methylene blue in water. We observe that both the approaches perform similarly for weakly interacting intermolecular systems and deviate for solvent–solute interacting systems, as expected. In conclusion, the OT-sRSH functional can describe molecular systems with environmental polarization effects accurately, a step toward describing realistic molecular systems.

1.
T.
Stein
,
L.
Kronik
, and
R.
Baer
,
J. Am. Chem. Soc.
131
,
2818
(
2009
).
2.
T.
Leininger
,
H.
Stoll
,
H.-J.
Werner
, and
A.
Savin
,
Chem. Phys. Lett.
275
,
151
(
1997
).
3.
H.
Iikura
,
T.
Tsuneda
,
T.
Yanai
, and
K.
Hirao
,
J. Chem. Phys.
115
,
3540
(
2001
).
4.
R.
Baer
and
D.
Neuhauser
,
Phys. Rev. Lett.
94
,
043002
(
2005
).
5.
L.
Kronik
,
T.
Stein
,
S.
Refaely-Abramson
, and
R.
Baer
,
J. Chem. Theory Comput.
8
,
1515
(
2012
).
6.
C.-O.
Almbladh
and
U.
von Barth
,
Phys. Rev. B
31
,
3231
(
1985
).
7.
T. B.
de Queiroz
and
S.
Kümmel
,
J. Chem. Phys.
143
,
034101
(
2015
).
8.
T. B.
de Queiroz
,
E. R.
de Figueroa
,
M. D.
Coutinho-Neto
,
C. D.
Maciel
,
E.
Tapavicza
,
Z.
Hashemi
, and
L.
Leppert
,
J. Chem. Phys.
154
,
044106
(
2021
).
9.
T. B.
de Queiroz
and
S.
Kümmel
,
J. Chem. Phys.
141
,
084303
(
2014
).
10.
X. A.
Sosa Vazquez
and
C. M.
Isborn
,
J. Chem. Phys.
143
,
244105
(
2015
).
11.
T.
Sachse
,
T. J.
Martínez
, and
M.
Presselt
,
J. Chem. Phys.
150
,
174117
(
2019
).
12.
S. G.
Dale
and
E. R.
Johnson
,
J. Chem. Phys.
143
,
184112
(
2015
).
13.
D. K. A.
Phan Huu
,
R.
Dhali
,
C.
Pieroni
,
F.
Di Maiolo
,
C.
Sissa
,
F.
Terenziani
, and
A.
Painelli
,
Phys. Rev. Lett.
124
,
107401
(
2020
).
14.
S.
Refaely-Abramson
,
S.
Sharifzadeh
,
M.
Jain
,
R.
Baer
,
J. B.
Neaton
, and
L.
Kronik
,
Phys. Rev. B
88
,
081204
(
2013
).
15.
T.
Shimazaki
and
Y.
Asai
,
Chem. Phys. Lett.
466
,
91
(
2008
).
16.
T.
Shimazaki
and
Y.
Asai
,
J. Chem. Phys.
130
,
164702
(
2009
).
17.
J. H.
Skone
,
M.
Govoni
, and
G.
Galli
,
Phys. Rev. B
89
,
195112
(
2014
).
18.
J. H.
Skone
,
M.
Govoni
, and
G.
Galli
,
Phys. Rev. B
93
,
235106
(
2016
).
19.
W.
Chen
,
G.
Miceli
,
G.-M.
Rignanese
, and
A.
Pasquarello
,
Phys. Rev. Mater.
2
,
073803
(
2018
).
20.
T.
Bischoff
,
J.
Wiktor
,
W.
Chen
, and
A.
Pasquarello
,
Phys. Rev. Mater.
3
,
123802
(
2019
).
21.
M.
Lorke
,
P.
Deák
, and
T.
Frauenheim
,
Phys. Rev. B
102
,
235168
(
2020
).
22.
D.
Wing
,
G.
Ohad
,
J. B.
Haber
,
M. R.
Filip
,
S. E.
Gant
,
J. B.
Neaton
, and
L.
Kronik
,
Proc. Natl. Acad. Sci. U. S. A.
118
,
e2104556118
(
2021
).
23.
D.
Wing
,
J.
Strand
,
T.
Durrant
,
A. L.
Shluger
, and
L.
Kronik
,
Phys. Rev. Mater.
4
,
083808
(
2020
).
24.
D.
Wing
,
J. B.
Neaton
, and
L.
Kronik
,
Adv. Theory Simul.
3
,
2000220
(
2020
).
25.
A. K.
Manna
,
S.
Refaely-Abramson
,
A. M.
Reilly
,
A.
Tkatchenko
,
J. B.
Neaton
, and
L.
Kronik
,
J. Chem. Theory Comput.
14
,
2919
(
2018
).
26.
A.
Tal
,
P.
Liu
,
G.
Kresse
, and
A.
Pasquarello
,
Phys. Rev. Res.
2
,
032019
(
2020
).
27.
D.
Wing
,
J. B.
Haber
,
R.
Noff
,
B.
Barker
,
D. A.
Egger
,
A.
Ramasubramaniam
,
S. G.
Louie
,
J. B.
Neaton
, and
L.
Kronik
,
Phys. Rev. Mater.
3
,
064603
(
2019
).
28.
J.
Sun
,
J.
Yang
, and
C. A.
Ullrich
,
Phys. Rev. Res.
2
,
013091
(
2020
).
29.
J.
Sun
and
C. A.
Ullrich
,
Phys. Rev. Mater.
4
,
095402
(
2020
).
30.
B.
Joo
,
H.
Han
, and
E.-G.
Kim
,
J. Chem. Theory Comput.
14
,
2823
(
2018
).
31.
Z.
Zheng
,
D. A.
Egger
,
J.-L.
Brédas
,
L.
Kronik
, and
V.
Coropceanu
,
J. Phys. Chem. Lett.
8
,
3277
(
2017
).
32.
S.
Bhandari
,
M. S.
Cheung
,
E.
Geva
,
L.
Kronik
, and
B. D.
Dunietz
,
J. Chem. Theory Comput.
14
,
6287
(
2018
).
33.
S.
Bhandari
and
B. D.
Dunietz
,
J. Chem. Theory Comput.
15
,
4305
(
2019
).
34.
H.
Aksu
,
A.
Schubert
,
E.
Geva
, and
B. D.
Dunietz
,
J. Phys. Chem. B
123
,
8970
(
2019
).
35.
Y.
Zhao
and
D. G.
Truhlar
,
Theor. Chem. Acc.
120
,
215
(
2008
).
36.
A.
Yassin
,
P.
Leriche
, and
J.
Roncali
,
Macromol. Rapid Commun.
31
,
1467
(
2010
).
37.
K.
Mitsudo
,
S.
Shimohara
,
J.
Mizoguchi
,
H.
Mandai
, and
S.
Suga
,
Org. Lett.
14
,
2702
(
2012
).
38.
C.
Wetzel
,
A.
Mishra
,
E.
Mena-Osteritz
,
A.
Liess
,
M.
Stolte
,
F.
Würthner
, and
P.
Bäuerle
,
Org. Lett.
16
,
362
(
2013
).
39.
A.
Mishra
,
D.
Popovic
,
A.
Vogt
,
H.
Kast
,
T.
Leitner
,
K.
Walzer
,
M.
Pfeiffer
,
E.
Mena-Osteritz
, and
P.
Bäuerle
,
Adv. Mater.
26
,
7217
(
2014
).
40.
H.
Kast
,
A.
Mishra
,
G. L.
Schulz
,
M.
Urdanpilleta
,
E.
Mena-Osteritz
, and
P.
Bäuerle
,
Adv. Funct. Mater.
25
,
3414
(
2015
).
41.
C.
Wetzel
,
E.
Brier
,
A.
Vogt
,
A.
Mishra
,
E.
Mena-Osteritz
, and
P.
Bäuerle
,
Angew. Chem., Int. Ed.
54
,
12334
(
2015
).
42.
C.
Wetzel
,
A.
Vogt
,
A.
Rudnick
,
E.
Mena-Osteritz
,
A.
Köhler
, and
P.
Bäuerle
,
Org. Chem. Front.
4
,
1629
(
2017
).
43.
A.
Vogt
,
F.
Henne
,
C.
Wetzel
,
E.
Mena-Osteritz
, and
P.
Bäuerle
,
Beilstein J. Org. Chem.
16
,
2636
(
2020
).
44.
T.
Kraus
,
S.
Lucas
,
P.
Wolff
,
A.
Aubele
,
E.
Mena-Osteritz
, and
P.
Bäuerle
,
Chem. -Eur. J.
27
,
10913
(
2021
).
45.
Y.
Shao
,
L. F.
Molnar
,
Y.
Jung
,
J.
Kussmann
,
C.
Ochsenfeld
,
S. T.
Brown
,
A. T.
Gilbert
,
L. V.
Slipchenko
,
S. V.
Levchenko
,
D. P.
O’Neill
,
R. A.
DiStasio
, Jr.
,
R. C.
Lochan
,
T.
Wang
,
G. J.
Beran
,
N. A.
Besley
,
J. M.
Herbert
,
C.
Yeh Lin
,
T.
Van Voorhis
,
S.
Hung Chien
,
A.
Sodt
,
R. P.
Steele
,
V. A.
Rassolov
,
P. E.
Maslen
,
P. P.
Korambath
,
R. D.
Adamson
,
B.
Austin
,
J.
Baker
,
E. F. C.
Byrd
,
H.
Dachsel
,
R. J.
Doerksen
,
A.
Dreuw
,
B. D.
Dunietz
,
A. D.
Dutoi
,
T. R.
Furlani
,
S. R.
Gwaltney
,
A.
Heyden
,
S.
Hirata
,
C.-P.
Hsu
,
G.
Kedziora
,
R. Z.
Khalliulin
,
P.
Klunzinger
,
A. M.
Lee
,
M. S.
Lee
,
W.
Liang
,
I.
Lotan
,
N.
Nair
,
B.
Peters
,
E. I.
Proynov
,
P. A.
Pieniazek
,
Y.
Min Rhee
,
J.
Ritchie
,
E.
Rosta
,
C.
David Sherrill
,
A. C.
Simmonett
,
J. E.
Subotnik
,
H.
Lee Woodcock
III
,
W.
Zhang
,
A. T.
Bell
,
A. K.
Chakraborty
,
D. M.
Chipman
,
F. J.
Keil
,
A.
Warshel
,
W. J.
Hehre
,
H. F.
Schaefer
III
,
J.
Kong
,
A. I.
Krylov
,
P. M. W.
Gill
, and
M.
Head-Gordon
,
Phys. Chem. Chem. Phys.
8
,
3172
(
2006
).
46.
O. A.
Vydrov
and
G. E.
Scuseria
,
J. Chem. Phys.
125
,
234109
(
2006
).
47.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
48.
T.
Yanai
,
D. P.
Tew
, and
N. C.
Handy
,
Chem. Phys. Lett.
393
,
51
(
2004
).
49.
T.
Stein
,
L.
Kronik
, and
R.
Baer
,
J. Chem. Phys.
131
,
244119
(
2009
).
50.
A.
Karolewski
,
T.
Stein
,
R.
Baer
, and
S.
Kümmel
,
J. Chem. Phys.
134
,
151101
(
2011
).
51.
M. E.
Casida
, “
Time-dependent density functional response theory for molecules
,” in
Recent Advances in Density Functional Methods
, edited by
P.
Chong
(
World Scientific
,
Singapore
,
1995
), pp.
155
192
.
52.
G.
Arivazhagan
,
G.
Parthipan
, and
T.
Thenappan
,
Philos. Mag. Lett.
89
,
735
(
2009
).
53.
J.
Hunger
,
A.
Stoppa
,
A.
Thoman
,
M.
Walther
, and
R.
Buchner
,
Chem. Phys. Lett.
471
,
85
(
2009
).
54.
K.
Moutzouris
,
M.
Papamichael
,
S. C.
Betsis
,
I.
Stavrakas
,
G.
Hloupis
, and
D.
Triantis
,
Appl. Phys. B
116
,
617
(
2014
).
55.
W. M.
Haynes
,
D. R.
Lide
, and
T. J.
Bruno
,
CRC Handbook of Chemistry and Physics: A Ready-Reference Book of Chemical and Physical Data
, 97th ed. (
CRC Press
,
Boca Raton, FL
,
2016
).
56.
M.
Cossi
,
N.
Rega
,
G.
Scalmani
, and
V.
Barone
,
J. Comput. Chem.
24
,
669
(
2003
).
57.
C.
Huang
,
X.
Liao
,
K.
Gao
,
L.
Zuo
,
F.
Lin
,
X.
Shi
,
C.-Z.
Li
,
H.
Liu
,
X.
Li
,
F.
Liu
,
Y.
Chen
,
H.
Chen
, and
A. K.-Y.
Jen
,
Chem. Mater.
30
,
5429
(
2018
).
58.
M. V.
Ivanov
,
D.
Wang
,
D.
Zhang
,
R.
Rathore
, and
S. A.
Reid
,
Phys. Chem. Chem. Phys.
20
,
25615
(
2018
).
59.
D. J.
Tozer
and
N. C.
Handy
,
Mol. Phys.
101
,
2669
(
2003
).
60.
L.
Kronik
and
S.
Kümmel
,
Adv. Mater.
30
,
1706560
(
2018
).
61.
J. P.
Perdew
,
R. G.
Parr
,
M.
Levy
, and
J. L.
Balduz
,
Phys. Rev. Lett.
49
,
1691
(
1982
).
62.
J. P.
Perdew
and
M.
Levy
,
Phys. Rev. B
56
,
16021
(
1997
).
63.
J.
Liang
,
X.
Feng
,
D.
Hait
, and
M.
Head-Gordon
,
J. Chem. Theory Comput.
18
,
3460
(
2022
).
64.

As previously discussed, we note that it is difficult to conceive an experiment to measure “vertical IPs” in a solution or any medium, with few exceptions as the Liquid-Jet Photoelectron Spectroscopy.70,80 Thus, we regard the term “theoretical” vertical IP as the offset energy to eject one electron from the molecular system while only the electronic density reacts to the new configuration. Our concept of vertical IP and the experimental adiabatic IP approximate when the molecules are rigid and the medium is apolar such the reorganization energy is small compared to the ionization energies.

65.
E.
Bundgaard
and
F. C.
Krebs
,
Sol. Energy Mater. Sol. Cells
91
,
954
(
2007
).
66.
J.
Gierschner
,
J.
Cornil
, and
H.-J.
Egelhaaf
,
Adv. Mater.
19
,
173
(
2007
).
68.
G. N.
Lewis
and
M.
Calvin
,
Chem. Rev.
25
,
273
(
1939
).
69.
R.
Colditz
,
D.
Grebner
,
M.
Helbig
, and
S.
Rentsch
,
Chem. Phys.
201
,
309
(
1995
).
70.
H. C.
Schewe
,
K.
Brezina
,
V.
Kostal
,
P. E.
Mason
,
T.
Buttersack
,
D. M.
Stemer
,
R.
Seidel
,
W.
Quevedo
,
F.
Trinter
,
B.
Winter
, and
P.
Jungwirth
,
J. Phys. Chem. B
126
,
229
(
2022
).
71.
T.
Körzdörfer
,
R. M.
Parrish
,
N.
Marom
,
J. S.
Sears
,
C. D.
Sherrill
, and
J.-L.
Brédas
,
Phys. Rev. B
86
,
205110
(
2012
).
72.
K.
Coutinho
and
S.
Canuto
,
J. Mol. Struct.: THEOCHEM
287
,
99
(
1993
).
73.
J.
Philis
,
A.
Bolovinos
,
G.
Andritsopoulos
,
E.
Pantos
, and
P.
Tsekeris
,
J. Phys. B: At. Mol. Phys.
14
,
3621
(
1981
).
74.
A.
Bolovinos
,
P.
Tsekeris
,
J.
Philis
,
E.
Pantos
, and
G.
Andritsopoulos
,
J. Mol. Spectrosc.
103
,
240
(
1984
).
76.
D. M. P.
Holland
,
A. W.
Potts
,
L.
Karlsson
,
I.
Novak
,
I. L.
Zaytseva
,
A. B.
Trofimov
,
E. V.
Gromov
, and
J.
Schirmer
,
J. Phys. B: At., Mol. Opt. Phys.
43
,
135101
(
2010
).
77.
Y.
Li
,
J.
Wan
, and
X.
Xu
,
J. Comput. Chem.
28
,
1658
(
2007
).
78.
S.
Refaely-Abramson
,
S.
Sharifzadeh
,
N.
Govind
,
J.
Autschbach
,
J. B.
Neaton
,
R.
Baer
, and
L.
Kronik
,
Phys. Rev. Lett.
109
,
226405
(
2012
).
79.
T.
Schmidt
,
E.
Kraisler
,
A.
Makmal
,
L.
Kronik
, and
S.
Kümmel
,
J. Chem. Phys.
140
,
18A510
(
2014
).
80.
Z. N.
Heim
and
D. M.
Neumark
,
Acc. Chem. Res.
55
,
3652
(
2022
).
You do not currently have access to this content.