Organic–inorganic hybrid materials are explored for application as solid electrolytes for lithium-ion batteries. The material consists of a porous silica network, of which the pores are infiltrated by poly(ethylene oxide) and lithium perchlorate. The synthesis involves two steps: First, the inorganic backbone is created by the acid-catalyzed sol-gel synthesis of tetraethyl orthosilicate to ensure continuity of the backbone in three dimensions. In the second step, the polymer and salt are imbued into the porous backbone via solvent exchange. During drying, the cylindrical disk-shaped specimens shrink mainly in the radial direction, which results in spatially non-uniform structural developments. While this inhomogeneity is not discernible in the material’s chemical compositional or thermal properties, it is manifest in its ionic conductivity and adiabatic elastic modulus. The ionic conductivity in the center of the specimens is projected to be between one and two orders of magnitude higher than the measured average across the sample diameter. The process that yields a structure with enhanced ionic mobility during post-synthesis physical conditioning is inferred from careful analysis and numerical interpretation of measurable quantities, and the implications for the design of nanostructured hybrid electrolytes with high ionic conductivity are discussed.

1.
J. G.
Kim
,
B.
Son
,
S.
Mukherjee
,
N.
Schuppert
,
A.
Bates
,
O.
Kwon
,
M. J.
Choi
,
H. Y.
Chung
, and
S.
Park
, “
A review of lithium and non-lithium based solid state batteries
,”
J. Power Sources
282
,
299
(
2015
).
2.
R.
Miyazaki
,
H.
Maekawa
, and
H.
Takamura
, “
Synthesis of rock-salt type lithium borohydride and its peculiar Li+ ion conduction properties
,”
APL Mater.
2
,
056109
(
2014
).
3.
D. X.
Cao
,
X.
Sun
,
Q.
Li
,
A.
Natan
,
P. Y.
Xiang
, and
H. L.
Zhu
, “
Lithium dendrite in all-solid-state batteries: Growth mechanisms, suppression strategies, and characterizations
,”
Matter
3
,
57
(
2020
).
4.
J. Y.
Lee
,
P. H.
Chung
,
S. C.
Yeh
,
T. Y.
Yu
et al, “
Tough polymer electrolyte with an intrinsically stabilized interface with Li metal for all-solid-state lithium-ion batteries
,”
J. Phys. Chem. C
125
,
26339
(
2021
).
5.
B. R.
Li
,
Y.
Chao
,
M. C.
Li
,
Y. B.
Xiao
,
R.
Li
,
K.
Yang
,
X. C.
Cui
,
G.
Xu
,
L. Y.
Li
,
C. K.
Yang
,
Y.
Yu
,
D. P.
Wilkinson
, and
J. J.
Zhang
, “
A review of solid electrolyte interphase (SEI) and dendrite formation in lithium batteries
,”
Electrochem. Energy Rev.
6
,
7
(
2023
).
6.
D.
Li
,
L.
Chen
,
T.
Wang
, and
L. Z.
Fan
, “
3D fiber-network-reinforced bicontinuous composite solid electrolyte for dendrite-free lithium metal batteries
,”
ACS Appl. Mater. Interfaces
10
,
7069
(
2018
).
7.
J. W.
Li
,
Z.
Kong
,
X. X.
Liu
,
B. C.
Zheng
,
Q. H.
Fan
,
E.
Garratt
,
T.
Schuelke
,
K. L.
Wang
,
H.
Xu
, and
H.
Jin
, “
Strategies to anode protection in lithium metal battery: A review
,”
InfoMat
3
,
1333
(
2021
).
8.
H.
Liu
,
X. B.
Cheng
,
J. Q.
Huang
,
H.
Yuan
,
Y.
Lu
,
C.
Yan
,
G. L.
Zhu
,
R.
Xu
,
C. Z.
Zhao
,
L. P.
Hou
,
C. X.
He
,
S.
Kaskel
, and
Q.
Zhang
, “
Controlling dendrite growth in solid-state electrolytes
,”
ACS Energy Lett.
5
,
833
(
2020
).
9.
C.
Monroe
and
J.
Newman
, “
Dendrite growth in lithium/polymer systems: A propagation model for liquid electrolytes under galvanostatic conditions
,”
J. Electrochem. Soc.
150
,
A1377
(
2003
).
10.
Y.
Yan
,
C.
Shu
,
R.
Zheng
,
M.
Li
,
Z.
Ran
,
M.
He
,
A.
Hu
,
T.
Zeng
,
H.
Xu
, and
Y.
Zeng
, “
Modulating Sand’s time by ion-transport-enhancement toward dendrite-free lithium metal anode
,”
Nano Res.
15
,
3150
(
2021
).
11.
C. P.
Yang
,
K.
Fu
,
Y.
Zhang
,
E.
Hitz
, and
L. B.
Hu
, “
Protected lithium-metal anodes in batteries: From liquid to solid
,”
Adv. Mater.
29
,
1701169
(
2017
).
12.
J. Y.
Song
,
Y. Y.
Wang
, and
C. C.
Wan
, “
Review of gel-type polymer electrolytes for lithium-ion batteries
,”
J. Power Sources
77
,
183
(
1999
).
13.
S.
Ahmad
, “
RETRACTED ARTICLE: Polymer electrolytes: Characteristics and peculiarities
,”
Ionics
15
,
309
(
2009
).
14.
J. W.
Fergus
, “
Ceramic and polymeric solid electrolytes for lithium-ion batteries
,”
J. Power Sources
195
,
4554
(
2010
).
15.
L. P.
Yue
,
J.
Ma
,
J. J.
Zhang
,
J. W.
Zhao
,
S. M.
Dong
,
Z. H.
Liu
,
G. L.
Cui
, and
L. Q.
Chen
, “
All solid-state polymer electrolytes for high-performance lithium ion batteries
,”
Energy Storage Mater.
5
,
139
(
2016
).
16.
L.
Fan
,
S. Y.
Wei
,
S. Y.
Li
,
Q.
Li
, and
Y. Y.
Lu
, “
Recent progress of the solid-state electrolytes for high-energy metal-based batteries
,”
Adv. Energy Mater.
8
,
1702657
(
2018
).
17.
Z. J.
Wu
,
Z. K.
Xie
,
A.
Yoshida
,
Z. D.
Wang
,
X. G.
Hao
,
A.
Abudula
, and
G. Q.
Guan
, “
Utmost limits of various solid electrolytes in all-solid-state lithium batteries: A critical review
,”
Renewable Sustainable Energy Rev.
109
,
367
(
2019
).
18.
Y.
Shao
,
H.
Gudla
,
D.
Brandell
, and
C.
Zhang
, “
Transference number in polymer electrolytes: Mind the reference-frame gap
,”
J. Am. Chem. Soc.
144
,
7583
(
2022
).
19.
J. F.
Velez
,
M.
Aparicio
, and
J.
Mosa
, “
Covalent silica-PEO-LiTFSI hybrid solid electrolytes via sol-gel for Li-ion battery applications
,”
Electrochim. Acta
213
,
831
(
2016
).
20.
G.
Wang
and
J.
Kieffer
, “
Contiguous high-mobility interphase surrounding nano-precipitates in polymer matrix solid electrolyte
,”
ACS Appl. Mater. Interfaces
15
,
848
(
2023
).
21.
W.
Wang
,
E.
Yi
,
A. J.
Fici
,
R. M.
Laine
, and
J.
Kieffer
, “
Lithium ion conducting poly(ethylene oxide)-based solid electrolytes containing active or passive ceramic nanoparticles
,”
J. Phys. Chem. C
121
,
2563
(
2017
).
22.
P.
Yao
,
H.
Yu
,
Z.
Ding
,
Y.
Liu
,
J.
Lu
,
M.
Lavorgna
,
J.
Wu
, and
X.
Liu
, “
Review on polymer-based composite electrolytes for lithium batteries
,”
Front. Chem.
7
,
522
(
2019
).
23.
S.
Choudhury
,
S.
Stalin
,
D.
Vu
,
A.
Warren
,
Y.
Deng
,
P.
Biswal
, and
L. A.
Archer
, “
Solid-state polymer electrolytes for high-performance lithium metal batteries
,”
Nat. Commun.
10
,
4398
(
2019
).
24.
S.
Hull
, “
Superionics: Crystal structures and conduction processes
,”
Rep. Prog. Phys.
67
,
1233
(
2004
).
25.
S. B.
Aziz
,
T. J.
Woo
,
M. F. Z.
Kadir
, and
H. M.
Ahmed
, “
A conceptual review on polymer electrolytes and ion transport models
,”
J. Sci.:Adv. Mater. Devices
3
,
1
(
2018
).
26.
M.
Piglowska
,
B.
Kurc
,
M.
Galinski
,
P.
Fuc
,
M.
Kaminska
,
N.
Szymlet
, and
P.
Daszkiewicz
, “
Challenges for safe electrolytes applied in lithium-ion cells-A review
,”
Materials
14
,
6783
(
2021
).
27.
Y. B.
He
,
C. Y.
Wang
,
R. Q.
Lin
,
E. Y.
Hu
,
S. E.
Trask
,
J.
Li
, and
H. L.
Xin
, “
A self-healing, flowable, yet solid electrolyte suppresses Li-metal morphological instabilities
,”
Adv. Mater.
36
,
2406315
(
2024
).
28.
M. M.
Kabir
and
D. E.
Demirocak
, “
Degradation mechanisms in Li-ion batteries: A state-of-the-art review
,”
Int. J. Energy Res.
41
,
1963
(
2017
).
29.
A.
Mukhopadhyay
and
B. W.
Sheldon
, “
Deformation and stress in electrode materials for Li-ion batteries
,”
Prog. Mater. Sci.
63
,
58
(
2014
).
30.
D. C.
Zhang
,
X. J.
Xu
,
Y. L.
Qin
,
S. M.
Ji
,
Y. P.
Huo
,
Z. S.
Wang
,
Z. B.
Liu
,
J. D.
Shen
, and
J.
Liu
, “
Recent progress in organic-inorganic composite solid electrolytes for all-solid-state lithium batteries
,”
Chem.-Eur. J.
26
,
1720
(
2020
).
31.
Q.
Zhao
,
S.
Stalin
,
C. Z.
Zhao
, and
L. A.
Archer
, “
Designing solid-state electrolytes for safe, energy-dense batteries
,”
Nat. Rev. Mater.
5
,
229
(
2020
).
32.
K. S.
Ji
,
H. S.
Moon
,
J. W.
Kim
, and
J. W.
Park
, “
Role of functional nano-sized inorganic fillers in poly(ethylene) oxide-based polymer electrolytes
,”
J. Power Sources
117
,
124
(
2003
).
33.
F.
Ciuffa
,
F.
Croce
,
A.
D’Epifanio
,
S.
Panero
, and
B.
Scrosati
, “
Lithium and proton conducting gel-type membranes
,”
J. Power Sources
127
,
53
(
2004
).
34.
J.
Sun
,
Y. Q.
Huang
,
W. K.
Wang
,
Z. B.
Yu
,
A. B.
Wang
, and
K. G.
Yuan
, “
Application of gelatin as a binder for the sulfur cathode in lithium–sulfur batteries
,”
Electrochim. Acta
53
,
7084
(
2008
).
35.
A.
Manuel Stephan
, “
Review on gel polymer electrolytes for lithium batteries
,”
Eur. Polym. J.
42
,
21
(
2006
).
36.
A.
El-Hashani
,
A.
Toutianoush
, and
B.
Tieke
, “
Layer-by-layer assembled membranes of protonated 18-azacrown-6 and polyvinylsulfate and their application for highly efficient anion separation
,”
J. Phys. Chem. B
111
,
8582
(
2007
).
37.
S. P.
Jiang
,
Z. C.
Liu
, and
Z. Q.
Tian
, “
Layer-by-layer self-assembly of composite polyelectrolyte-nafion membranes for direct methanol fuel cells
,”
Adv. Mater.
18
,
1068
(
2006
).
38.
W. Q.
Jin
,
A.
Toutianoush
, and
B.
Tieke
, “
Use of polyelectrolyte layer-by-layer assemblies as nanofiltration and reverse osmosis membranes
,”
Langmuir
19
,
2550
(
2003
).
39.
G. M.
Lowman
,
H.
Tokuhisa
,
J. L.
Lutkenhaus
, and
P. T.
Hammond
, “
Novel solid-state polymer electrolyte consisting of a porous layer-by-layer polyelectrolyte thin film and oligoethylene glycol
,”
Langmuir
20
,
9791
(
2004
).
40.
A.
Manuel Stephan
and
K. S.
Nahm
, “
Review on composite polymer electrolytes for lithium batteries
,”
Polymer
47
,
5952
(
2006
).
41.
T.
Wang
,
F.
Xu
,
Y.
Cheng
, and
Z. Y.
Jiang
, “
Composite polymer electrolyte for Li-ion battery
,”
Chem. Phys. Lett.
359
,
303
(
2002
).
42.
J. Y.
Xi
,
X. P.
Qiu
,
X. M.
Ma
,
M. Z.
Cui
,
J.
Yang
,
X. Z.
Tang
,
W. T.
Zhu
, and
L. Q.
Chen
, “
Composite polymer electrolyte doped with mesoporous silica SBA-15 for lithium polymer battery
,”
Solid State Ionics
176
,
1249
(
2005
).
43.
K.
Dahmouche
,
M.
Atik
,
N. C.
Mello
,
T. J.
Bonagamba
,
H.
Panepucci
,
P.
Judeinstein
, and
M. A.
Aegerter
, “
New Li+ ion-conducting ormolytes
,”
Sol. Energy Mater. Sol. Cells
54
,
1
(
1998
).
44.
J. H.
Harreld
,
B.
Dunn
, and
L. F.
Nazar
, “
Design and synthesis of inorganic-organic hybrid microstructures
,”
Int. J. Inorg. Mater.
1
,
135
(
1999
).
45.
T.
Mizumo
,
T.
Watanabe
,
N.
Matsumi
, and
H.
Ohno
, “
Preparation of ion conductive inorganic-organic composite systems by in situ sol–gel reaction of polymerizable ionic liquids
,”
Polym. Adv. Technol.
19
,
1445
(
2008
).
46.
S. C.
Nunes
,
V. D.
Bermudez
,
M. M.
Silva
,
M. J.
Smith
,
E.
Morales
,
L. D.
Carlos
,
R. A. S.
Ferreira
, and
J.
Rocha
, “
Sol–gel derived Li+-doped poly(epsilon-caprolactone)/siloxane biohybrid electrolytes
,”
J. Solid State Electrochem.
10
,
203
(
2006
).
47.
M.
Popall
,
R.
Buestrich
,
G.
Semrau
,
G.
Eichinger
,
M.
Andrei
,
W. O.
Parker
,
S.
Skaarup
, and
K.
West
, “
New polymer lithium secondary batteries based on ORMOCER® electrolytes–inorganic–organic polymers
,”
Electrochim. Acta
46
,
1499
(
2001
).
48.
M. M.
Silva
,
S. C.
Nunes
,
P. C.
Barbosa
,
A.
Evans
,
V.
de Zea Bermudez
,
M. J.
Smith
, and
D.
Ostrovskii
, “
Sol–gel preparation of a di-ureasil electrolyte doped with lithium perchlorate
,”
Electrochim. Acta
52
,
1542
(
2006
).
49.
F. L.
Souza
,
P. R.
Bueno
,
E.
Longo
, and
E. R.
Leite
, “
Sol–gel nonhydrolytic synthesis of a hybrid organic-inorganic electrolyte for application in lithium-ion devices
,”
Solid State Ionics
166
,
83
(
2004
).
50.
C.
Wang
,
Y.
Wei
,
G. R.
Ferment
,
W.
Li
, and
T. J.
Li
, “
Poly(ethylene oxide)-silica hybrid materials for lithium battery application
,”
Mater. Lett.
39
,
206
(
1999
).
51.
E.
Zelazowska
,
E.
Rysiakiewicz-Pasek
, and
M.
Borczuch-Laczka
, “
Sol–gel derived Li-ion conducting polymer electrolytes
,”
Mater. Sci.-Pol.
23
,
177
(
2005
).
52.
P.
Bashiri
,
T. P.
Rao
,
G.-A.
Nazri
,
R.
Naik
, and
V. M.
Naik
, “
Ionic conductivity of hybrid composite solid polymer electrolytes of PEOnLiClO4-cubic Li7La3Zr2O12 films
,”
Processes
9
,
2090
(
2021
).
53.
M. B.
Dixit
,
W.
Zaman
,
N.
Hortance
,
S.
Vujic
,
B.
Harkey
,
F.
Shen
,
W.-Y.
Tsai
,
V.
De Andrade
,
X. C.
Chen
,
N.
Balke
, and
K. B.
Hatzell
, “
Nanoscale mapping of extrinsic interfaces in hybrid solid electrolytes
,”
Joule
4
,
207
(
2020
).
54.
Y. C.
Jung
,
S. M.
Lee
,
J. H.
Choi
,
S. S.
Jang
, and
D. W.
Kim
, “
All solid-state lithium batteries assembled with hybrid solid electrolytes
,”
J. Electrochem. Soc.
162
,
A704
(
2015
).
55.
N. C.
Rosero-Navarro
,
R.
Kajiura
,
A.
Miura
, and
K.
Tadanaga
, “
Organic-inorganic hybrid materials for interface design in all-solid-state batteries with a garnet-type solid electrolyte
,”
ACS Appl. Energy Mater.
3
,
11260
(
2020
).
56.
J. F.
Velez
,
R. A.
Procaccini
,
M.
Aparicio
, and
J.
Mosa
, “
Epoxy-silica hybrid organic-inorganic electrolytes with a high Li-ion conductivity
,”
Electrochim. Acta
110
,
200
(
2013
).
57.
M.
Faustini
,
L.
Nicole
,
E.
Ruiz-Hitzky
, and
C.
Sanchez
, “
History of organic-inorganic hybrid materials: Prehistory, art, science, and advanced applications
,”
Adv. Funct. Mater.
28
,
1704158
(
2018
).
58.
A. L. B. S.
Bathista
,
E. R.
Deazevedo
,
A. C.
Bloise
,
K.
Dahmouche
,
P.
Judeinstein
, and
T. J.
Bonagamba
, “
Effects of lithium doping on the polymer chain dynamics in siloxane/poly(ethylene oxide) ormolyte Nanocomposites: A13C and 7Li exchange solid-state NMR study
,”
Chem. Mater.
19
,
1780
(
2007
).
59.
K.
Dahmouche
,
P. H.
De Souza
,
T. J.
Bonagamba
,
H.
Paneppucci
,
P.
Judeinstein
,
S. H.
Pulcinelli
, and
C. V.
Santilli
, “
Investigation of new ion conducting ormolytes silica-polypropyleneglycol
,”
J. Sol–Gel Sci. Technol.
13
,
909
(
1998
).
60.
V.
Dinoto
,
E.
Negro
,
S.
Lavina
, and
M.
Vittadello
, “
Hybrid inorganic-organic polymer electrolytes
,” in
Polymer Electrolytes: Fundamentals and Applications
, edited by
C.
Sequeira
and
D.
Santos
(
Woodheaf Publishing
,
2010
), pp.
219
277
.
61.
J.
Mosa
,
J. F.
Velez
, and
M.
Aparicio
, “
Blend hybrid solid electrolytes based on LiTFSI doped silica-polyethylene oxide for lithium-ion batteries
,”
Membranes
9
,
109
(
2019
).
62.
S. S.
Wang
,
H. L.
Liu
,
L. Y.
Zhang
, and
X.
Yao
, “
Pore size control of porous silica by sol–gel process
,”
Ferroelectr. Lett. Sect.
19
,
89
(
1995
).
63.
S.
Khurana
and
A.
Chandra
, “
Ion conducting polymer-silica hybrid ionogels obtained via non-aqueous sol–gel route
,”
Solid State Ionics
340
,
115027
(
2019
).
64.
S.
Esposito
, “
‘Traditional’ sol–gel chemistry as a powerful tool for the preparation of supported metal and metal oxide catalysts
,”
Materials
12
,
668
(
2019
).
65.
J.
Galbraith
,
L.
Chapman
,
J. W.
Zwanziger
,
M.
Aldridge
, and
J.
Kieffer
, “
Elasto-optic coefficients of borate, phosphate, and silicate glasses: Determination by Brillouin spectroscopy
,”
J. Phys. Chem. C
120
,
21802
(
2016
).
66.
J.
Kieffer
, “
Brillouin light scattering
,” in
Modern Glass Characterization
, edited by
M.
Affatigato
(
Wiley & Sons
,
2015
), pp.
107
155
.
67.
J.
Kieffer
,
J. E.
Masnik
,
O.
Nickolayev
, and
J. D.
Bass
, “
Structural developments in supercooled alkali tellurite melts
,”
Phys. Rev. B
58
,
694
(
1998
).
68.
J. K.
Kruger
,
J.
Embs
,
J.
Brierley
, and
R.
Jimenez
, “
A new Brillouin scattering technique for the investigation of acoustic and opto-acoustic properties: Application to polymers
,”
J. Phys. D: Appl. Phys.
31
,
1913
(
1998
).
69.
M.
Born
and
E.
Wolf
,
Principles of Optics: Electromagnetic Theory of Propagation, Interference, and Diffraction of Light
, 7th ed. (
Cambridge University Press
,
1999
).
70.
W.
Wang
,
R.
Christensen
,
B.
Curtis
,
S. W.
Martin
, and
J.
Kieffer
, “
A new model linking elastic properties and ionic conductivity of mixed network former glasses
,”
Phys. Chem. Chem. Phys.
20
,
1629
(
2018
).
71.
J.
Frenkel
,
Kinetic Theory of Liquids
(
Oxford University Press
,
1947
).
72.
O. L.
Anderson
and
D. A.
Stuart
, “
Calculation of activation energy of ionic conductivity in silica glasses by classical methods
,”
J. Am. Ceram. Soc.
37
,
573
(
1954
).
73.
C.
Beg
and
J.
Kieffer
, “
Anharmonicity and the emergence of diffusive behavior in a lattice-solute model solid-state electrolyte
,”
Comput. Mater. Sci.
228
,
112359
(
2023
).
74.
C.
Beg
and
J.
Kieffer
, “
Fragility and the rate of change of the energy landscape topography
,”
J. Non-Cryst. Solids: X
14
,
100101
(
2022
).
75.
G. S.
Fulcher
, “
Analysis of recent measurements of the viscosity of glasses
,”
J. Am. Ceram. Soc.
8
,
339
(
1925
).
76.
G.
Tammann
and
W.
Hesse
, “
Die abhängigkeit der viscosität von der temperatur bie unterkühlten flüssigkeiten
,”
Z. Anorg. Allg. Chem.
156
,
245
(
1926
).
77.
H.
Vogel
, “
The temperature dependence law of the viscosity of fluids
,”
Phys. Z.
22
,
645
(
1921
).
78.
G.
Williams
and
D. C.
Watts
, “
Non-symmetrical dielectric relaxation behaviour arising from a simple empirical decay function
,”
Trans. Faraday Soc.
66
,
80
(
1970
).
79.
F. J.
Richards
, “
A flexible growth function for empirical use
,”
J. Exp. Bot.
10
,
290
(
1959
).
You do not currently have access to this content.